- 无标题文档
查看论文信息

题名:

 缓释抗氧型阻化剂抑制煤自燃机理研究    

作者:

 马腾    

学号:

 17120089017    

保密级别:

 绝密    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2021    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 陈晓坤    

导师单位:

 西安科技大学    

第二导师姓名:

 翟小伟    

提交日期:

 2021-06-24    

答辩日期:

 2021-06-03    

外文题名:

 Study on the mechanism of inhibition of coal spontaneous combustion by slow-release antioxidants    

关键词:

 煤自燃 ; 热效应 ; 官能团 ; 气体产物 ; 关联性    

外文关键词:

 Coal spontaneous combustion ; Thermal effect ; Functional groups ; Gas products ; Correlation analysis    

摘要:

煤炭在相当长的一段时间内仍然是我国主导能源和重要战略资源,在国民经济发展中起着重要作用。近年来,陕北侏罗纪煤被大规模开发,随着煤矿开采深度和强度的增加,煤自燃危险性越来越严重,部分重点产煤区域出现大面积采空区及上覆采空区,伴随着各类复杂的煤自燃危害,影响工作面的正常回采。目前,在各类煤自燃防治技术中,针对煤化学结构,从本质上改变煤氧化历程的防灭火材料一直是热点课题。本文将广泛存在于植物体内具有很强自由基消除能力的花青素改性研制出一种缓释抗氧型阻化剂,在煤氧化过程中,持续捕获自由基,阻断基元反应,达到抑制煤自燃的目的。

(1)研制出缓释抗氧型阻化剂,该阻化剂是将分子修饰的花青素嫁接入改性的高吸水树脂。分别采用分子修饰法及辅色法改性从葡萄籽提取的花青素,得出分子改性酰化的花青素消除DPPH自由基能力最强,抗氧化活性得到显著提升且结构变稳定;采用不同含量无机环保性水滑石粘土改性高吸水树脂,得出添加质量比为9%时吸液性能优越且热稳定性最佳。为延长煤氧化过程中化学阻化温度范围,将分子修饰花青素与改性树脂以不同质量比制备成材料进行热效应测试,得出质量比为1:6时配比最优。

(2)针对陕北侏罗纪不同煤层,采用DSC差示扫描量热仪测试煤的热流曲线得出三个特征温度点,其中,T1为各煤样的初始放热温度,T2为热流强度是零的温度,T3为热流强度释放率最大值的温度,这些温度点将煤氧化升温过程划分为四个阶段,结合阻化剂抑制煤放热的效果及经济效益,确定阻化剂最低添加质量比为5%。采用改进KAS等转化率法计算动力学参数,得出阻化煤活化能值高于原煤,说明阻化煤氧化需要更高能量;通过原位漫反射傅里叶变换红外测试,发现阻化致使煤中-CH3/-CH2、CH以及OH消耗变缓,同时消弱了煤活性基团生成C=O的链式反应;采用程序升温试验台测试,发现抑制煤氧化过程中活性位点逐渐增加,致使煤氧化释放碳氧气体以及烯烃气体释放量下降显著,表现出很好阻化效果。

(3)采用动态灰色关联的数学方法,将6类显著变化的官能团与热流强度以及O2、CO、CO2、C2H4与C2H6气体浓度分别建立量化判定指标,得出6类活跃的官能团与热流强度以及释放的气体关联度值较大,密切关联,共同参与影响了煤氧化过程中热流强度以及气体释放。关联度值大小排序确定了煤宏观特性变化规律与微观特征变化之间的贡献程度,得出O2主要攻击脂肪烃,羰基C=O是决定煤自燃过程中热流强度以及气体释放的最关键基团。提出了缓释抗氧型阻化剂结构中邻、间位活性酚羟基强烈释放H+,抑制了煤中含氧活性基团的链式反应,特别是关键基团C=O的生成及分解,酚羟基自身形成稳定的酚基自由基(A·),达到抑制煤自燃过程中气体产生及热量释放的目的。

研究成果对煤自燃阻化技术,具有一定程度的科学和实践意义。

外文摘要:

Coal is still the leading energy and important strategic material in China for a long period of time and plays an important role in the development of national economy. In recent years, Jurassic coal in northern Shaanxi has been exploited on a large scale. With the increase of coal mining depth and intensity, the risk of coal spontaneous combustion becomes more and more serious. Large-area goaf and overlying goaf appear in some key coal producing areas, which are accompanied by various kinds of complex coal spontaneous combustion hazards, which affect the normal mining of working face. At present, in all kinds of coal spontaneous combustion prevention technologies, fire prevention materials that essentially change the oxidation process of coal have always been a hot topic. In this paper, anthocyanins, which are widely found in plants and have strong ability to eliminate free radicals, are modified to develop a sustained-release antioxidant inhibitor. In the process of coal oxidation, the free radicals are continuously captured to block the reaction of the basic element, which can restrain the spontaneous combustion of coal.

