- 无标题文档
查看论文信息

题名:

 地下煤火纵向蔓延过程中典型污染物释放特征研究    

作者:

 池钊龙    

学号:

 22220226137    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085700    

学科:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

导师姓名:

 赵婧昱    

导师单位:

 西安科技大学    

提交日期:

 2025-06-23    

答辩日期:

 2025-06-11    

外文题名:

 Research on the release characteristics of typical pollutants during the vertical propagation of underground coal fires    

关键词:

 地下煤火 ; 纵向蔓延 ; 大气污染 ; 土壤污染 ; 重金属吸附    

外文关键词:

 Underground coal fires ; vertical spread ; air pollution ; soil pollution ; heavy metal adsorption    

摘要:

地下煤火灾害不仅浪费大量资源并危害安全生产,其释放的有害气体、悬浮颗粒物和重金属等典型污染物还对生态环境产生直接的影响。良好的蓄热与适宜的氧气供给是地下煤火蔓延的前提。在热浮力驱动下,由于煤火释放的有害气体与悬浮颗粒物等污染物造成大气污染,飞灰中的重金属沉降至地表并随降水迁移导致土壤生态环境失衡。基于此,本文构建了地下煤火蔓延相似物理模拟实验台,确定了地下煤火纵向蔓延规律;分析了煤火发展过程与大气污染物释放的内在关联,揭示了地下煤火对大气环境的污染规律;分析了煤火重金属的释放与矿区地表重金属的来源特征,明确了煤火重金属对矿区土壤的污染效应。研究结果揭示了大气与重金属典型污染物释放与地下煤火蔓延的内在联系,可为探究地下煤火蔓延过程中典型污染物释放规律提供理论基础,有助于进一步推动地下煤火灾害防治与火区环境治理。

首先,煤质分析表明煤样Pb、Hg、As超标,煤的热物性参数与温度极相关,放热强度呈现出阶段性特征;BCR连续提取法发现,残渣态是土壤中重金属的主要富集形态。各煤层温度随煤层深度呈现出明显的正向梯度变化,最深处的C6煤层温度较上层有所降低,证明温度对煤火蔓延的影响逐渐弱化;上覆岩土层与地表温度始终异常,且在30h达到峰值点。实验初期各煤层氧浓度迅速降低,煤层越深低氧浓度状态持续时间越长;C6层氧浓度提前恢复证明地下煤火的纵向蔓延存在极限深度;上覆岩土层氧气在初期迅速下降,地表与空气中的氧气浓度始终略低于正常水平。地下煤火的纵向蔓延在浅层以温度为主导,深层以氧气为主导;当蔓延至一定深度后,氧气的供给不足以支撑煤氧反应,蔓延减缓并趋于停止。

其次,监测了不同测点典型大气污染物浓度变化特征。CO2浓度随煤层埋深均呈现出明显的正向梯度变化,C6层出现相反的规律;岩土层与地表CO2浓度均在前期达到峰值浓度后迅速下降,后期因为持续蔓延而产生小幅度变化;不同煤层CO气体释放与CO2相似,岩土层、地表和大气环境中的CO浓度有明显的滞后性,高温条件会导致部分CO转化为氧化更完全的CO2。煤层中CH4和C2H6的释放主要集中在实验前60h内的不完全氧化反应阶段,且气体浓度与集中释放时间随层深有减少的趋势;岩土层与地表CH4和C2H6气体逸散主要集中在40h以内;悬浮颗粒物(PM2.5、PM10、TSP)主要集中在前40h的烟气释放阶段,并且有两次明显的峰值。依据综合空气质量指数法可知,地下煤火蔓延的全过程中,CO是影响综合指数的主要参数,大气环境轻度污染仅有1天,中度污染4天,重度污染3天,其余时间均为严重污染。

