- 无标题文档
查看论文信息

论文中文题名:

 岩体水力劈裂的围压效应及动态破坏规律研究    

姓名:

 杨天    

学号:

 20109071005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 岩土体稳定与地质灾害防治    

第一导师姓名:

 孙强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on the surrounding pressure effect and dynamic damage law of rock hydraulic splitting    

论文中文关键词:

 水力劈裂 ; 裂隙岩体 ; 围压效应 ; 水力裂纹扩展 ; 起裂机理    

论文外文关键词:

 Hydrodynamic splitting ; Fractured rock masses ; Surrounding pressure effect ; Hydraulic Cracking Extension ; Cracking mechanism    

论文中文摘要:

由于我国能源结构呈现“缺油、少气、相对富煤”的禀赋特点,煤炭资源在未来几十年内仍将作为我国主体能源与重要工业原料。在采煤过程中经常遇到坚硬煤层顶板,由于其强度高、厚度大且承载能力强,容易积聚大量弹性能,导致冲击地压、顶板垮落等强矿压显现灾害频繁发生,严重威胁着煤矿的安全高效生产。水力劈裂作为一种解决坚硬顶板问题的实用性技术,通过注入高压水,使坚硬顶板开裂而形成水力裂纹,水力裂纹的产生减弱了积聚弹性能,形成了大范围弱化区域,可以有效避免高应力集中现象。对于坚硬顶板的水力劈裂技术而言,岩体的起裂机理以及水力裂纹扩展规律是核心问题,因此,针对此课题进行研究,对于水力劈裂技术的发展以及煤矿安全高效生产具有较强的现实意义。

本文从室内试验入手,开展了内置三维裂隙岩体的水力劈裂试验,综合试验结果及理论分析,探究了围压梯度、应力差异、裂隙形态及劈裂次数等因素对岩体水力劈裂起裂特征及水力裂纹扩展规律的影响机制,并建立物理模型,对其采动-劈裂过程中的沉降量及视电阻率的演化机制及水力裂纹在地层中的扩展模式进行了研究。主要研究内容及成果如下:

(1)通过真三轴岩石水力劈裂系统,开展了内置三维裂隙岩体的水力劈裂试验,对岩体起裂特征的围压效应进行了研究。研究结果表明:裂隙岩体的注液压力曲线按其形态可大致划分为滤失阶段、升压阶段、降压阶段以及稳定变化阶段。随着围压梯度、轴向应力以及水平应力的增加,试样的起劈压力、起劈时间以及应力降等参数也相应增大。同时,通过断裂力学中的K断裂准则也对试验结果进行了验证,岩体的起劈压力主要受到应力系数 λ 以及裂纹倾角 β 的影响。

(2)开展了不同内置裂隙形态及裂隙夹角下岩体的水力劈裂试验,试验结果表明:内置交叉裂隙试样的起劈压力一般要高于单一裂隙试样,同时,交叉裂隙的夹角越大,岩体的起劈压力也相应增大。

(3)运用声发射技术,分析了岩体水力劈裂过程中RA、AF值、峰值频率以及幅值等参数的变化规律,结果表明:当岩体所受的应力水平较低时,水力裂纹主要以剪切裂纹为主,拉张裂纹为辅;而在高应力水平下,拉张裂纹占据主导。当岩体所受的应力水平相同时,内置交叉裂隙试样形成的水力裂纹以大尺度剪切裂纹为主,单一裂隙试样则以小尺度拉张裂纹为主。

(4)通过指示剂示踪、纵波波速判定以及声发射三维定位等技术方法,对试样水力劈裂过程中水力裂纹的扩展规律以及动态演化特征进行了分析研究。结果表明:水力裂纹一般由劈裂管底部开始发育,随后沿着最大主应力方向不断向试样表面扩展,直至形成稳定的渗流通道。水力裂纹的前沿近似为椭圆形态且以劈裂管底部位置为中心,其中在劈裂管以及内置裂隙附近的区域水力劈裂程度比较高。

(5)在岩体首次劈裂的基础上,对不同围压下的试样进行了重复劈裂试验,研究了岩体重复劈裂过程的起裂特征以及水力裂纹扩展规律。结果表明:岩体首次劈裂的起劈压力一般略大于重复劈裂;当岩体所受的应力水平较低时,在重复劈裂过程中劈裂液主要沿原有的水力裂纹运移,二次裂纹产生的较少;当岩体所受的应力水平较高时,在重复劈裂过程中岩体内部会形成大量二次裂纹。

(6)设计并建立了一种符合实际地层的物理模型,并对其进行采动破坏以及水力劈裂试验,一方面对物理模型采动过程中的沉降量以及视电阻率的变化规律进行探究,另一方面通过劈裂曲线及声发射数据对物理模型的起裂特征及水力裂纹扩展规律进行分析。研究结果表明:下沉区域以及高视电阻率区一般由采空区边界开始发育,呈“环状”向开挖一侧扩展。水力裂纹在地层中的扩展模式主要可分为三种,分别为沿层面扩展、穿层扩展以及分支裂纹扩展,扩展模式主要受地层的断裂韧度、弹性模量、水平地应力以及层间界面等因素的影响。

论文外文摘要:

As China's energy structure presents "lack of oil, less gas, relatively rich in coal" endowment characteristics, coal resources in the next few decades will remain as China's main energy and important industrial raw materials. In the process of coal mining, often encounter hard coal seam roof, which is easy to accumulate a large amount of elastic energy due to its high strength, thickness and bearing capacity, resulting in frequent occurrence of strong mine pressure disasters such as impact ground pressure and roof collapse, which seriously threatens the safe and efficient production of coal mines. As a practical technique to solve the problem of hard roof, hydraulic cracking is formed by injecting high-pressure water to crack the hard roof, which weakens the accumulation of elastic energy and creates a large weakening area and can effectively avoid the phenomenon of high stress concentration. For the hydraulic splitting technology of hard roof, the cracking mechanism of the rock body and the law of hydraulic crack expansion are the core issues, therefore, the research on this topic is of strong practical significance for the development of hydraulic splitting technology and the safe and efficient production of coal mines.

In this thesis, starting from the indoor test, the hydraulic splitting test of the rock body with built-in three-dimensional fractures was carried out, and the mechanism of the influence of the surrounding pressure gradient, stress difference, fracture morphology and number of splits on the fracture initiation characteristics and hydraulic fracture expansion pattern of the rock body was investigated by integrating the test results and theoretical analysis, and a physical model was established to investigate the evolution mechanism of the settlement and apparent resistivity during the mining-splitting process and the hydraulic fracture expansion pattern in the The study was carried out to investigate the evolution mechanism of settlement and apparent resistivity during the mining-splitting process and the expansion pattern of hydraulic fracture in the formation. The main research contents and results are as follows:

(1) The hydraulic splitting test of the built-in three-dimensional fractured rock body was carried out by the true triaxial rock hydraulic splitting system, and the surrounding pressure effect of the rock initiation characteristics was studied. The research results show that the injection pressure curve of the fractured rock body can be roughly divided into the filtration loss stage, the ascending pressure stage, the descending pressure stage and the stable change stage according to its morphology. With the increase of the surrounding pressure gradient, axial stress and horizontal stress, the parameters such as starting pressure, starting time and stress drop of the specimen also increase accordingly. The test results were also verified by the K-fracture criterion in fracture mechanics, and the initiation pressure of the rock mass was mainly influenced by the stress factor λ and the crack dip angle β.