(1) A sustained-release antioxidant inhibitor is developed by grafting molecular modified anthocyanins into a modified superabsorbent resin. The anthocyanins extracted from grape seeds were modified by molecular modification and complementary color method, respectively. The results showed that the anthocyanins with molecular modification and acylation had the strongest DPPH radical elimination ability, significantly improved antioxidant activity and stable structure. The superabsorbent resin was modified by inorganic environmental protection hydrotalcite clay with different contents. The results showed that the liquid absorption performance was superior and the thermal stability was the best when the mass ratio was 9%. In order to extend the chemical resistance temperature range in the process of coal oxidation, the thermal effect of the materials prepared by molecular modified anthocyanins and modified resins at different mass ratios was tested, and the optimum ratio was obtained when the mass ratio was 1:6.

(2) For different Jurassic coal seams in Northern Shaanxi, DSC differential scanning calorimetry was used to test the coal heat flow curves, and three characteristic temperature points were obtained. T1 is the initial heat release temperature of each coal sample, T2 is the temperature at which the heat flux intensity is zero, and T3 is the temperature at which the heat flux intensity release rate reaches the maximum value. These temperature points divide the process of coal oxidation and temperature rise into four stages. Combined with the effect of inhibiting coal heat release and economic benefit, the lowest mass ratio of inhibiting agent was determined to be 5%. The improved KAS conversion method was used to calculate the kinetics. It was found that the activation energy of the blocked coal was higher than that of the raw coal, indicating that the blocked coal needed higher energy for oxidation. Through in-situ diffuse reflectance Fourier transform infrared spectroscopy test, it was found that the consumption of -CH3/-CH2, CH and OH in coal was slowed down due to chemical retardation, and weakened the chain reaction of forming C=O from the active group in the coal. Through programmed temperature test, it was found that the inhibitory active sites increased gradually in the process of coal oxidation. As a result, the release of carbon and oxygen gas and olefin gas from coal oxidation decreased significantly, showing a good inhibition effect.

 (3) Using the mathematical method of dynamic grey correlation, the quantitative determination indexes of 6 types of significantly changing functional groups and heat flux intensity, as well as the release concentrations of O2, CO, CO2, C2H4 and C2H6 gases were established respectively. It is concluded that the six kinds of active functional groups are closely related to the heat flow intensity and the gas released, which jointly affect the heat flow intensity and gas release in the process of coal oxidation. The ranking of correlation degree values determines the contribution degree between the change law of coal macroscopic characteristics and the change of coal microscopic characteristics. It is concluded that O2 mainly attacks aliphatic hydrocarbons, carbonyl group C=O is the most important group that determines the heat flux intensity and gas release in the process of coal spontaneous combustion. It has been proposed that the adjacent and intersite active phenolic hydroxyl groups in the structure of the sustained-release antioxidant inhibitor strongly release H+, which inhibits the chain reaction of the oxygen-containing active group in the coal, especially the generation and decomposition of the key group C=O. At the same time, phenolic hydroxyl group forms stable phenolic radical (A·), which can inhibit gas generation and heat release in the process of coal spontaneous combustion.

The research results have a certain degree of scientific and practical significance for the technology of coal spontaneous combustion resistance.

参考文献:

[1]袁亮. 我国煤炭资源高效回收及节能战略研究[M]. 北京:科学出版社, 2017.

[2]王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020,46(2):11-16.

[3]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019,44(7):1949-1960.

[4]王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021,46(1):57-64.

[5]王连聪, 梁运涛, 罗海珠. 我国矿井热动力灾害理论研究进展与展望[J]. 煤炭科学技术, 2018,46(7):1-9.