最后,电感耦合等离子体质谱法发现,煤火飞灰中的Cu、Zn、Hg浓度较大,悬浮颗粒物等大气污染物的沉降行为是地表土壤重金属的主要来源,烧结土中的Zn、Pb、Hg、As均略高于新鲜土,说明地下煤火蔓延过程中部分重金属在随烟气逸散途中被土壤吸附固定。五种重金属在土壤中的静态吸附均遵循Langmuir和Freundlich等温吸附模型,其吸附能力由大到小为Pb、Hg、Cu、Zn、As;重金属的穿透曲线存在“未穿透”、“开始穿透”和“完全穿透”3个阶段;As的穿透能力最强, Pb的阻滞系数和分配系数最大,吸附能力最强。一年降水后,Cu、Zn、Hg在土壤中的迁移深度约为25cm,Pb和As元素在土壤层中的残存浓度较低。Cu在距地表10cm范围内浓度超过风险筛选值,Hg在距地表25cm范围内浓度超过风险管控值。

外文摘要:

Underground coal fire disasters not only waste a large amount of resources and endanger safety production, but also release typical pollutants such as harmful gases, suspended particles, and heavy metals, which have a direct impact on the ecological environment. Good heat storage and appropriate oxygen supply are prerequisites for the spread of underground coal fires. Driven by thermal buoyancy, harmful gases and suspended particulate matter released by coal fires cause atmospheric pollution, and heavy metals in fly ash settle to the surface and migrate with precipitation, leading to soil ecological imbalance. Based on this, this article constructed a physical simulation experimental platform for the propagation of underground coal fires, and determined the longitudinal propagation law of underground coal fires; Analyzed the inherent correlation between the development process of coal fires and the release of atmospheric pollutants, and revealed the pollution laws of underground coal fires on the atmospheric environment; Analyzed the release of heavy metals from coal fires and the source characteristics of surface heavy metals in mining areas, and clarified the pollution effects of coal fire heavy metals on soil in mining areas. The research results reveal the inherent relationship between the release of typical pollutants in the atmosphere and heavy metals and the spread of underground coal fires, which can provide a theoretical basis for exploring the release patterns of typical pollutants during the spread of underground coal fires, and help further promote the prevention and control of underground coal fire disasters and the environmental governance of fire areas.

Firstly, coal quality analysis shows that the Pb, Hg, and As values in the coal sample exceed the standard. The thermal properties of coal are highly correlated with temperature, and the heat release intensity exhibits phased characteristics; The BCR continuous extraction method found that the residual state is the main enriched form of heavy metals in soil. The temperature of each coal seam shows a significant positive gradient change with the depth of the coal seam, and the temperature of the deepest C6 coal seam has decreased compared to the upper layer, indicating that the influence of temperature on the spread of coal fire is gradually weakening; The temperature of the overlying rock and soil layers and the surface remains abnormal, reaching its peak at 30 hours. At the beginning of the experiment, the oxygen concentration in each coal seam rapidly decreased, and the deeper the coal seam, the longer the duration of the low oxygen concentration state; The early recovery of oxygen concentration in layer C6 proves the existence of a limit depth for the longitudinal spread of underground coal fires; The oxygen in the overlying rock and soil layers rapidly decreases in the initial stage, and the oxygen concentration in the surface and air remains slightly lower than normal levels. The vertical spread of underground coal fires is dominated by temperature in shallow layers and oxygen in deep layers; When it spreads to a certain depth, the supply of oxygen is insufficient to support the coal oxygen reaction, and the spread slows down and tends to stop.

Secondly, the concentration changes of typical atmospheric pollutants at different monitoring points were monitored. The concentration of CO2 shows a significant positive gradient change with the depth of the coal seam, while the opposite pattern is observed in the C6 layer; The concentration of CO2 in both the rock and soil layers and the surface rapidly decreases after reaching the peak concentration in the early stage, and then undergoes small changes due to continuous spread in the later stage; The release of CO gas from different coal seams is similar to that of CO2, and there is a significant lag in the concentration of CO in rock, soil, surface, and atmospheric environments. High temperature conditions can cause some CO to be converted into more completely oxidized CO2. The release of CH4 and C2H6 in coal seams is mainly concentrated in the incomplete oxidation reaction stage within 60 hours before the experiment, and the gas concentration and concentrated release time tend to decrease with the depth of the layer; The release of CH4 and C2H6 gases from rock and soil layers and the surface is mainly concentrated within 40 hours; Suspended particulate matter (PM2.5, PM10, TSP) is mainly concentrated in the first 40 hours of smoke release stage, with two distinct peaks. According to the comprehensive air quality index method, CO is the main parameter affecting the comprehensive index during the entire process of underground coal fire spread. The atmospheric environment is mildly polluted for only 1 day, moderately polluted for 4 days, heavily polluted for 3 days, and severely polluted for the rest of the time.

