- 无标题文档
查看论文信息

论文中文题名:

 徽派民居建筑室内热环境及节能设计策略研究    

姓名:

 张引    

学号:

 19204053018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081402    

学科名称:

 工学 - 土木工程 - 结构工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 结构工程    

研究方向:

 绿色建筑    

第一导师姓名:

 李雪平    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-14    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Research on Indoor Thermal Environment and Energy-saving Design Strategy of Hui-style Residential Buildings    

论文中文关键词:

 徽派民居 ; 室内热环境 ; 能耗模拟 ; 节能设计    

论文外文关键词:

 Hui-style Residential Buildings ; indoor thermal environment ; energy consumption simulation ; energy saving design    

论文中文摘要:

我国农村地区建筑面积约占全国的三分之一,随着国家大力倡导绿色节能建筑,传统民居节能优化也逐渐被重视,通过更换绿色建筑材料、优化平面布局、利用可再生资源等方式达到建筑室内舒适度提升的同时降低建筑能耗是民居节能设计的主要目标。本文以徽派民居为研究对象,作为我国建筑的重要流派,徽派民居以其独特的建筑风格经久不衰,但现存的传统徽派民居年代久远,室内热舒适性、采光等条件都难以满足居民的要求。通过对徽派民居的实地调研,发现传统民居缺乏保温措施,部分围护结构热工性能达不到《安徽省居住建筑节能设计标准》(DB 34/1466-2019)中的最低限值。分析现场实测数据发现民居室内热环境未能满足居住者的基本舒适要求,更多居民选择使用空调和电暖等设备,在提高室内舒适度的同时建筑能耗也随之增加,因此需要为传统徽派民居提供合理高效的节能优化方案。本文以提高传统徽派民居室内舒适度并降低建筑能耗为目的,提出针对性的节能措施,以实现徽派民居的可持续发展。

基于DeST软件进行能耗模拟研究,首先根据黄山市典型民居的实际参数建立模型,通过调整气象、室内热扰等相关参数使其符合实际,计算建筑改造前全年冷、热负荷及累计负荷作为节能改造对比的基数。结合黄山市气候条件及经济发展水平,通过改进围护结构材料以提高其热工性能。对外墙、外窗和屋顶提出不同的节能方案并利用正交试验组合成12种方案,利用能耗模拟、极差分析和经济性分析对节能方案进行综合比较,分析影响建筑能耗的主次因素,确定兼具节能效果和经济性的最佳节能方案。对比改造前后冬季民居主要房间的模拟室内温度和对应的PMV值,发现改造后建筑室内热环境有明显提升,基本满足居民对舒适度的要求。

论文外文摘要:

The building area of rural areas in China accounts for about one third of the country. With the gradual promotion of building energy conservation by the state, the energy-saving optimization of traditional residential buildings has been paid more and more attention, the main goal of residential energy-saving design is to improve indoor comfort and reduce building energy consumption by replacing green building materials, optimizing plane layout and using renewable resources. As an important school of architecture in China, Hui style dwellings have been enduring for a long time with their unique architectural style. However, the traditional Hui style dwellings preserved now have a long history, and the indoor thermal comfort and daylighting are difficult to meet the requirements of residents. Through the field investigation of Hui style dwellings, it is known that the traditional houses lack thermal insulation measures, and the thermal performance of some envelope structures can not reach the minimum limit in the specification. More residents choose to use air conditioning, electric heating and other equipment, which not only improves indoor comfort, but also increases building energy consumption. Therefore, it is necessary to provide reasonable and efficient energy-saving optimization strategies for traditional Hui style residential buildings. In order to improve the indoor comfort of traditional Hui style houses and reduce building energy consumption, this paper puts forward targeted energy-saving measures to realize the sustainable development of Hui style houses.

The energy consumption simulation research is mainly based on DeST software, first, the model is built according to the actual parameters of typical residential buildings, then the relevant parameters such as meteorological parameters and indoor thermal disturbance are adjusted to conform to the actual situation. The annual cold, thermal load and accumulated load of the building before transformation are calculated as the base of energy saving reconstruction. Combined with the climate conditions and economic development level of Huangshan City, the thermal performance is improved by improving the envelope materials. Different energy-saving schemes for exterior walls, windows and roofs are proposed, and 12 schemes are combined by orthogonal test. The energy-saving schemes are compared and analyzed by energy consumption simulation, range analysis and economic analysis, and the factors affecting building energy consumption are ranked, and the scheme with better energy-saving effect and economy is selected as the best energy-saving scheme. Simulate the indoor temperature of the main rooms of the residential houses after the transformation of the best energy-saving scheme and calculate the corresponding PMV. Compared with that before the energy-saving transformation, it is found that the indoor thermal environment of the buildings after the transformation has been significantly improved, which basically meets the requirements of residents for comfort. The research verified that the energy-saving design of traditional Hui style residential buildings can improve indoor comfort and reduce building energy consumption, and help Hui style residential buildings develop in the direction of energy-saving comfort and environmental harmony.