[6]Engle M, OleaR, O'Keefe J, et al. Direct estimation of diffuse gaseous emissions from coal fires: Current methods and future directions[J]. International Journal of Coal Geology, 2013,112:164-172.

[7]Onifade M, Genc B. Spontaneous combustion of coals and coal-shales(Article)[J]. International Journal of Mining Science and Technology, 2018,28(6):933-940.

[8]Nimaje D, Tripathy D. Characterization of some Indian coals to assess their liability to spontaneous combustion[J]. Fuel, 2016,163:139-147.

[9]Biswal S, Raval S, Gorai A. Delineation and mapping of coal mine fire using remote sensing data – a review[J]. International Journal of Remote Sensing, 2018,40(17): 6499-6529.

[10]Day S, Carras J, Fry R, et al. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation[J]. Environmental Monitoring and Assessment, 2010,166(1-4):529-541.

[11]Raymonda C, Farmera J, Dockerya C. Thermogravimetric Analysis of Target Inhibitors for the Spontaneous Self-Heating of Coal[J]. Combustion Science and Technology, 2016,188(8):1249-1261.

[12]Song Z, Kuenzer C. Spectral reflectance (400-2500 nm) properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: A case study of Wuda coalfield and its surrounding areas, northern China[J]. International Journal of Coal Geology, 2017,171:142-152.

[13]O'Keefe J, Neace E, Lemley E, et al. Old Smokey coal fire, Floyd County, Kentucky:Estimates of gaseous emission rates[J]. International Journal of Coal Geology,

2011,187(2):150-156.

[14]邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016,44(10):1-7.

[15]Xu Y, Wang L, Tian N, et al. Spontaneous combustion coal parameters for the Crossing-Point Temperature (CPT) method in a Temperature–Programmed System (TPS)[J]. Fire Safety Journal, 2017,91:147-154.

[16]Liu L, Zhou F. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining(Article)[J]. International Journal of Coal Geology, 2010,82(1-2):27-36.

[17]高志才. 极易自燃煤层综放面采空区自然发火预测技术研究[D]. 西安:西安科技大学, 2009.

[18]张伟, 张金锁, 许建. 煤炭资源安全绿色高效开发模式研究-以陕北侏罗纪煤田为例[J]. 地域研究与开发, 2016,32(2):139-144.

[19]王德峰. 陕北侏罗纪煤田延安组煤岩层划分对比初步研究[D]. 西安:长安大学, 2017.

[20]王双明. 鄂尔多斯盆地聚煤规律及煤炭资源评价[M]. 北京:煤炭工业出版社, 1996.

[21]王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安:西安科技大学, 2015.

[22]刘世昉. 陕北侏罗纪煤田榆神府区煤层自燃对煤质的影响[J]. 煤田地质与勘探, 1988(2):27-31.

[23]Zhai X, Wang B, Wang K, et al. Study on the Influence of Water Immersion on the Characteristic Parameters of Spontaneous Combustion Oxidation of Low-Rank Bituminous Coal[J]. Combustion Science & Technology, 2019,191(7):1101-1122.

[24]Lei C, Deng J, Cao K, et al. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob[J]. Fuel, 2019,239:297-311.

[25]Wang H, Dlugogorski B, Kennedy E. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modeling[J]. Progress in Energy and Combustion Science, 2003,29(6):487-513.

[26]Shi T, Wang X, Deng J, et al. The mechanism at the initial stage of the room-temperature oxidation of coal[J]. Combustion and Flame, 2005,140(4):332-345.

[27]Shi Q, Qin B, Bi Q, et al. Fly ash suspensions stabilized by hydroxypropyl guar gum and xanthan gum for retarding spontaneous combustion of coal[J]. Combustion Science & Technology, 2018,190(12):2097-2110.

[28]Deng J, Xiao Y, Li Q, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015,157:261-269.

[29]Wang H, DlugogorskiB, Kennedy E. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion and Flame, 2003,134(1-2):107-117.

[30]Chen X, Ma T, Zhai X, et al. Thermogravimetric and infrared spectroscopic study of bituminous coal spontaneous combustion to analyze combustion reaction kinetics[J]. Thermochimica Acta, 2019,676:84-93.

[31]张双全. 煤化学[M]. 徐州:中国矿业大学出版社, 2019.

[32]谢克昌. 煤的结构与反应性[M]. 北京:科学出版社, 2002.