Finally, inductively coupled plasma mass spectrometry (ICP-MS) revealed that the concentrations of Cu, Zn, and Hg in coal fire fly ash are relatively high, and the settling behavior of atmospheric pollutants such as suspended particulate matter is the main source of heavy metals in surface soil. The Zn, Pb, Hg, and As in sintered soil are slightly higher than those in fresh soil, indicating that some heavy metals are adsorbed and fixed by soil during the process of underground coal fire propagation and dispersion with flue gas. The static adsorption of five heavy metals in soil follows the Langmuir and Freundlich isotherm adsorption models, with adsorption capacities ranging from to Pb、 Hg、Cu、Zn、As; The penetration curve of heavy metals has three stages: "non penetration", "initial penetration", and "complete penetration"; As has the strongest penetration ability, Pb has the highest retardation coefficient and distribution coefficient, and the strongest adsorption capacity. After one year of precipitation, the migration depth of Cu, Zn, and Hg in the soil is about 25cm, while the residual concentrations of Pb and As elements in the soil layer are relatively low. The concentration of Cu exceeds the risk screening value within a range of 10cm from the surface, and the concentration of Hg exceeds the risk control value within a range of 25cm from the surface.

参考文献:

[1] Wang Haiyan, Zhang Junpeng, Zhang Lei, et al. Gas emission and soil chemical properties associated with underground coal fires, Wuda coalfield, inner mongolia, China[J]. Natural Resources Research,2020,29(6):1-13.

[2] 邓军, 文虎, 张辛亥, 等. 煤田火灾防治技术 [M]. 徐州: 中国矿业大学出版社, 2014: 1-4.

[3] 梁言慈. 内蒙古乌达煤火典型污染物排放特征研究[D]. 中国矿业大学(北京), 2018.

[4] Xiao Yang, Shi Qun, Liu Kunhua, et al. The evolution characteristics of fractures in overlying rock for underground coal fires[J]. Bulletin of Engineering Geology and the Environment, 2023, 82(8):290.

[5] Zhang Junpeng, Wang Haiyan, Fan Cheng, et al. Diffusion of surface CO2 in coalfield fire areas by surface temperature and wind[J]. Natural Resources Research, 2024, (prepublish): 1-20.

[6] 邓军, 屈高阳, 任帅京, 等. 地下煤火火源探测研究[J]. 工矿自动化, 2023, 49(06): 68-77.

[7] Shi Jingdong, Su Hetao, Li Yunzhuo, et al. Quantitative analysis of heat release during coal oxygen-lean combustion in a O2/CO2/N2 atmosphere by TG-DTG-DSC[J]. Scientific Reports, 2022, 12(1): 6690-6690.

[8] Ma Liyang, Zhang Lan, Wang Deming, et al. Pore structure evolution during lean-oxygen combustion of pyrolyzed residual from low-rank coal and its effect on internal oxygen diffusion mechanism[J]. Fuel, 2022, 319: 123850.

[9] Tajdarul Hassan Syed, Moidu Jameela Riyas, Claudia Kuenzer. Remote sensing of coal fires in India: A review[J]. Earth-Science Reviews, 2018, 187338-355.

[10] 秦波涛, 马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战[J]. 煤炭学报, 2025, 50(01): 392-408.

[11] 邓军, 白祖锦, 肖旸, 等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全, 2020, 51(10): 118-125.

[12] 贺强. 双碳目标下我国西部地区地下煤火探测技术研究进展[J]. 中国煤炭地质, 2022, 34(04): 8-13.