参考文献:

[1]邢剑龙. 湖南传统民居生态节能设计研究[D]. 广州: 华南理工大学, 2015.

[2]王君, 申鸿怡, 原雯, 等. 民用建筑面积及能耗强度计算方法研究[J]. 建筑科学, 2020, 36(S2): 390-401.

[3]《民用建筑设计统一标准》(GB 50352-2019)[S]. 北京: 住房城乡建设部, 2019.

[4]陈青, 龚城, 黄志甲. 徽州传统民居冬季室内热环境影响因素分析[J]. 建筑热能通风空调, 2020, 39(10): 57-59+11.

[5]高瑞, 陈敬. 徽州民居围护结构的防热机理和做法[J]. 城市建筑, 2020, 17(34): 48-51.

[6]左传雨. 皖南传统民居的改造与再利用设计研究[D]. 苏州: 苏州大学, 2018.

[7]孙国强. 试论维鲁特威乌斯及其《建筑十书》[D]. 长春: 东北师范大学, 2010.

[8]Olgyay, Victor. Design with Climate: Bioclimatic Approach to Architectural Regionalism [M]. Princeton University Press, 1963.

[9]郝占鹏, 王军. 源于乡土建筑中的绿色建筑设计技术研究[C]. 第九届海峡两岸传统民居学术研讨会论文集, 20011: 353-355

[10]Gutierrez-Avellanosa D H, Bennadji A. Analysis of indoor climate and occupants’ behaviour in traditional Scottish dwellings[J]. Energy Procedia, 2015, 78: 639-644.

[11]Murtyas S, Hagishima A, Kusumaningdyah N H. On-site measurement and evaluations of indoor thermal environment in low-cost dwellings of urban Kampung district[J]. Building and Environment, 2020, 184: 107239.

[12]Basudev G, Bahadur R H, Masanori S. Regional differences of wintry indoor thermal environment of traditional houses in Nepal[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2019, 294(1): 012034.

[13]Alabid J, Taki A. Bioclimatic housing design to desert architecture: A case study of Ghadames, Libya[J]. HVAC&R Research, 2014, 20(7): 760-769.

[14]Mohammadi A, Saghafi M R, Tahbaz M, et al. The study of climate-responsive solutions in traditional dwellings of Bushehr City in Southern Iran[J]. Journal of Building Engineering, 2018, 16: 169-183.

[15]Purev U U, Hagishima A, Buyan M. Indoor thermal environment of Mongolian traditional mobile housing used as urban habitat in winter[J]. Journal of Building Engineering, 2021: 103927.

[16]郑文亨. 国内外建筑节能现状及对比[J]. 制冷与空调(四川), 2008(04): 134-137.

[17]徐永铭. 国内外建筑节能现状及发展[J]. 徐州工程学院学报, 2005(03): 71-73.

[18]崔新明, 廖春波. 国内外建筑节能的比较与经验[J]. 建设科技, 2006(09): 94-95.

[19]高源. 西部湿热湿冷地区山地农村民居适宜性生态建筑模式研究[D]. 西安: 西安建筑科技大学, 2014.

[20]AbuGrain M Y, Alibaba H Z. Optimizing existing multistory building designs towards net-zero energy[J]. Sustainability, 2017, 9(3): 399.

[21]Papoyan A, Zhan C, Han X, et al. Energy saving strategy for residential buildings: case study in Armenia[J]. International Journal of Low-Carbon Technologies, 2021, 16(3): 987-997.

[22]Dennehy E R, Dineen D, Rogan F, et al. Recession or retrofit: An ex-post evaluation of Irish residential space heating trends[J]. Energy and Buildings, 2019, 205: 109474.

[23]Aranda J, Zabalza I, Llera-Sastresa E, et al. Building energy assessment and computer simulation applied to social housing in Spain[J]. Buildings, 2018, 8(1): 11.