(2) Hydraulic fracture tests on rock masses with different built-in fracture patterns and fracture angles were carried out, and the test results showed that the starting splitting pressure of the built-in X-shaped fracture specimens was generally higher than that of the single fracture specimens, and at the same time, the larger the fracture angle, the corresponding increase in the starting splitting pressure of the rock mass.

(3) Using acoustic emission technique, the variation rules of RA, AF value, peak frequency and amplitude parameters during the hydraulic splitting process of rock mass were analyzed, and the results showed that when the stress level of the rock mass was low, the hydraulic cracks were mainly shear cracks, supplemented by tension cracks; while at high stress level, tension cracks dominated. When the rock is subjected to the same stress level, the hydraulic cracks formed in the built-in X-fracture specimens are dominated by large-scale shear cracks, while the small-scale tension cracks are dominated in the single-fracture specimens.

(4) The expansion pattern and dynamic evolution characteristics of hydraulic cracks during the hydraulic splitting process of the specimen were analyzed and studied by the technical methods of indicator tracing, longitudinal wave velocity determination and acoustic emission three-dimensional localization. The results show that the hydraulic cracks generally start from the bottom of the splitting tube, and then expand to the surface of the specimen along the direction of the maximum principal stress until a stable seepage channel is formed. The fronts of hydraulic cracks are approximately elliptical in shape and centered on the bottom of the splitting tube, where The degree of hydraulic cracking is higher in the area near the splitting tube and the built-in fissure.

(5) On the basis of the first splitting of the rock mass, repeated splitting tests were conducted on specimens under different circumferential pressures to study the crack initiation characteristics and hydraulic crack expansion law of the repeated splitting process of the rock mass. The results show that the initial splitting pressure of the first splitting is generally slightly higher than that of the repeated splitting; when the stress level of the rock body is low, the splitting fluid mainly moves along the original hydraulic crack during the repeated splitting process, and less secondary cracks are produced; when the stress level of the rock body is high, a large number of secondary cracks will be formed inside the rock body during the repeated splitting process.

(6) A physical model was designed and established to meet the actual stratum, and mining damage and hydraulic fracture tests were conducted to investigate the subsidence and apparent resistivity changes during mining of the physical model on the one hand, and to analyze the fracture initiation characteristics and hydraulic fracture expansion law of the physical model through the fracture curve and acoustic emission data on the other hand. The results show that the subsidence area and the high apparent resistivity zone generally start from the boundary of the extraction area and expand in a "ring" towards the excavation side. The expansion patterns of hydraulic cracks in the stratum can be divided into three main types, namely, expansion along the level, expansion through the layer and branching crack expansion, which are mainly influenced by the fracture toughness, elastic modulus, horizontal ground stress and interlayer interface of the stratum.

参考文献:

[1] 王双明. 对我国煤炭主体能源地位与绿色开采的思考 [J]. 中国煤炭, 2020, 46(2): 6.

[2] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发 [J]. 煤炭学报, 2021, 46(05): 1365-1377.

[3] 侯荡. 我国煤炭资源绿色开采效率与保障对策研究 [D]. 中国矿业大学(北京), 2021.

[4] 霍超, 刘天绩, 樊斌, 等. 双碳背景下我国煤炭资源勘查开发布局研究 [J]. 地质论评, 2022, 68(03): 938-944.

[5] 袁亮, 薛俊华. 低透气性煤层群无煤柱煤与瓦斯共采关键技术 [J]. 煤炭科学技术, 2008(6): 1.

[6] 周宏春. 中国矿产资源形势与对策研究 [M]. 科学出版社, 2005.

[7] 窦林名, 何学秋. 冲击矿压防治理论与技术 [M]. 中国矿业大学出版社, 2001.

[8] 吴永平. 大同矿区特厚煤层综放采场矿压显现规律研究 [J]. 煤炭科学技术, 2008, 36(1): 3.

[9] 于斌. 大同矿区特厚煤层综放开采强矿压显现机理及顶板控制研究 [D]. 中国矿业大学, 2014.

[10] 于斌, 刘长友, 刘锦荣. 大同矿区特厚煤层综放回采巷道强矿压显现机制及控制技术 [J]. 岩石力学与工程学报, 2014, 33(09): 1863-1872.

[11] He H, Dou L, Fan J, et al. Deep-hole directional fracturing of thick hard roof for rockburst prevention [J]. Tunnelling and Underground Space Technology, 2012, 32: 34-43.

[12] Zhao T, Guo W, Tan Y, et al. Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1539-1564.

[13] 黄炳香, 赵兴龙, 陈树亮, 等. 坚硬顶板水压致裂控制理论与成套技术 [J]. 岩石力学与工程学报, 2017, 36(12): 2954-2970.

[14] Huang B, Wang Y. Roof weakening of hydraulic fracturing for control of hanging roof in the face end of high gassy coal longwall mining: a case study [J]. Archives of Mining Sciences, 2016, 61(3).

[15] 程磊, 许艳之, 景国勋. 2019-2021年煤矿顶板事故统计分析 [J]. 煤炭技术, 2023, 42(02): 135-138.

[16] Yu B, Zhao J, Kuang T, et al. In situ investigations into overburden failures of a super-thick coal seam for longwall top coal caving [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 100(78): 155-162.

[17] 窦礼同. 厚煤层坚硬顶板结构失稳诱发强矿压机制与防控技术 [D]. 安徽理工大学, 2021.

[18] 杜贝举. 坚硬顶板特厚煤层临空巷道强矿压机理及控制研究 [D]. 中国矿业大学, 2022.

[19] 李英杰, 倪婷, 左建平, 等. 坚硬顶板定向水力压裂裂纹起裂机制及影响因素分析 [J].岩石力学与工程学报, 2022, 41(10): 2015-2029.

[20] 邰阳. 坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律 [D]. 中国矿业大学, 2021.

[21] Fan J , Dou L , Hu H , et al. Directional hydraulic fracturing to control hard-roof rockburst in coal mines [J]. International Journal of Mining Science & Technology, 2012, 22(002): 177-181.

[22] Fan J, Dou L, He H, et al. Directional hydraulic fracturing to control hard-roof rockburst in coal mines [J]. International Journal of Mining Science and Technology, 2012, 22(2): 177-181.

[23] 杜春志. 煤层水压致裂理论及应用研究 [D]. 中国矿业大学, 2008.

[24] 谢兴华. 岩体水力劈裂机理试验及数值模拟研究 [D]. 河海大学, 2004.

[25] 姜玉龙. 煤系地层水力压裂裂缝扩展规律及界面影响机理研究 [D]. 太原理工大学, 2020.

[26] 李宗利. 岩体水力劈裂机理研究及其在地下洞室围岩稳定分析中应用 [D]. 河海大学, 2005.