[13] Jiang Weiguo, Jia Kai, Chen Zheng, et al. Using spatiotemporal remote sensing data to assess the status and effectiveness of the underground coal fire suppression efforts during 2000-2015 in Wuda, China[J]. Journal of Cleaner Production, 2016, 142565-577.

[14] Song Zeyang, Claudia Kuenzer. Coal fires in China over the last decade: A comprehensive review[J]. International Journal of Coal Geology, 2014, 13372-99.

[15] 朱红青, 袁杰, 赵金龙, 等. 地下煤火分布及探测技术现状研究[J]. 工业安全与环保, 2019, 45(12): 28-32.

[16] 文虎, 田晴, 赵向涛, 等. 煤层火灾监测与治理研究现状及发展趋势[J]. 煤炭工程, 2021, 53(09): 101-106.

[17] 汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报, 2017, 46(10): 1705-1716.

[18] Deng Jinchang, Ge Shaokun, Qi Haining, et al. Underground coal fire emission of spontaneous combustion, Sandaoba coalfield in Xinjiang, China: Investigation and analysis[J]. Science of The Total Environment, 2021, 777: 146080.

[19] 陈晓坤, 桑长波, 李珍宝. 煤田火区有害气体排放的环境影响评估方法研究[J]. 安全与环境工程, 2016, 23(2): 5.

[20] 张志军. “双碳”背景下我国地下煤火防治技术研究进展[J].中国煤炭地质, 2023, 35(01): 39-42+56.

[21] 周福宝, 邓进昌, 史波波, 等. 煤田火区热能开发与生态利用研究进展[J]. 中国科学基金, 2021, 35(6): 871-877.

[22] 涂瑞和. 《联合国气候变化框架公约》与《京都议定书》及其谈判进程[J]. 环境保护, 2005(3): 65-71.

[23] 曹代勇, 刘志飞, 杨光, 等. 煤田火区碳排放量计算模型和关键参数研究[J]. 地学前缘, 2018, 25(01): 252-258.

[24] 王灿, 傅平, 陈吉宁. 清洁发展机制对温室气体减排的贡献[J]. 清华大学学报(自然科学版), 2008, 48(003): 357-361.

[25] Shanti Swarup Biswal, Amit Kumar Gorai. Coal fires a major source of greenhouse gases-a forgotten problem[J]. Environ Risk Assess Remediat, 2017, 1(2): 5-8.

[26] Su Hetao, Zhou Fubao, Shi Bobo, et al. Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(3): 275-291.

[27] 苏贺涛. 基于重力热管换热的地下煤火治理与应用研究[D]. 中国矿业大学, 2018.

[28] 惠绍棠, 宋泽阳, 李茂锐, 等. 热浮力驱动下地下煤火阴燃蔓延模型与机制[J]. 煤矿安全, 2024, 55(02): 78-86.

[29] Song Zeyang. Modelling oxygen-limited and self-sustained smoldering propagation: Underground coal fires driven by thermal buoyancy[J]. Combustion and Flame, 2022, 245.

[30] 王文才, 张根源, 王鑫宙, 等. 地下煤火回风裂隙火风压分布实验研究[J]. 工业安全与环保, 2016, 42(12): 4-5+14.

[31] 王文才, 王鑫宙. 露头火区煤火蔓延规律相似模拟实验研究[J]. 煤矿安全, 2016, 47(05): 38-40.

[32] 任宏伟. 煤田火区覆岩裂隙随温度的变化规律研究[D]. 中国矿业大学, 2018.

[33] Zhang Dongxue, Pan Yong, Song Zeyang, et al. Experimental study on the effects of coal particle size and fissure size on underground coal fires[J]. IOP Conference Series: Earth and Environmental Science, 2019, 332(2): 022008-022008.

[34] Song Zeyang, Wu Dejian, Jiang Juncheng, et al. Thermo-solutal buoyancy driven air flow through thermally decomposed thin porous media in a U-shaped channel: Towards understanding persistent underground coal fires[J]. Applied Thermal Engineering, 2019, 159: 113948-113948.

[35] 赵婧昱, 宋佳佳, 郭涛, 等. 基于煤火发展演化的松散煤体自燃温度纵深蔓延特征[J]. 煤炭学报, 2021, 46(06): 1759-1767.