[33]Gabrielyan A, Kazumyan K. The investigation of phenolic compounds and anthocyanins of wines made of the grape variety karmrahyut[J]. Annals of Agrarian Science, 2018,16(2): 160-162.

[34]Unsal V. Natural Phytotherapeutic Antioxidants in the Treatment of Mercury Intoxication-A Review[J]. Advanced Pharmaceutical Bulletin, 2018,8(3):365-376.

[35]杜晓. 落叶松原花青素的分级及精细化利用研究[D]. 成都:四川大学, 2006.

[36]Hammerstone J, Lazarus S, Schmitz H. Procyanidin Content and Variation in Some Commonly Consumed Foods[J]. The Journal of nutrition, 2000,130(8):86-92.

[37]王丹丹, 张万. 蓝莓、紫薯与葡萄籽原花青素提取及其清除自由基能力的比较[J]. 辽东学院学报(自然科学版), 2015,22(3):180-185.

[38]Li Y, Skouroumounis G, Elsey G, et al. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols[J]. Food chemistry, 2011, 129(2):570-576.

[39]Rajakumari R, Volova T, Oluwafemi O, et al. Grape seed extract-soluplus dispersion and its antioxidant activity[J]. Drug Development and Industrial Pharmacy, 2020,46(8): 1219-1229.

[40]Barnaba C,Dellacassa E, Nicolini G, et al. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes[J]. Food research international (Ottawa, Ont.), 2017, 98:20-33.

[41]张娣. 葡萄籽中原花青素抗氧化效果研究进展[J]. 黑龙江生态工程职业学院学报, 2014, 27(2):17-18.

[42]中华人民共和国国家统计局. 国家数据[EB/OL]. http://data.stats.gov.cn.

[43]Coelho J, Filipe R, Robalo M, et al. Recovering value from organic waste materials: Supercritical fluid extraction of oil from industrial grape seeds[J]. Journal of Supercritical Fluids, 2018, 141:68-77.

[44]吴朝霞. 葡萄籽原花青素分离提纯、组分鉴定及抗氧化性研究[D]. 沈阳:沈阳农业大学, 2005.

[45]袁明, 蔺华林, 李克健. 煤结构模型及其研究方法[J]. 洁净煤技术, 2013,19(2): 42-46.

[46]郭德勇, 叶建伟, 王启宝, 等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究[J].煤炭学报, 2016, 41(12):3040-3046.

[47]李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的XRD表征[J]. 燃料化学学报, 2016, 44(7):777-783.

[48]Mustafa B, Alp Y, Burçin, et.al. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction[J]. International Journal of Coal Geology, 2016,163:166-176.

[49]Pan J, Wang S, Ju Y, et al. Quantitative study of the macromolecular structures of tectonically deformed coal using high-resolution transmission electron microscopy[J]. Journal of Natural Gas Science & Engineering, 2015,27(3):1852-1862.

[50]Pan J, Zhu H, Hou Q. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel, 2015, 139:94-101.

[51]缪宇龙, 姚楠, 李小年. 煤官能团的表征方法概述[J]. 浙江化工, 2015, 46(1):43-45.

[52]胡睿, 王琳玲, 路晓华. 固相萃取-气相色谱法测定水中的酚类污染物[J]. 环境科学及技术, 2005,28(1):56-65.

[53]张明旭, 杜传梅, 闵凡飞, 等. 外加能量场对煤中有机硫结构特性影响规律的量子化学研究[J]. 煤炭学报, 2014,39(8):1478-1484.

[54]Xin H, Wang D, Qi X, et al. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra[J]. Fuel Processing Technology, 2014,118(1):287-295.

[55]Mo J, XueY, Liu X, et al. Quantum chemical studies on adsorption of CO2 on nitrogen-containing molecular segment models of coal[J]. Surface Science, 2013,616: 85-92.

[56]邓军, 张嬿妮. 煤自然发火微观机理[M]. 徐州:中国矿业大学出版社, 2015.

[57]王娜, 孙成功, 李保庆. 煤中低分子化合物研究进展[J]. 煤炭转化,1997,20(3):19- 24.

[58]刘艳华, 车得福, 李荫堂, 等. X射线光电子能谱[M]. 北京:化学工业出版社, 1995.