[27] 刘洪磊. 岩体水压致裂机理研究及在矿山突水中的应用 [D]. 东北大学, 2011.

[28] Ouyang Z H. Mechanism and experiment of hydraulic fracturing in rock burst prevention [C]// Proceedings of the 1st International Conference on Rock Dynamics and Applications (RocDyn-1'13). 2012: 245-250.

[29] Yu Y , Liu J , Li B , et al. Analysis of the hydraulic fracturing mechanism and fracture propagation law with a new extended finite element model for the silty hydrate reservoir in the South China Sea [J]. Journal of Natural Gas Science and Engineering, 2022, 101:104535-.

[30] 赵凯凯. 坚硬顶板区域水力压裂裂缝三维扩展机理研究 [D]. 煤炭科学研究总院, 2021.

[31] 武鹏飞. 煤岩复合体水压致裂裂纹扩展规律试验研究 [D]. 太原理工大学, 2017.

[32] 陈云娟, 高涛, 高成路, 等. 水力耦合作用下裂隙岩体破裂扩展及声发射能量损伤规律 [J]. 中南大学学报(自然科学版), 2022, 53(06): 2325-2335.

[33] 刘嘉, 薛熠, 高峰, 等. 层理页岩水力裂缝扩展规律的相场法研究 [J]. 岩土工程学报, 2022, 44(03): 464-473.

[34] 孙可明, 张树翠. 含层理页岩气藏水力压裂裂纹扩展规律解析分析 [J]. 力学学报, 2016, 48(05): 1229-1237.

[35] Grebe J J, Stoesser M. Increasing crude production 20,000,000 bbl. from established fields [J]. World Petroleum, 1935, 473.

[36] Watson T L. Granites of the southeastern Atlantic states [M]. US Government Printing Office, 1910.

[37] Veatch Jr R W, Moschovidis Z A, Fast C R. An overview of hydraulic fracturing [J]. Recent Advances in Hydraulic Fracturing, 1989, 12: 1-38.

[38] Clark J B. A hydraulic process for increasing the productivity of wells [J]. Journal of Petroleum Technology, 1949, 1(01): 1-8.、

[39] Montgomery C T, Smith M B. Hydraulic fracturing: History of an enduring technology [J]. Journal of Petroleum Technology, 2010, 62(12): 26-40.

[40] Khristianovic S A, Zheltov Y P. Formation of vertical fractures by means of highly viscous liquid [C]// World petroleum congress proceedings. 1955: 579-586.

[41] Geertsma J, De Klerk F. A rapid method of predicting width and extent of hydraulically induced fractures [J]. Journal of petroleum technology, 1969, 21(12): 1571-1581.

[42] Daneshy A A. On the design of vertical hydraulic fractures [J]. Journal of Petroleum Technology, 1973, 25(01): 83-97.

[43] Perkins T K, Kern L R. Widths of hydraulic fractures [J]. Journal of petroleum technology, 1961, 13(09): 937-949.

[44] Nordgren R P. Propagation of a vertical hydraulic fracture [J]. Society of petroleum engineers journal, 1972, 12(04): 306-314.

[45] 张杰. 水压致裂原地应力测量的流体力学影响因素分析 [D]. 中国地质大学(北京), 2018.

[46] Sneddon I N. The Distribution of Stress in the Neighborhood of a Crack in an Elastic Solid [J]. Philosophical Transactions of the Royal Society of London, Series A, 1946, 187(1009): 1934-1990.

[47] 雷毅. 松软煤层井下水力压裂致裂机理及应用研究 [D]. 煤炭科学研究总院, 2014.

[48] Van Eekelen H A M. Hydraulic fracture geometry: fracture containment in layered formations [J]. Society of Petroleum Engineers Journal, 1982, 22(03): 341-349.

[49] Palmer I D, Caroll Jr H B. 3d hydraulic fracture propagation in the presence of stress variations [R]. Oral Roberts Univ, Tulsa, OK, USA, 1982.

[50] Palmer I D, Luiskutty C T. A model of the hydraulic fracturing process for elongated vertical fractures and comparisons of results with other models [C]// SPE/DOE low permeability gas reservoirs symposium. OnePetro, 1985.

[51] Zhao K, Stead D, Kang H, et al. Three-dimensional simulation of hydraulic fracture propagation height in layered formations [J]. Environmental Earth Sciences, 2021, 80(12): 435.

[52] Advani S H, Lee J K. Finite element model simulations associated with hydraulic fracturing [J]. Society of Petroleum Engineers Journal, 1982, 22(02): 209-218.

[53] 黄荣撙. 水力压裂裂缝的起裂和扩展 [J]. 石油勘探与开发, 1981(05): 65-77.

[54] 刘蜀知, 任书泉. 水力压裂裂缝三维延伸数学模型的建立与求解 [J]. 西南石油大学学报(自然科学版), 1993(S1): 103-105.

[55] 胡永全, 任书泉. 压裂裂缝拟三维延伸的数值模拟 [J]. 西南石油学院学报, 1992, 14(2): 54-62.

[56] 陈勉, 陈治喜, 黄荣樽.大斜度井水压裂缝起裂研究 [J]. 石油大学学报(自然科学版), 1995(02): 30-35.

[57] 陈勉, 陈治喜, 黄荣樽. 三维弯曲水压裂缝力学模型及计算方法 [J]. 石油大学学报(自然科学版), 1995(S1): 43-47.

[58] 陈治喜, 陈勉. 层状介质中水力裂缝的垂向扩展 [J]. 石油大学学报:自然科学版, 1997, 21(4): 5.

[59] Clifton R J, Abou-Sayed A S. On the computation of the three-dimensional geometry of hydraulic fractures [C]// Symposium on low permeability gas reservoirs. OnePetro, 1979.

[60] Bouteca M J. 3D analytical model for hydraulic fracturing: Theory and field test [C]// SPE annual technical conference and exhibition. OnePetro, 1984.

[61] Cleary M P, Kavvadas M, Lam K Y. Development of a fully three-dimensional simulator for analysis and design of hydraulic fracturing [C]// SPE/DOE low permeability gas reservoirs symposium. OnePetro, 1983.

[62] 吴晓东, 席长丰, 王国强. 煤层气井复杂水力压裂裂缝模型研究 [J]. 天然气工业, 2006, 26(12): 124-126.

[63] 陈勉. 我国深层岩石力学研究及在石油工程中的应用 [J]. 岩石力学与工程学报, 2004(14): 2455-2462.

[64] 陈勉. 页岩气储层水力裂缝转向扩展机制 [J]. 中国石油大学学报(自然科学版), 2013, 37(05): 88-94.

[65] 张国华, 魏光平, 侯凤才. 穿层钻孔起裂注水压力与起裂位置理论 [J]. 煤炭学报, 2007, 32(001): 52-55.

[66] 杜春志, 茅献彪, 卜万奎. 水力压裂时煤层缝裂的扩展分析 [J]. 采矿与安全工程学报, 2008, 25(2): 5.

[67] 赵金洲, 任岚, 胡永全,等. 裂缝性地层水力裂缝张性起裂压力分析 [J]. 岩石力学与工程学报, 2013, 32(A01): 8.