[36] Li Jun, Pan Junjie, Li Jinsong. An experimental study on smouldering coal particles: Effects of air leakage and burning position in underground coal fires[J]. Fire Safety Journal, 2022, 133: 103665.

[37] 潘俊杰, 李君. 自然通风下煤堆积床阴燃过程的基本特性[J]. 燃烧科学与技术, 2022, 28(05): 583-590.

[38] Qi Guansheng, Lu Wei, Qi Xuyao, et al. Differences in smoldering characteristics of coal piles with different smoldering propagation directions[J]. Fire Safety Journal, 2018, 102: 77-82.

[39] 亓冠圣, 杨雪花, 张小翌, 等. 煤火竖直正向阴燃特性研究[J]. 煤矿安全, 2018, 49(11): 54-58.

[40] 王海燕, 徐祚卉, 张敏敏, 等. 地质条件和地表风对煤火蔓延特征的影响研究[J]. 中国煤炭, 2018, 44(04): 106-111.

[41] Wang Yanming, Shi Guoqing, Guo Zhixiong. Heat transfer and thermodynamic processes in coal-bearing strata under the spontaneous combustion condition[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(1): 1-16.

[42] 陈宇, 陈鑫垄, 索之辉, 等. 卫星观测约束下的地下燃空区时空演化数值模拟研究[J/OL].武汉大学学报(信息科学版),2024, 49(1): 1-21.

[43] Moidu Jameela Riyas, Tajdarul Hassan Syed, Hrishikesh Kumar, et al. Detecting and analyzing the evolution of subsidence due to coal fires in jharia coalfield, India Using Sentinel-1 SAR data[J]. Remote Sensing, 2021, 13(8): 1521-1521.

[44] 于灏, 张豪磊, 张子彦, 等. 融合地表温度与形变的地下煤火多源遥感识别研究[J]. 煤炭科学技术, 2024, 52(07): 139-147.

[45] Huo Hongyuan, Ni Zhuoyang, Gao Caixia, et al. A study of coal fire propagation with remotely sensed thermal infrared data[J]. Remote Sensing, 2015, 7(3): 3088-3113.

[46] Du Xiaomin, Sun Dongqi, Li Feng, et al. A study on the propagation trend of underground coal fires based on night-time thermal infrared remote sensing technology[J]. Sustainability, 2022, 14(22): 14741-14741.

[47] 贾海林, 崔博, 焦振营, 等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报, 2022, 47(10): 3704-3714.

[48] 李磊. 低变质煤CO产生机理及采空区煤自燃早期预警研究[D]. 中国矿业大学, 2023.

[49] 白亚娥, 马腾, 任立峰, 等. 凉水井煤自燃关键活性基团氧化释放气体的试验[J]. 西安科技大学学报, 2023, 43(04): 715-723.

[50] 李金虎, 徐天硕, 陆伟, 等. 煤中原生活性位点的水-气掩蔽效应及脱附后煤体的常温氧化[J]. 煤炭学报, 2024, 49(05): 2298-2314.

[51] 王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J]. 煤炭学报, 2024, 49(05): 2347-2359.

[52] Wang Deming, Xin Haihui, Qi Xuyao, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163: 447-460.

[53] 邓军, 任立峰, 吴明明, 等. 煤对CO2的解吸实验及热力学参数研究[J]. 西安科技大学学报, 2018, 38(5): 697-704.

[54] 张永利, 马凯, 马玉林. 红外作用下煤对CO2吸附/解吸能量变化规律[J]. 非金属矿, 2018, 41(5): 83-85.

[55] 李林, 陈军朝, 姜德义, 等. 煤自燃全过程高温区域及指标气体时空变化实验研究[J]. 煤炭学报, 2016, 41(02): 444-450.

[56] 文虎, 刘名阳, 唐瑞, 等. C2H4在烟煤中吸附的分子模拟研究[J]. 煤矿安全, 2023, 54(04): 77-82.