[59]Krichko A, Shpirt M, Glazunov M, et al. Sulfide-molybdenum catalyst for the liquefaction of coal [J]. Solid fuel chemistry, 1988,22(5):57-61.

[60]Kriehko A, Gagarin S. New ideas of coal organic matter chemical structure and mechanism of hydrogenation processes [J]. Fuel, 1990,69(7):885-891.

[61]Mathews J, Alan L. The molecular representations of coal-A review[J]. Fuel, 2012, 96: 1-14.

[62]戚绪尧. 煤中活性基团的氧化及自反应过程[D]. 徐州:中国矿业大学, 2013.

[63]Solomon P, Serio M, Suuberg E. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992,18(2):133-220.

[64]Painter P, Snyder R, Starsinic M, et al. Concerning the Application of FT-IR to the Study of Coal: A Critical Assessment of Band Assignments and the Application of Spectral Analysis Programs[J]. Applied Spectroscopy, 1981,35(5):475485.

[65]Ibarra J, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996,24(6):725735.

[66]Yao S, Zhang K, Jiao K, et al. Evolution of coal structures: FTIR analyses of experimental simulations and naturally matured coals in the Ordos Basin, China[J]. Energy Exploration and Exploitation, 2011,29(1):1-19.

[67]Solomon P, Carangelo R. FTIR analaysis of coal. 1. techniques and determination of hydroxyl concentrations[J]. Fuel, 1982.

[68]Xiong G, Li Y, Jin L, et al. In situ FT-IR spectroscopic studies on thermal decomposition of the weak covalent bonds of brown coal[J]. Journal of Analytical and Applied Pyrolysis, 2015,115:262-267.

[69]Niu Z, Liu G, Yin H. et al. Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR[J]. Fuel, 2016,172:1-10.

[70]Niu Z, Liu G, Yin H, et al.In-situ FTIR study of reaction mechanism and chemical kinetics of a Xundian lignite during non-isothermal low temperature pyrolysis[J]. Energy Conversion and Management, 2016,124:180-188.

[71]Lin R, Ritz G. Studying individual macerals using i.r.microspectrometry, and implications on oil versus gas/condensate proneness and “low-rank” generation[J]. Organic Geochemistry, 1993,20(6):695-706.

[72]Ibarra J, Moliner R, Bonet A. FT-IR investigation on char formation during the early stages of coal pyrolysis[J]. Fuel, 1994,73(6):918-924.

[73]Mastalerz M, Bustin R. Application of reflectance micro-Fourier Transform infrared analysis to the study of coal macerals: an example from the Late Jurassic to Early Cretaceous coals of the Mist Mountain Formation, British Columbia, Canada[J]. International Journal of Coal Geology, 1996,32(1):55-67.

[74]Guo Y, Bustin R. Micro-FTIR spectroscopy of liptinite macerals in coal[J]. International Journal of Coal Geology, 1998,36(3):259-275.

[75]Tahmasebi A, Yu J, Han Y, et al. Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air[J]. Energy & Fuels, 2012,26(6): 3651-3660.

[76]Petersen H. The petroleum generation potential and effective oil window of humic coals related to coal composition and age[J]. International Journal of Coal Geology, 2006,67(4):221-248.

[77]Petersen H, Nytoft H. Oil generation capacity of coals as a function of coal age and aliphatic structure[J]. Organic Geochemistry, 2007,37(5): 558-583.

[78]Sonibare O, Haeger T, Foley S. tructural characterization of Nigerian coals by x-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010,35(12):5347-5353.

[79]Okolo G, Neomagus H, Everson R, et al. Chemical–structural properties of South African bituminous coals: insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel, 2015,158:779-792.

[80]Odeh A. Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks[J]. Journal of Fuel Chemistry and Technology, 2015,43(2): 129-137.

[81]Kotyczka-Morańska M, Tomaszewicz M. Comparison of the first stage of the thermal decomposition of Polish coals by diffuse reflectance infrared spectroscopy[J]. Journal of the Energy Institute, 2018,91(2):240-250.

[82]Zhang Y, Wang J, Xue S, et al. Kinetic study on changes in methyl and methylene groups during low-temperature oxidation of coal via in-situ FTIR[J]. International Journal of Coal Geology, 2016,154-155:155-164.

[83]Akgun F, Arisoy A. Effect of particle size on the spontaneous heating of a coal stockpile[J]. Combustion and Flame, 1994,99(1):137-146.