[68] Teufel L W, Clark J A. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment [J]. Society of Petroleum Engineers Journal, 1984, 24(01): 19-32.

[69] Blanton T L. An experimental study of interaction between hydraulically induced and pre-existing fractures [C]// SPE unconventional gas recovery symposium. OnePetro, 1982.

[70] D Martínez, Gupta V . Energy Criterion for Crack Deflection at an Interface Between Two Orthotropic Media [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(8): 1247–1271.

[71] Renshaw C E, Pollard D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials [C]// International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1995, 32(3): 237-249.

[72] 黄炳香. 煤岩体水力致裂弱化的理论与应用研究 [D]. 中国矿业大学, 2009.

[73] 邓广哲, 王世斌, 黄炳香. 煤岩水压裂缝扩展行为特性研究 [J]. 岩石力学与工程学报, 2004, 23(20): 5.

[74] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing [J]. Transactions of the AIME, 1957, 210(01): 153-168.

[75] Abass H H, Hedayati S, Meadows D L. Nonplanar fracture propagation from a horizontal wellbore: experimental study [J]. SPE Production & Facilities, 1996, 11(03): 133-137.

[76] 陈勉, 庞飞, 金衍. 大尺寸真三轴水力压裂模拟与分析 [J]. 岩石力学与工程学报, 2000(z1): 5.

[77] 魏元龙, 杨春和, 郭印同, 等. 须家河组致密砂岩水力压裂裂缝形态的试验研究[J]. 岩石力学与工程学报, 2016, 35(A01): 12.

[78] 杨焦生, 王一兵, 李安启, 等. 煤岩水力裂缝扩展规律试验研究 [J]. 煤炭学报, 2012, 37(01): 73-77.

[79] 程远方, 徐太双, 吴百烈, 等. 煤岩水力压裂裂缝形态实验研究 [J]. 天然气地球科学, 2013(1): 4.

[80] 鞠杨, 杨永明, 陈佳亮, 等. 低渗透非均质砂砾岩的三维重构与水压致裂模拟 [J]. 科学通报, 2016(1): 12.

[81] Blanton T L. An experimental study of interaction between hydraulically induced and pre-existing fractures[C]// SPE unconventional gas recovery symposium. OnePetro, 1982.

[82] Renshaw C E, Pollard D D. An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials[C]// International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1995, 32(3): 237-249.

[83] Gu H, Weng X, Lund J, et al. Hydraulic fracture crossing natural fracture at nonorthogonal angles: a criterion and its validation [J]. SPE Production & Operations, 2012, 27(01): 20-26.

[84] 林健, 徐成, 杨建威. 泵流量对纵向切槽水力压裂裂缝偏转距的影响 [J]. 煤炭学报, 2020, 45(08): 2804-2812.

[85] 周健, 陈勉, 金衍, 等. 裂缝性储层水力裂缝扩展机理试验研究 [J]. 石油学报, 2007, 28(5): 5.

[86] Beugelsdijk L J L, De Pater C J, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium [C]// SPE Asia Pacific conference on integrated modelling for asset management. OnePetro, 2000.

[87] Guo T, Zhang S, Qu Z, et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume [J]. Fuel, 2014, 128: 373-380.

[88] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究 [J]. 岩石力学与工程学报, 2015, 34(02): 228-237.

[89] 程万. 三维空间下裂缝性页岩储层水力裂缝扩展机理研究 [D]. 中国石油大学(北京).

[90] 张旭, 蒋廷学, 贾长贵, 等. 页岩气储层水力压裂物理模拟试验研究 [J]. 石油钻探技术, 2013, 41(2): 5.

[91] 郭印同, 杨春和, 贾长贵, 等. 页岩水力压裂物理模拟与裂缝表征方法研究 [J]. 岩石力学与工程学报, 2014, 33(1): 8.

[92] 侯冰, 谭鹏, 陈勉, 等. 致密灰岩储层压裂裂缝扩展形态试验研究 [J]. 岩土工程学报, 2016, 38(2): 7.

[93] 赵海峰, 陈勉, 金衍. 水力裂缝在地层界面的扩展行为 [J]. 石油学报,2009,30(03): 450-454.

[94] 高杰, 侯冰, 谭鹏, 等. 砂煤互层水力裂缝穿层扩展机理 [J].煤炭学报, 2017, 42(S2): 428-433.

[95] 孟尚志, 侯冰, 张健, 等. 煤系“三气”共采产层组压裂裂缝扩展物模试验研究 [J]. 煤炭学报, 2016, 41(01): 221-227.

[96] 赵益忠, 曲连忠, 王幸尊, 等. 不同岩性地层水力压裂裂缝扩展规律的模拟实验 [J]. 中国石油大学学报(自然科学版), 2007(03): 63-66.

[97] 程远方, 吴百烈, 袁征, 等. 煤层气井水力压裂“T”型缝延伸模型的建立及应用 [J]. 煤炭学报, 2013, 38(08): 1430-1434.

[98] 张旭, 蒋廷学, 贾长贵, 等. 页岩气储层水力压裂物理模拟试验研究 [J]. 石油钻探技术, 2013, 41(02): 70-74.

[99] 姜浒, 陈勉, 张广清, 等. 定向射孔对水力裂缝起裂与延伸的影响 [J]. 岩石力学与工程学报, 2009, 28(07): 1321-1326.

[100] 任岚, 陶永富, 赵金洲, 等. 超低渗透砂岩储层同步压裂先导性矿场试验 [J]. 岩石力学与工程学报, 2015, 34(02): 330-339.

[101] Adriaensens P, Storme L, Carleer R, et al. Visualization of Tensile Stress Induced Material Response at a Crack Tip in Polymers under Critical Load by NMR Imaging[J]. Macromolecules, 2000, 33(13): 4836-4841.

[102] Espina C, Baldassa D, Sorenson F, et al. Hydraulic fracturing: modeling and optimization using latest generation logs and conductivity optimization technologies [C]// SPE Hydraulic Fracturing Technology Conference. OnePetro, 2009.

[103] Grayson S, Kamerling M, Pirie I, et al. NMR-Enhanced Natural Fracture Evaluation in the Monterey Shale[J]. Scienceasia, 2015, 33(39): 563-641.

[104] Chen Y, Nagaya Y, Ishida T. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite [J]. Rock Mechanics and Rock Engineering, 2015(4): 48.

[105] Yushi Z , Shicheng Z , Tong Z , et al. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 33-45.

[106] Renard F , Bernard D , Desrues J , et al. 3D imaging of fracture propagation using synchrotron X-ray microtomography [J]. Earth & Planetary Science Letters, 2009, 286(1-2): 285-291.

[107] Hampton J C , Hu D, Matzar L, et al. Cumulative volumetric deformation of a hydraulic fracture using acoustic emission and micro-CT imaging [C]// Us Rock Mechanics. American Rock Mechanics Association, 2014.

[108] 吴拥政. 回采工作面双巷布置留巷定向水力压裂卸压机理研究及应用 [D]. 煤炭科学研究总院, 2018.