[57] 于志金, 徐勇, 谷雨, 等. 30℃下煤对不同比例CO2-N2混合气体吸附量差异性研究[J]. 中国安全生产科学技术, 2023, 19(05): 80-85.

[58] 张同浩, 陈明义, 田富超, 等. 褐煤中CH4/O2/N2气体竞争吸附特性的分子模拟研究[J]. 矿业科学学报, 2023, 8(06): 817-827.

[59] Zhao Jingyu, Deng Jun, Wang Tao, et al. Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages[J]. Energy, 2019, 169: 587-596.

[60] 易欣, 张敏, 邓寅等. 淮南矿区煤自燃指标气体及特征参数[J]. 西安科技大学学报, 2023, 43(03): 457-465.

[61] 刘垚, 王福生, 董轩萌, 等. 基于程序升温试验的煤自燃特性及微观机理研究[J]. 煤炭科学技术, 2024, 52(S1): 94-106.

[62] 丁徐琴, 张雷林. 氧气体积分数对煤自燃特性影响的实验研究[J]. 煤矿安全, 2023, 54(07): 156-162.

[63] Li Kaili, Zhang Qixing, Wang Tong, et al. Laboratory investigation of pollutant emissions and PMsub2.5/sub toxicity of underground coal fires[J]. The Science of the total environment, 2022, 837: 155537-155537.

[64] Luo Xiaosan, Huang Weijie, Shen Guofeng,et al. Source differences in the components and cytotoxicity of PM2.5 from automobile exhaust, coal combustion, and biomass burning contributing to urban aerosol toxicity[J]. Atmospheric Chemistry and Physics,2023,598.

[65] Sun Jian, Shen Zhenxing, Niu Xinyi, et al. Cytotoxicity and potential pathway to vascular smooth muscle cells induced by PMsub2.5/sub emitted from raw coal chunks and clean coal combustion[J]. Environmental science technology, 2020, 54(22): 14482–14493.

[66] Fabienne Reisen, Rob Gillett, Jason Choi, et al. Characteristics of an open-cut coal mine fire pollution event[J]. Atmospheric Environment, 2017, 151: 140-151.

[67] Zhao Nan, Li Bowen, Chen Deying, et al. The effect of coal size on PM2.5 and PM-bound polycyclic aromatic hydrocarbon (PAH) emissions from a domestic natural cross-draft stove[J]. Journal of the Energy Institute, 2020, 93: 542-551.

[68] Camila L. Dias, Marcos L.S. Oliveira, James C. Hower, et al. Nanominerals and ultrafine particles from coal fires from Santa Catarina, South Brazil[J]. International Journal of Coal Geology, 2014, 122: 50-60.

[69] 杨勇. 锡林郭勒露天煤矿区土壤重金属分布特征与植被恢复研究[D]. 内蒙古农业大学, 2016.

[70] Cao Qingyi, Cheng Yingchao, Kusakabe Taketoshi, et al. Mercury emission from underground coal fires: a typical case in China[J]. Journal of Material Cycles and Waste Management, 2023, 25(5): 2706-2715.

[71] Wang Gang, Cao Fei, Shan Bing, et al. Sources and assessment of mercury and other heavy metal contamination in soils surrounding the Wuda underground coal fire area, Inner Mongolia, China[J]. Bulletin of environmental contamination and toxicology, 2019, 103(6): 828-833.

[72] Li Chunhui, Liang Handong, Liang Ming, et al. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China[J]. Environmental science and pollution research international, 2018, 25(17): 16652-16663.

[73] Hong Xiuping ,Liang Handong ,Lv Shuai , et al.Mercury emissions from dynamic monitoring holes of underground coal fires in the Wuda Coalfield, Inner Mongolia, China[J]. International Journal of Coal Geology, 2017, 18178-86.

[74] 聂静, 曾强, 蒲燕, 等. 地下煤火土壤典型重金属砷迁移规律[J]. 煤炭学报, 2017, 42(02): 527-537.

[75] 曾强, 聂静, 蒲燕. 地下煤火土壤典型重金属分布特征[J]. 煤炭学报, 2016, 41(08): 1989-1996.