[84]Deng J, Xiao Y, Li Q, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015,157:261-269.

[85]Xiao Y, Li Q,Deng J, et al. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2017,127(1):1009-1017.

[86]Wang C, Yang Y, Tsai T, et al. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique[J]. Journal of Thermal Analysis & Calorimetry, 2016,126(3):1591-1602.

[87]Garcia P, Hall P, Mondragon F. The use of differential scanning calorimetry to identify coals susceptible to spontaneous combustion[J]. Thermochimica Acta, 1999,336(1): 41-46.

[88]乔玲, 邓存宝, 张勋, 等. 浸水对煤氧化活化能和热效应的影响[J]. 煤炭学报, 2018,43(9):2518-2524.

[89]Pan R, Hu D, Chao J, et al. The heat of wetting and its effect on coal spontaneous combustion[J]. Thermochimica Acta, 2020,691:178711.

[90]Zhang Y, Li Y, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC-FTIR technology[J], Journal of Thermal Analysis & Calorimetry, 2018,131(3):2963-2974.

[91]Zhao T, Yang S, Hu X, et al. Restraining effect of nitrogen on coal oxidation in different stages: Non-isothermal TG-DSC and EPR research[J]. International Journal of Mining Science and Technology, 2020,30(3):387-395.

[92]Ren L, Deng J, Li Q, et al. Low-temperature exothermic oxidation characteristics and spontaneous combustion risk of pulverised coal[J]. Fuel, 2019, 252:238-245.

[93]Zhai X, Ge H, Shu C, et al. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low-temperature oxidation stage[J]. Fuel,2020, 268.

[94]葛新玉. 基于热分析技术的煤氧化动力学实验研究[D]. 合肥:安徽理工大学, 2009.

[95]Scaccia S. TG–FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis, 2013,104:95-102.

[96]Li B, Chen G, Zhang H, et al. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014,118:385-391.

[97]Luo Q, Liang D, Shen H. Evaluation of self-heating and spontaneous combustion risk of biomass and fishmeal with thermal analysis (DSC-TG) and self-heating substances test experiments[J]. Thermochimica Acta, 2016,635:1-7.

[98]Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017,156:454-460.

[99]胡荣祖, 高胜利, 赵凤起, 等. 热分析动力学[M]. 北京:科学出版社, 2008.

[100]Kök M. Recent developments in the application of thermal analysis techniques in fossil fuels[J]. Journal of Thermal Analysis and Calorimetry, 2008, 91(3):763-773.

[101]Kök M. Temperature-controlled combustion and kinetics of different rank coal samples[J]. Journal of thermal analysis, 2005, 79(1):175-180.

[102]Maciejewski M. Computational aspects of kinetic analysis.-Part B: The ICTAC kinetics project-the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield[J]. Thermochimica Acta, 2000,355(1):145-154.

[103]Vyazovkin S. Computational aspects of kinetic analysis.-Part C. The ICTAC kinetics project-the light at the end of the tunnel?[J]. Thermochimica Acta, 2000,355(1):155-163.

[104]Burnham A. Computational aspects of kinetic analysis.-Part D: The ICTAC kinetics project-multi-thermal-history model-fitting methods and their relation to isconversional methods[J]. Thermochimica Acta, 2000, 355(1):165-170.

[105]Roduit B. Computational aspects of kinetic analysis. Part E: The ICTAC Kinetics project-numerical techniques and kinetics of solid state processes[J]. Thermochimica Acta, 2000,355(1):171-180.

[106]Gao J, Ma C, Xing S, et al. Oxidationbehaviours of particulate matter emitted by a diesel engine equipped with a NTP device[J]. Applied Thermal Engineering, 2017,119: 593-602.

[107]Mureddu M, Dessì F, Orsini A, et al. Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis[J]. Fuel, 2018,212:626-637.

[108]Wang D, Das A, LeuteritzA.Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide[J]. Polymer Degradation and Stability, 2010,96(3):285-290.

[109]Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochimica Acta, 2003,404(1):163-176.

[110]Starink M. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral[J]. Journal of Materials Science, 2007,42(2):483-489.

[111]Vyazovkin S, Burnham A, Criado J, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011,520(1-2):1-19.