[109] 张士诚, 郭天魁, 周彤, 等. 天然页岩压裂裂缝扩展机理试验 [J]. 石油学报, 2014, 35(3): 9.

[110] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析 [J]. 岩土力学, 2016, 37(2): 8.

[111] Stanchits S, Burghardt J, Surdi A. Hydraulic fracturing of heterogeneous rock monitored by acoustic emission [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2513-2527.

[112] Elbel J L, Mack M G. Refracturing: observations and theories [C]/ /SPE production operations symposium. OnePetro, 1993.

[113] Chen H Y, Teufel L W, Lee R L. Coupled Fluid Flow and Geomechanics in Reservoir Study - I. Theory and Governing Equations [C]// IEEE Systems Conference. Society of Petroleum Engineers, 1995.

[114] Chen H Y, Hidayati D T, Teufel L W. Estimation of permeability anisotropy and stress anisotropy from interference testing [C]// SPE Annual Technical Conference and Exhibition. OnePetro, 1998.

[115] Ochs D E, Chen H Y, Teufel L W. Relating in situ stresses and transient pressure testing for a fractured well [C]// SPE Annual Technical Conference and Exhibition. OnePetro, 1997.

[116] Sharma A, Chen H Y, Teufel L W. Flow-induced stress distribution in a multi-rate and multi-well reservoir [C]// SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium. OnePetro, 1998.

[117] Hidayati D T, Chen H Y, Teufel L W. Flow-induced stress reorientation in a multiple-well reservoir [C]// SPE Rocky Mountain Petroleum Technology Conference. OnePetro, 2001.

[118] 李阳, 姚飞, 翁定为. 重复压裂前地应力场预测技术与应用 [J]. 天然气技术, 2008, 2(1): 3.

[119] Warpinski N R , Branagan P T . Altered-Stress Fracturing [J]. Journal of Petroleum Technology; (USA), 1989, 41(09):990-997.

[120] Wright C A, Conant R A, Stewart D W, et al. Reorientation of propped refracture treatments [C]// Rock Mechanics in Petroleum Engineering. OnePetro, 1994.

[121] Wright C A, Conant R A, Golich G M, et al. Hydraulic Fracture Orientation and Production/Injection Induced Reservoir Stress Changes in Diatomite Waterfloods [C]// SPE Western Regional Meeting. 1995.

[122] Minner W A, Wright C A, Stanley G R, et al. Waterflood and Production-Induced Stress Changes Dramatically Affect Hydraulic Fracture Behavior in Lost Hills Infill Wells [C]// SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2002.

[123] 韩忠英. 重复压裂力学机理研究及应用 [D]. 中国石油大学(华东), 2012.

[124] Siebrits E, Elbel J L, Detournay E, et al. Parameters affecting azimuth and length of a secondary fracture during a refracture treatment [C]// SPE Annual Technical Conference and Exhibition. OnePetro, 1998.

[125] Benedict D S, Miskimins J L. Analysis of reserve recovery potential from hydraulic fracture reorientation in tight gas Lenticular reservoirs [C]// SPE Hydraulic Fracturing Technology Conference. OnePetro, 2009.

[126] Aghighi M A, Chen Z, Rahman S S. A holistic approach to the design and evaluation of hydraulic-fracture treatments in tight gas reservoirs [J]. SPE Production & Operations, 2008, 23(03): 362-372.

[127] 邓燕. 重复压裂压新缝力学机理研究 [D]. 西南石油学院, 2005.

[128] 曾雨辰. 转向重复压裂技术研究与应用 [D]. 西南石油学院, 2005.

[129] 张广清, 陈勉, 赵艳波. 新井定向射孔转向压裂裂缝起裂与延伸机理研究 [J]. 石油学报, 2008, 29(1): 4.

[130] 张广清, 陈勉, 姚飞, 等.各向异性地层重复压裂最优时机及影响因素分析 [J]. 石油学报, 2008(06): 885-888+893.

[131] 陈益峰, 周创兵, 胡冉, 等. 大型水电工程渗流分析的若干关键问题研究 [J]. 岩土工程学报, 2010(9): 7.

[132] 李鹏宇. 岩体三维裂隙网络旋转拟合确定渗透张量 [D]. 华北电力大学(北京), 2018.

[133] 金波, 胡明, 方棋洪. 考虑渗流效应的深埋海底隧道围岩与衬砌结构应力场研究 [J]. 力学学报, 2022, 54(05): 1322-1330.

[134] 陆银龙. 渗流-应力耦合作用下岩石损伤破裂演化模型与煤层底板突水机理研究 [D]. 中国矿业大学, 2013.

[135] 张奇华, 邬爱清. 三维任意裂隙网络渗流模型及其解法 [J]. 岩石力学与工程学报, 2010, 29(04): 720-730.

[136] 付金伟. 含三维裂隙试件在双轴压力和水压作用下压裂试验与数值模拟研究 [D]. 山东大学, 2015.

[137] Dantzig G B. Application of the simplex method to a transportation problem [C]// Activity Analysis & Production & Allocation. 1951.

[138] 毛瑞彪. 声发射实时定位监测岩体压裂破裂演化方法与规律研究 [D]. 太原理工大学, 2020.

[139] Lockner D A. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883-899.

[140] Lockner D A, Byerlee J D, Kuksenko V, et al. Quasi-static fault growth and shear fracture energy in granite [J]. Nature, 1991, 350(6313): 39-42.

[141] Tang C A , Kaiser P K. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure-Part I: Fundamentals [J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(2): 113-121.

[142] Geiger L. Probability method for the determination of earthquake epicenters from the arrival time only [J]. Bull. St. Louis Univ, 1912, 8(1): 56-71.

[143] Scholz C H. Experimental Study of the Fracturing Process in Brittle Rock [J]. Journal of Geophysical Research Atmospheres, 1968, 73(4): 1447-1454.

[144] Got J L. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea [J]. J. Geophys. Res, 1994, 99.

[145] 詹懿德, 汪发祥, 佘恬钰, 等.考虑围压效应的块状裂隙岩体变形破坏数值模拟 [J].水利水运工程学报, 2022(04): 70-76.

[146] 白卫峰, 王路静, 管俊峰, 等. 考虑围压效应的混凝土统计损伤模型 [J]. 应用基础与工程科学学报, 2021, 29(06): 1500-1511.

[147] Gao Y. Fracture toughness interpretation from breakdown pressure [J]. Engineering Fracture Mechanics, 2021, 243(1).

[148] 黄震. 流固耦合作用下岩体渗流演化规律与突水灾变机理研究 [D]. 中国矿业大学, 2016.

[149] Adachi J I , Siebrits E , Peirce A P , et al. Computer simulation of hydraulic fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 739-757.

[150] Li X , Qi C . A micro-macro dynamic compressive-shear fracture model under static confining pressure in brittle rocks [J]. International Journal of Impact Engineering, 2018, 122(DEC.):109-118.

[151] Gao G, Wang C, Zhou H, et al. Modified fracture mechanics approach for hydraulic fracturing stress measurements [J]. Geofluids, 2020, 2020: 1-11.