[76] Mala Kumari, Tanushree Bhattacharya. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis[J]. Environmental Development, 2023,46: 100859.

[77] 刘巍, 杨建军, 汪君, 王果, 曹月娥. 准东煤田露天矿区土壤重金属污染现状评价及来源分析[J]. 环境科学, 2016, 37(05): 1938-1945.

[78] Cuma Akbay, Halil Aytop, Hüseyin Dikici. Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices[J]. International journal of environmental health research, 2022, 33(12): 11-12.

[79] You Mu, Hu Yunhu, Wang Zhuihui, et al. Characterization and Ecological Risk Assessment of Toxic Metal Contaminants in the Soil Around the Coal Gangue Hill in Huainan, Central China[J]. Water, Air, & Soil Pollution, 2023, 234(11): 35.

[80] Zhou Hao, Yue Xuemei, Chen Yong, et al. Source-specific probabilistic contamination risk and health risk assessment of soil heavy metals in a typical ancient mining area[J]. The Science of the total environment, 2023, 906:167772.

[81] Fu Changchang, Li Xiangquan, Ma Jianfei, et al. Heavy metal(loid)s contamination assessment of soils in Shendong coal base of the Kuye River basin, China: spatial distribution, source identification and ecological risk[J]. Environmental Earth Sciences, 2023, 82:21.

[82] W.J. Parker, R.J. Jenkins. Thermal conductivity measurements on bismuth telluride in the presence of a 2 MeV electron beam[J]. Advanced Energy Conversion, 1962, 2:12.

[83] Robert D. Cowan. Pulse Method of Measuring Thermal Diffusivity at High Temperatures[J]. Journal of Applied Physics, 1963, 34: 4.

[84] Zhang Minbo, Wang Zichao, Wang LongKang, et al. Experimental study and thermodynamic analysis of coal spontaneous combustion characteristics[J]. Combustion Theory and Modelling, 2023, 27: 1.

[85] Deng Jun, Zhao Jingyu, Zhang Yanni, et al. Thermal analysis of spontaneous combustion behavior of partially oxidized coal[J]. Process Safety and Environmental Protection, 2016, 104: 218–224.

[86] 金永飞, 郭军, 文虎, 等. 煤自燃高温贫氧氧化燃烧特性参数的实验研究[J]. 煤炭学报, 2015, 40(03): 596-602.

[87] 赵婧昱, 张廷豪, 宋佳佳, 等. 半封闭煤火演化过程的动力学特征[J]. 西南交通大学学报, 2023, 58(01): 117-124+149.

[88] 赵婧昱, 张永利. 倾斜放置方式下煤自燃温度变化规律研究[J]. 煤矿安全, 2022, 53(09): 77-85.

[89] 王凯, 翟小伟, 王炜罡, 等. 氧浓度与风量对煤热物性参数影响的实验研究[J]. 西安科技大学学报, 2018, 38(01): 31-36.

[90] 高荣翔. 浅埋贫氧燃烧煤火地质雷达探测及智能识别方法的研究[D]. 中国矿业大学(北京), 2023.

[91] 卢国斌, 张福革, 郭晓阳. 贫氧环境煤燃烧链烃生成规律试验研究[J]. 洁净煤技术, 2018, 24(03): 75-80.

[92] 姜博艺, 张涵. 我国减污降碳协同效应的时空特征与策略[J/OL]. 环境工程技术学报, 2025, 50 (02): 1-14.

[93] 王国锋, 吕伟峰, 崔凯, 等. 全球二氧化碳捕集、利用与封存产业集群技术进展及应用展望[J/OL]. 石油勘探与开发, 2025, 06:1-10.

[94] 孙强, 谷超, 耿济世, 等. 煤矿地下空间生物质储能及地质保障[J/OL].煤炭科学技术, 2025, 51(02): 1-11.

[95] 赵婧昱, 卢世平, 宋佳佳, 等. 基于微观结构和气体产物特征的风化煤与氧化煤自燃差异研究[J]. 煤矿安全, 2022, 53(06): 26-36.

中图分类号:

 X511    

开放日期:

 2026-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式