[112]王兰云, 蒋曙光, 邵昊, 等. 煤自燃过程中自氧化加速温度研究[J]. 煤炭学报, 2011,36(6):989-992.

[113]屈丽娜. 煤自燃阶段特征及其临界点变化规律的研究[D].中国矿业大学(北京), 2013.

[114]Iliyas A, Hawboldt K, Khan F. Thermal stability investigation of sulfide minerals in DSC[J]. Journal of hazardous materials, 2010,178(1-3):814-822.

[115]Kok M. Thermal analysis of Beypazari lignite[J]. Journal of Thermal Analysis, 1997,49(2):617-625.

[116]Ozbas K. Effect of particle size on pyrolysis characteristics of Elbistan lignite[J]. Journal of Thermal Analysis and Calorimetry, 2008,93(2):641-649.

[117]KaljuveeT,Keelman M, Trikkel A, et al. TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples[J]. Journal of Thermal Analysis and Calorimetry, 2013,113(3):1063-1071.

[118]Rotaru A. Thermal analysis and kinetic study of Petroşani bituminous coal from Romania in comparison with a sample of Ural bituminous coal[J]. Journal of Thermal Analysis and Calorimetry, 2012,110(3):1283-1291.

[119]Li Q, Xiao Y,Wang C, et al. Thermokinetic characteristics of coal spontaneous combustion based on thermogravimetric analysis[J]. Fuel, 2019,250:235-244.

[120]Li J, Li Z, Yang Y, et al. Experimental study on the effect of mechanochemistry on coal spontaneous combustion[J]. Powder Technology, 2018,339:102-110.

[121]Adamus A, Šancer J, Guřanov P, et al. An investigation of the factors associated with interpretation of mine atmosphere for spontaneous combustion in coal mines[J]. Fuel Processing Technology, 2011,92(3):663-670.

[122]Zhang D, Cen X, Wang W, et al. The graded warning method of coal spontaneous combustion in Tangjiahui Mine[J]. Fuel, 2020:119635.

[123]Wei D, Du C, Lei B, et al. Prediction and prevention of spontaneous combustion of coal from goafs in workface: A case study[J]. Case Studies in Thermal Engineering, 2020,21: 100668.

[124]文虎, 赵向涛, 王伟峰, 等. 不同煤体自燃指标性气体函数模型特征分析[J]. 煤炭转化, 2020, 43(1):16-25.

[125]Xie J, Xue S, Cheng W, et al. Early detection of spontaneous combustion of coal in underground coal mines with development of an ethylene enriching system[J]. International Journal of Coal Geology, 2011, 85(1):123-127.

[126]Aryansyah, Ibrahim E, Nasir S, et al. A New Prototype Design and Experimental Study for Assessing Spontaneous Coal Combustion[J]. Journal of Ecological Engineering, 2019,20(6):9-17.

[127]Yuan L, Smith A. CO and CO2 emissions from spontaneous heating of coal under different ventilation rates[J]. International Journal of Coal Geology, 2011,88(1):24-30.

[128]Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019,55:208-222.

[129]朱建国, 戴广龙, 唐明云, 等. 水浸长焰煤自燃预测预报指标气体试验研究[J]. 煤炭科学技术, 2020, 48(5):89-94.

[130]Deng J, Xiao Y, Li Q. et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015,157:261-269.

[131]邓军, 李贝, 李珍宝, 等. 预报煤自燃的气体指标优选试验研究[J]. 煤炭科学技术, 2014,42(1):55-59.

[132]Gromyka D, Kremcheev E, Nagornov D. Review of applicability of using indicator gas coefficients for determining the temperature of the place of spontaneous combustion of coal[J]. Journal of Physics: Conference Series, 2019,1384(1):012016.

[133]仲晓星, 王德明, 戚绪尧, 等. 煤自燃倾向性的氧化动力学测定方法研究[J]. 中国矿业大学学报, 2009,38(6):789-793.

[134]陆新晓, 赵鸿儒, 朱红青, 等. 氧化煤复燃过程自燃倾向性特征规律[J]. 煤炭学报, 2018,43(10):2809-2816.

[135]赵婧昱, 张永利, 邓军, 等. 影响煤自燃气体产物释放的主要活性官能团[J]. 工程科学学报, 2020, 42(9):1139-1148.