[152] Hua W, Xu J, Dong S, et al. Theoretical Analysis of Effects of Confining Pressure on the Stress Intensity Factors for Cracked Brazilian Disk [J]. International Journal of Applied Mechanics, 2015, 7(3): 1550051.

[153] Al-Shayea N A. Crack propagation trajectories for rocks under mixed mode I-II fracture [J]. Engineering Geology, 2005, 81(1): 84-97.

[154] Yue K, Lee H P, Olson J E, et al. Apparent Fracture Toughness for LEFM Applications in Hydraulic Fracture Modeling [J]. Engineering Fracture Mechanics, 2020, 230: 106984.

[155] Abdollahipour A, Marji M F, Bafghi A Y, et al. DEM simulation of confining pressure effects on crack opening displacement in hydraulic fracturing [J]. International Journal of Mining Science and Technology, 2016, 26(4): 557-561.

[156] Sato K, Watanabe T. Confining Pressure Dependency of Mode II Crack Growth Condition in Hydraulic Fracturing Based on Cohesive Crack Model [J]. Research reports, 2010, 46(12): 233-238.

[157] Siebert P, Weber N, Willbrand K, et al. Hydraulic fracturing experiments in large low - permeability rock samples under confining pressure [C]// 10th Euroconference on Rock Physics and Rock Mechanics. 2014.

[158] Hassani A W. Laboratory simulation of hydraulic fracturing [C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco. 1985: 1081-1084.

[159] 孙强, 王少飞, 葛振龙, 等. 基于热声发射技术的陕北火烧岩烧变温度识别 [J]. 煤田地质与勘探, 2022, 50(05): 82-88.

[160] Irwin G R. Analysis of Stresses and Strains Near End of a Crack Traversing a Plate [J]. Journal of Applied Mechanics, 1956, 24(24).

[161] Cleary M P. Theory and application of hydraulic fracturing technology [C]// Hydraulic fracturing and geothermal energy: Proceedings of the First Japan-United States Joint Seminar on Hydraulic Fracturing and Geothermal Energy, Tokyo, Japan, November 2-5, 1982, and Symposium on Fracture Mechanics Approach to Hydraulic Fracturing and Geothermal Energy, Sendai, Japan November 8-9, 1982. Springer Netherlands, 1983: 267-289.

[162] Holahan R, Arnold G. An institutional theory of hydraulic fracturing policy [J]. Ecological Economics, 2013, 94: 127-134.

[163] Barenblatt G I. The Mechanical Theory of Equilibrium Cracks in Brittle Fracture [J]. Advances in Applied Mechanics, 1962, 7: 55-129.

[164] Geertsma J , Klerk F D. A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures [J]. Journal of Petroleum Technology, 1969, 21(12): 1571-1581.

[165] Jianjun G, Zhang Y X, Xiao L. An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas [J]. Journal of Applied Geophysics, 2020, 177: 104013.

[166] Perkins T K , Kern L R. Widths of Hydraulic Fractures [J]. Journal of Petroleum Technology, 1961, 13(9): 937-949.

[167] Lockner D, Byerlee J D. Hydrofracture in Weber Sandstone at high confining pressure and differential stress [J]. Journal of Geophysical Research, 1977, 82(14): 2018-2026.

[168] Wang Y. Fracture simulation based on large hydraulic fracturing experiment system in laboratory [J]. Progress in Geophysics, 2017, 32(1): 408-413.

[169] Ishijima Y, Kinoshita S. The Effect of Confining Pressure and Flow Rate upon the Hydraulic Fracturing: Fracture mechanics consideration [J]. Journal of the Mining and Metallurgical Institute of Japan, 1980, 96(1113): 803-808.

[170] Zhao Y, Zhang Y, Wang C, et al. Hydraulic fracturing characteristics and evaluation of fracturing effectiveness under different anisotropic angles and injection rates: An experimental investigation in absence of confining pressure [J]. Journal of Natural Gas Science and Engineering, 2022, 97: 104343.

[171] Dai F, Xia K, Nasseri M. Micromechanical model for the rate dependence of the fracture toughness anisotropy of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 113-121.

[172] Lee M Y, Haimson B C. Statistical evaluation of hydraulic fracturing stress measurement parameters [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1989, 26(6):447-456.

[173] Zhai M, Wang D, Zhang Z, et al. Numerical simulation and multi-factor optimization of hydraulic fracturing in deep naturally fractured sandstones based on response surface method [J]. Engineering Fracture Mechanics, 2022, 259: 108110-.

[174] 周逸飞, 朱星, 刘文德. 基于声发射和高斯混合模型的灰岩破裂特征识别研究 [J]. 水利水电技术, 2018, 50(11).

[175] Liu J, Liu Y, Zhu Y, et al. Study of influences of rock hardness on crack evolution rule under hydraulic fracturing [J]. IOP Conference Series: Earth and Environmental Science, 2020, 558(3): 032003 (7pp).

[176] Mao R, Feng Z, Liu Z, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens [J]. Journal of Natural Gas Science and Engineering, 2017, 44: 278-286.

[177] Lei X, Zhang S, Xu G, et al. Impact of perforation on hydraulic fracture initiation and extension in tight natural gas reservoirs [J]. Energy Technology, 2015, 3(6): 618-624.

[178] ZhangYu Z S. Anexperimentalstud Y on coal and rock hydraulic fracturing fissure outspread pattern [J]. Coal Geology of China, 2015, 27(8): 21-25.

[179] Akbarzadeh Y, Miller H B. A Numerical Study of the Parameters that Affect the Induced Principal Stresses by Hydraulic Fracturing in a Shale Formation [C]// 49th US Rock Mechanics/Geomechanics Symposium. OnePetro, 2015.

[180] Zeng X, Wei Y. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking [J]. Journal of the Mechanics and Physics of Solids, 2017, 101: 235-249.

[181] Tsukahara H, Ikeda R. Hydraulic fracturing stress measurements and in-situ stress field in the Kanto—Tokai area, Japan [J]. Tectonophysics, 1987, 135(4): 329-345.

[182] Mao R B, Feng Z J, Liu Z H, et al. Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens [J]. Journal of Natural Gas Science and Engineering, 2017: 278-286.

[183] Zhang R, Hou B, Han H, et al. Experimental investigation on fracture morphology in laminated shale formation by hydraulic fracturing [J]. Journal of Petroleum Science and Engineering, 2019, 177: 442-451.

[184] Hou B, Zhang R, Tan P, et al. Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in central Sichuan, China [J]. Journal of Natural Gas Science and Engineering, 2018, 57: 122-134.

[185] Chen M, Jiang H, Zhang G Q, et al. The experimental investigation of fracture propagation behavior and fracture geometry in hydraulic fracturing through oriented perforations [J]. Petroleum Science and Technology, 2010, 28(13): 1297-1306.

[186] 曹军, 唐海, 吕栋梁, 等. 应力敏感性差异对天然裂缝储层直井产能的影响 [J]. 油气藏评价与开发, 2019, 9(01): 23-28.

[187] 杨向同, 张林, 袁学芳, 等. 最小水平主应力差异对塔里木油田TKes2区块气井产能的影响分析 [J]. 钻采工艺, 2015, 38(06): 40-42+8.