[24]Xia X. Control problems in building energy retrofit and maintenance planning[J]. Annual Reviews in Control, 2017, 44: 78-88.

[25]Ahmed W, Asif M, Alrashed F. Application of building performance simulation to design energy-efficient homes: Case study from Saudi Arabia[J]. Sustainability, 2019, 11(21): 6048.

[26]Anjum F, Naz M Y, Ghaffar A, et al. Sustainable insulating porous building materials for energy-saving perspective: Stones to environmentally friendly bricks[J]. Construction and Building Materials, 2022, 318: 125930.

[27]Abden M J, Tao Z, Pan Z, et al. Inclusion of methyl stearate/diatomite composite in gypsum board ceiling for building energy conservation[J]. Applied Energy, 2020, 259: 114-113.

[28]Nicolae B, George-Vlad B. Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving[J]. Energy and Buildings, 2015, 86: 74-85.

[29]Verbeeck G, Hens H. Energy savings in retrofitted dwellings: economically viable[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2005, 60(1): 73 -79

[30]Mounira Badeche, Yasmina Bouchahm. Design optimization criteria for windows providing low energy demand in office buildings in Algeria[J]. Environmental and Sustainability Indicators, 2020, 6.

[31]Wang L, Gwilliam J, Jones P. Case study of zero energy house design in UK[J]. Energy & Buildings, 2009, 41(11): 1215-1222.

[32]Hamdy M, Hasan A, Kai S. Applying a multi-objective optimization approach for Design of low-emission cost-effective dwellings [J]. Building & Environment, 2011, 46(1): 109-123.

[33]Gelesz Adrienn, Catto Lucchino Elena, Goia Francesco, Serra Valentina, Reith András. Characteristics that matter in a climate façade: A sensitivity analysis with building energy simulation tools[J]. Energy & Buildings, 2020, 229.

[34]洪霄伟. 婺源传统民居室内热环境研究[D]. 广州: 华南理工大学, 2015.

[35]刘拾尘, 李可昭, 艾勇, 等. 鄂西南乡村传统干栏式民居室内热舒适现场研究[J]. 华中建筑, 2020, 38(9): 129-133.

[36]陈敏, 余贞贞, 周传辉. 湖北农村自然通风住宅热舒适调查研究[J]. 制冷与空调(四川), 2020, 34(5): 571-576.

[37]彭小洪, 伍国正, 任雯, 李思洋. 湘中传统民居冬季室内热环境测试与分析[J]. 室内设计与装修, 2020(08): 16-18.

[38]张毅, 杨柳. 苏北传统民居与现代民居室内热环境对比研究[J]. 建筑技术, 2017, 48(7): 707-710.

[39]汪文静, 方廷勇, 荣鼐, 等. 夏热冬冷地区既有居住建筑室内热环境与节能优化研究[J]. 皖西学院学报, 2019, 35(5): 91-96.

[40]倪思嘉. 赣中现代民居建筑空间布局的气候适应性研究[D]. 西安: 西安建筑科技大学, 2020.

[41]朱永忠, 陈强. 基于新材料、新技术的生态节能发展的湖南省新农村民居设计[J]. 四川建材, 2014, 40(3): 17-18.

[42]杨少玮, 张伟捷. 夏热冬冷地区墙体外保温对建筑节能影响的研究[J]. 建筑节能, 2020, 48(11): 102-105.

[43]谢竺. 夏热冬冷地区居住建筑节能技术适用性分析[J]. 中国设备工程, 2020(20): 222-223.

[44]房涛, 李洁, 王崇杰, 等. 太阳辐射得热影响下的近零能耗住宅体形设计研究[J].西安建筑科技大学学报(自然科学版), 2020, 52(2): 287-295.

[45]王进, 胡艳丽, 黄康民, 等. 导光管照明系统在江苏沿海地区民居节能改造中的应用前景研究[J]. 建筑节能, 2015, 43(6): 115-117.

[46]李莉萍. 云南传统民居综合节能的考察及研究[J]. 建筑科学, 1998(06): 3-5.

[47]赵焰, 张扬——发现徽州建筑[M]. 合肥: 合肥工业大学出版社, 2008.

[48]单德启——安徽民居[M]. 北京: 中国建筑出版社, 2009.

[49]王小斌——徽派民居营造[M]. 北京: 中国建筑工业出版社, 2013.

[50]刘红云. 以安徽屏山村为例谈徽州古民居的生态适应性[J]. 山西建筑, 2010, 36(18): 35-36.