[188] 苟波, 李勇明, 郭建春. 应力差异条件下水力压裂缝高增长实验与数值模拟结果的对比 [J]. 国外油田工程, 2010, 26(01): 29-32+54.

[189] 倪小明, 李阳, 赵永超, 等不同压裂方式诱导应力特征及对缝网改造的影响 [J]. 煤炭科学技术, 2018, 46(06): 29-33.

[190] 陈刚, 秦勇, 杨青, 等. 不同煤阶煤储层应力敏感性差异及其对煤层气产出的影响 [J]. 煤炭学报, 2014,39(03): 504-509.

[191] 陈文滨, 姜汉桥, 李俊键, 等. 张裂缝和剪裂缝应力敏感差异对致密砂岩储层产能影响 [J]. 特种油气藏, 2018, 25(05): 146-150.

[192] Boye B A, Abbey S J, Olubanwo A O, et al. Non-Linear Analysis of Precast Concrete Segment Joints under High Compressive Loads [J]. International Journal of Applied Engineering Research, 2018, 13(9).

[193] Shaojie Z, Zhaolong G E, Kai D, et al. Fracture initiation pressure and failure modes of tree-type hydraulic fracturing in gas-bearing coal seams [J]. Journal of Natural Gas Science and Engineering, 2020, 77:103260.

[194] Bertotti G, Immenhauser A, Kenter J. Joint Systems and Fault-Controlled Hydraulic Fracturing in Outcrops-Impact on Precitions of Reservoir Properties [C]// 1st EAGE North African/Mediterranean Petroleum & Geosciences Conference & Exhibition. EAGE Publications BV, 2003: cp-8-00044.

[195] Dontsov E V. Morphology of multiple constant height hydraulic fractures versus propagation regime [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46(6): 1177-1183.

[196] Dou F, Wang J G, Wang H, et al. Discrete element analysis for hydraulic fracture propagations in laminated reservoirs with complex initial joint properties [J]. Geofluids, 2019, 2019: 1-23.

[197] Verma A, Chauhan G, Baruah P P, et al. Morphology, Rheology, and Kinetics of Nanosilica Stabilized Gelled Foam Fluid for Hydraulic Fracturing Application [J]. Industrial & Engineering Chemistry Research, 2018(40): 57.

[198] Shen Z, Xue H, Bai Z. Analysis of Hydraulic Fracture Morphology and Propagation under Different Perforation Azimuth Angles [C]. //Journal of Physics: Conference Series. IOP Publishing, 2022, 2152(1): 012048.

[199] Anikiev D, Valenta J, Staněk F, et al. Joint location and source mechanism inversion of microseismic events: Benchmarking on seismicity induced by hydraulic fracturing [J]. Geophysical Journal International, 2014, 198(1): 249-258.

[200] He J, Lin C, Li X, et al. Initiation, propagation, closure and morphology of hydraulic fractures in sandstone cores [J]. Fuel, 2017, 208(nov.15): 65-70.

[201] Dou F, Wang J G, Leung C F, et al. The alterations of critical pore water pressure and micro-cracking morphology with near-wellbore fractures in hydraulic fracturing of shale reservoirs [J]. Engineering Fracture Mechanics, 2020, 242(11): 107481

[202] Martin C D. Brittle failure of rock materials : test results and constitutive models [J]. Revue Canadienne De Géotechnique, 1995, 33(2): 378-378.

[203] Farhidzadeh A, Dehghan-Niri E, Salamone S, et al. Monitoring crack propagation in reinforced concrete shear walls by acoustic emission [J]. Journal of Structural Engineering, 2013, 139(12): 04013010.

[204] 邓琼伟, 杨录胜, 刘正和, 等. 水平应力差对砂岩起裂破坏规律的声发射试验研究 [J]. 矿业研究与开发, 2018, 38(12): 5.

[205] 李芷, 贾长贵, 杨春和, 等.页岩水力压裂水力裂缝与层理面扩展规律研究 [J]. 岩石力学与工程学报,2015,34(01): 12-20.

[206] He M C, Miao J L, Feng J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2): 286-298.

[207] Ishida T, Labuz J F, Manthei G, et al. ISRM suggested method for laboratory acoustic emission monitoring [J]. Rock Mechanics and Rock Engineering, 2017, 50: 665-674.

[208] Colombo S, Main I G, Forde M C. Assessing damage of reinforced concrete beam using "b-value" analysis of acoustic emission signals [J]. Journal of Materials in Civil Engineering, 2003, 15(3): 280-286.

[209] Aggelis D G. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153-157.

[210] Aggelis D G, Soulioti D V, Sapouridis N, et al. Acoustic emission characterization of the fracture process in fibre reinforced concrete [J]. Construction & Building Materials, 2011, 25(11): 4126-4131.

[211] Aggelis D G, Mpalaskas A C, Matikas T E. Acoustic signature of different fracture modes in marble and cementitious materials under flexural load [J]. Mechanics Research Communications, 2013, 47: 39-43.

[212] Miao C. Experimental Study on Damage and Fracture Characteristics of Beishan Granite Subjected to High-temperature Treatment with DIC and AE Techniques [J]. Rock Mechanics and Rock Engineering, 2021, 54(2).

[213] 李根. 基于模拟的水岩耦合变形破坏过程及机理研究 [D]. 大连理工大学, 2011.

[214] Wang S Y, Sun L, Au A S K, et al. 2D-numerical analysis of hydraulic fracturing in heterogeneous geo-materials [J]. Construction and Building Materials, 2009, 23(6): 2196-2206.

[215] Bohloli B, De Pater C J. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress [J]. Journal of Petroleum Science and Engineering, 2006, 53(1-2): 1-12.

[216] Yanagisawa E, Panah A K. Two dimensional study of hydraulic fracturing criteria in cohesive soils [J]. Soils and Foundations, 1994, 34(1): 1-9.

[217] 郭建春, 陶亮, 曾凡辉.致密油储集层水平井重复压裂时机优化—以松辽盆地白垩系青山口组为例 [J]. 石油勘探与开发, 2019, 46(01): 146-154.

[218] 岳迎春, 郭建春. 重复压裂转向机制流-固耦合分析 [J]. 岩土力学, 2012, 33(10): 3189-3193.

[219] 姚飞, 翁定为, 李阳, 等. 重复压裂前地应力场预测软件研究及现场应用 [J]. 石油学报, 2007(04): 130-133.

[220] 张广清, 陈勉, 姚飞, 等. 各向异性地层重复压裂最优时机及影响因素分析 [J]. 石油学报, 2008(06): 885-888+893.

[221] Lu M, Su Y, Wen Z, et al. Research on stress alternation effects and fracture reorientation for refracturing treatment: [J]. SIMULATION, 2021, 97(2):97-107.

[222] Dou X, Hong S, Tao Z, et al. Transient Pressure and Rate Behavior of a Vertically Refractured Well in a Shale Gas Reservoir [J]. Energies, 2022, 15.

[223] Wang T, Chen M, Wu J, et al. Making complex fractures by re-fracturing with different plugging types in large stress difference reservoirs [J]. Journal of Petroleum Science and Engineering, 2021, 201(1): 108413.

[224] 姜志忠. 井下煤层水力压裂微震特征及震源三分量极化定位方法 [D]. 重庆大学, 2021.

[225] Matsunaga I, Kobayashi H, Sasaki S, et al. Studying hydraulic fracturing mechanism by laboratory experiments with acoustic emission monitoring [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts;(United Kingdom), 1993, 30(7).

[226] Li P, Song Z, Wu Z. Study on reorientation mechanism of refracturing in Ordos basin-a case study: chang 6 formation, Yanchang Group, Triassic System in Wangyao Section of Ansai Oilfield [C]// International Oil & Gas Conference and Exhibition in China. OnePetro, 2006.

[227] Yue Y C, Guo J C. Fluid-solid coupling analysis of reorientation mechanism of refracturing [J]. Rock and Soil Mechanics, 2012, 33(10): 3189-3193.

[228] Xu X, Cai X, Qin D, et al. Fluids double-fracturing genetic mechanism and mineralization of gold-copper of the breccia pipe at Qibaoshan in Shandong Province [J]. Science in China Series D: Earth Sciences, 2000, 43: 113-121.

[229] 白晓虎, 齐银, 何善斌, 等. 致密储层水平井压裂-补能-驱油一体化重复改造技术 [J]. 断块油气田,2021,28(01): 63-67.

[230] 杨兆中, 杨晨曦, 李小刚, 等. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井-以沁水盆地柿庄南区块为例 [J]. 科学技术与工程, 2020, 20(12): 4680-4686.

[231] 汪国庆, 肖勇军, 赵昊, 等.微地震监测技术在页岩气水平井重复压裂中的应用 [J]. 地质与勘探, 2019, 55(05): 1336-1342.

[232] Zhang G Q, Chen M . Dynamic fracture propagation in hydraulic re-fracturing [J]. Journal of Petroleum Science & Engineering, 2010, 70(3-4): 266-272.

[233] 赵春虎, 靳德武, 王皓, 等.榆神矿区中深煤层开采覆岩损伤变形与含水层失水模型构建 [J]. 煤炭学报, 2019, 44(07): 2227-2235.

[234] 张玉军,张志巍. 煤层采动覆岩破坏规律与控制技术研究进展 [J]. 煤炭科学技术, 2020, 48(11): 85-97.

[235] 马新仿, 李宁, 尹丛彬, 等. 页岩水力裂缝扩展形态与声发射解释-以四川盆地志留系龙马溪组页岩为例 [J]. 石油勘探与开发, 2017, 44(06): 974-981.

[236] Cui F, Dong S, Lai X, et al. Study on rule of overburden failure and rock burst hazard under repeated mining in fully mechanized top-coal caving face with hard roof [J]. Energies, 2019, 12(24): 4780.

[237] 葛振龙, 孙强, 王苗苗, 等. 基于RA/AF的高温后砂岩破裂特征识别研究 [J]. 煤田地质与勘探, 2021, 49(02): 176-183.

[238] 王存文, 姜福兴, 王平, 等.煤柱诱发冲击地压的微震事件分布特征与力学机理 [J]. 煤炭学报, 2009, 34(09): 1169-1173.

[239] Hubbert M K, Willis D G W. Mechanics of hydraulic fracturing [J]. Transactions of the AIME, 1972, 18(1):369-390.

[240] Lawson H E, Tesarik D, Larson M K, et al. Effects of overburden characteristics on dynamic failure in underground coal mining [J]. International Journal of Mining Science and Technology, 2017, 27(1): 121-129.

[241] 顾义磊, 王泽鹏, 李清淼, 等. 页岩声发射RA值及其分形特征的试验研究 [J]. 重庆大学学报, 2018, 41(02): 78-86.

[242] 张俊. 神东保德矿地应力特征及其对底板采动破坏控制机理研究 [D]. 安徽理工大学, 2022.

[243] 王同旭, 曹明辉. 采动影响下断层渐进破坏过程及能量释放规律研究 [J]. 采矿与安全工程学报, 2022, 39(05): 992-1001.

[244]吴洋锋, 汪洋, 贾金生, 等. 高混凝土坝考虑水表面张力影响的水力劈裂研究 [J]. 水利学报, 2022, 53(12): 1500-1511.

[245] Ju M, Li X, Yao Q, et al. Effect of sand grain size on simulated mining-induced overburden failure in physical model tests [J]. Engineering Geology, 2017, 226: 93-106.

[246] Wu R, Hu Z, Hu X. Principle of using borehole electrode current method to monitor the overburden stratum failure after coal seam mining and its application [J]. Journal of Applied Geophysics, 2020, 179: 104111.

[247] Schatzel S J, Karacan C Z, Dougherty H, et al. An analysis of reservoir conditions and responses in longwall panel overburden during mining and its effect on gob gas well performance [J]. Engineering Geology, 2012, 127(3): 65-74.

[248] He X , Zhang C , Han P . Overburden Damage Degree-Based Optimization of High-Intensity Mining Parameters and Engineering Practices in China's Western Mining Area [J]. Geofluids, 2020, 2020(4): 1-21.

[249] 董江鑫, 王飞. 地质雷达和高密度电法联合探测底板含水性的应用 [J]. 煤炭科学技术, 2022, 50(05): 222-231.

[250] 许锡昌, 陈卫东, 刘伟. 地质雷达和高密度电法在废弃矿井探测中的应用 [J]. 岩土力学, 2002, 23(S1): 126-128+132.

[251] Bo Z, Xr C, Yw A, et al. Experimental study on mechanical properties of coal rocks in re-fracturing [J]. Alexandria Engineering Journal, 2021, 60( 3): 3315-3325.

[252] 姜东廷. 高密度电法在辽宁某煤矿采空区勘察中的应用研究 [D]. 中国地质大学(北京), 2021.

[253] Li L , Li G , Gong W , et al. Energy Evolution Pattern and Roof Control Strategy in Non-Pillar Mining Method of Goaf-Side Entry Retaining by Roof Cutting - A Case Study [J]. Sustainability, 2019, 11.

[254] He J , Lin C , Li X , et al. Experimental Investigation of Crack Extension Patterns in Hydraulic Fracturing with Shale, Sandstone and Granite Cores [J]. Energies, 2016, 9(12): 1018.

[255] Zhang Z , Li X , He J , et al. Numerical Analysis on the Stability of Hydraulic Fracture Propagation [J]. Energies, 2015, 8(9): 9860-9877.

[256] Zhao C , Xing J , Zhou Y , et al. Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC [J]. Engineering Geology, 2020, 267(9): 105510.

[257] Dong Z, Tang S, Ranjith P G, et al. A theoretical model for hydraulic fracturing through a single radial perforation emanating from a borehole [J]. Engineering Fracture Mechanics, 2018, 196: 28-42.

[258] Daneshy A A. Hydraulic fracture propagation in layered formations [J]. Society of Petroleum Engineers Journal, 1978, 18(01): 33-41.

中图分类号:

 TU452    

开放日期:

 2023-10-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式