[51]张虎, 胡浩威, 李群. 徽州民居夏季自然通风条件下热舒适性研究[J]. 洛阳理工学院学报(自然科学版), 2019, 29(4): 6-10.

[52]宋凌, 林波荣, 朱颖心. 安徽传统民居夏季室内热环境模拟[J]. 清华大学学报(自然科学版), 2003(06): 826-828+843.

[53]葛恬旖, 姜亮, 顾泽宇, 等.基于气候分析的建筑内部热环境改造策略——以徽派民居为例[J]. 城市建筑, 2019, 16(25): 134-137.

[54]李群. 基于徽派民居的热舒适性与太阳能空气源热泵系统性能研究[D]. 合肥: 安徽建筑大学, 2016.

[55]胡冗冗, 尹相华, 赵闫琦. 徽派民居外墙构造的更新演进及节能优化[J]. 华中建筑, 2020, 38(5): 97-101.

[56]周海龙. 徽州民居砌体外墙热工性能与改进技术研究[D]. 南京: 东南大学, 2011.

[57]陈晓扬, 仲德崑. 宏村徽州传统民居过渡季节室内环境分析[J]. 建筑学报, 2009(S2): 68-70.

[58]徐华. 中国太阳辐射区域影响因子研究[D]. 青岛: 中国海洋大学, 2013.

[59]李月榕. 基于能耗模拟的福建南靖土楼的节能设计策略研究[D]. 西安: 西安科技大学, 2020.

[60]丁勇花, 狄育慧, 王智鹏. 热舒适模型与热适应模型的对比分析[J]. 低温建筑技术, 2015, 37(4): 149-152.

[61]Yao R, Li B, Liu J. A theoretical adaptive model of thermal comfort Adaptive Predicted Mean Vote(aPMV)[J]. Build Environment 2009, 44: 2089-96

[62]Richard J. de Dear, Gall SB. Developing an Adaptive Model of Thermal Comfort and Preference. ASHRAE Trans. 1998, 104(1).

[63]季英, 蔡玲玲, 杨学宾等. 空调房间舒适温度及热舒适性参数的计算研究[J]. 洁净与空调技术, 2011(03): 70-73.

[64]茅艳. 人体热舒适气候适应性研究[D]. 西安: 西安建筑科技大学, 2007.

[65]吴州琴. 皖南民居自然通风及其潜力评估[D]. 马鞍山: 安徽工业大学, 2019.

[66]方祥生, 朱根苗, 张小峰. 黄山市农业气候区划与评述[J]. 安徽农业科学, 2009, 37(17): 8068-8069.

[67]任伊卿. 天井对皖南联排住宅室内光环境与风环境的改善研究[D]. 马鞍山: 安徽工业大学, 2020.

[68]司鹏飞, 南艳丽, 李博文, 等.南方地区传统民居外墙构造及热工性能计算分析[J]. 科学技术与工程, 2014, 14(22): 264-269.

[69]夏蕊芳, 程国庆.新型建筑节能墙体保温材料力学和热工性能研究[J]. 功能材料, 2019, 50(9): 9110-9114.

[70]梅华, 张蓓, 高苏. 简述国内外节能政策及建筑外窗节能技术发展情况[J]. 资源节约与环保, 2016(09), 109-111.

[71]曹原, 陈启泉, 蒋梦影. 徽派天井式传统民居自然通风模拟研究[J]. 建筑与文化, 2018(01): 119-120.

[72]翁笃鸣. 中国辐射气候[M]. 北京: 气象出版社, 1997.

[73]Shen Y B, Wang B. Effect of surface solar radiation variations on temperature in South-East China during recent 50 years[J]. Chinese Journal of Geophysics, 2011, 54(6): 1457-1465.

[74]Shi H, Xu J M, Li C C. Analysis on variation and transition of surface radiation in South China area[J]. Journal of Tropical Meteorology, 2009, 25(2): 209-215.

[75]Wang X F, Zhu Y, Fan L Z, etc. Spatial temporal variations of solar global radiation in Yunnan province during 1961-2007[J]. Advances in Climate Research, 2009, 5(1): 29-34.

[76]天津生态城建绿色建筑研究院, 清华大学建筑节能研究中心. 建筑能耗模拟及eQUEST&DeST操作教程. 第一版. 北京: 中国建筑工业出版社, 2014: 157.

中图分类号:

 TU201.5    

开放日期:

 2022-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式