[136]沈云鸽, 王德明, 朱云飞. 不同自燃倾向性煤的指标气体产生规律实验研究[J]. 中国安全生产科学技术, 2018,14(4):69-74.

[137]Zhao J, Deng J, Chen L, et al. Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation[J]. Energy, 2019,181:136-147.

[138]Guo J, Wen H, Liu Y, et al. Data on analysis of temperature inversion during spontaneous combustion of coal[J]. Data In Brief, 2019,25:104304.

[139]肖旸, 王振平, 马砺, 等. 煤自燃指标气体与特征温度的对应关系研究[J]. 煤炭科学技术, 2008,36(6):47-51.

[140]Li J, Fu P, Zhu Q, et al. A lab-scale experiment on low-temperature coal oxidation in context of underground coal fires[J]. Applied Thermal Engineering, 2018,141:333-338.

[141]许延辉. 煤自燃特性宏观表征参数及测试方法[D]. 西安:西安科技大学, 2014.

[142]Chen X, Li H, Wang Q, et al. Experimental investigation on the macroscopic characteristic parameters of coal spontaneous combustion under adiabatic oxidation conditions with a mini combustion furnace[J]. Combustion Science and Technology, 2018,190(6):1075-1095.

[143]Beamish B, Theiler J. Coal spontaneous combustion: Examples of the self-heating incubation process[J]. International Journal of Coal Geology, 2019, 215:103297.

[144]Rathsack P. Analysis of pyrolysis liquids obtained from the slow pyrolysis of aGerman brown coal by comprehensive gas chromatography massSpectrometry[J]. Fuel, 2017,191:312-321.

[145]Tang X, Liang Y, Dong H, et al. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer[J]. Journal of Spectroscopy, 2014,2014:1-8.

[146]赵永飞, 王俊峰, 刘轩, 等. 褐煤自燃气味特征及挥发性成分研究[J]. 太原理工大学学报, 2021,52(1):61-69.

[147]Wang C,YangY,TsaiY,et al. Spontaneous combustion in six types of coal by using the simultaneous thermal analysis-Fourier transform infrared spectroscopy technique[J]. Journal of Thermal Analysis & Calorimetry, 2016,126(3):1591-1602.

[148]Clemensa A, Mathesona T, Rogers D. Low temperature oxidation studies of dried New Zealand coals[J]. Fuel, 1991,70(2):215-221.

[149]Kong B, Li Z, Wang E, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J]. Process Safety & Environmental Protection: Transactions of the Institution of Chemical Engineers Part B, 2018,119:285-294.

[150]Kong B, Liu Z, Yao Q. Study on the electromagnetic spectrum characteristics of underground coal fire hazardous and the detection criteria of high temperature anomaly area[J]. Environmental Earth Sciences, 2021,80(3).

[151]马砺, 向崎, 任立峰. 阻化煤样的初次/二次氧化特性实验研究[J]. 西安科技大学学报, 2015,35(6):702-707.

[152]刘吉波. 煤炭的阻燃机理分析和氯化盐类汽雾阻化剂的应用[J]. 华北科技学院学报, 2002,4(2):8-10.

[153]崔传发. 采空区瓦斯抽采钻孔参数及注氮防灭火研究[J]. 工矿自动化,2020, 46(3):12-20.

[154]Yu Z, Gu Y, Yang Song, et al. Temperature characteristic of crushed coal under liquid coolant injection: a comparative investigation between CO2 and N2[J]. Journal of Thermal Analysis and Calorimetry, 2020,144(2):363-372.

[155]Sakurovs R, Day S, Weir S. Relationships between the sorption behaviour of methane, carbon dioxide, nitrogen and ethane on coals[J]. Fuel, 2012,97:725-729.

[156]Hou X, Liu S, Zhu Y, et al. Experimental and theoretical investigation on sorption kinetics and hysteresis of nitrogen, methane, and carbon dioxide in coals[J]. Fuel, 2020,268:117349.

[157]Guo Z, Wu B, Chen J, et al. Fire-extinguishing mechanism of CO2 on coal flame combustion in confined space[J]. RanshaoKexue Yu Jishu/Journal of Combustion Science and Technology, 2018,24(1):59-66.

[158]Li S, Zhou G, Wang Y, et al. Synthesis and characteristics of fire extinguishing gel with high waterabsorption for coal mines[J]. Process Safety & Environmental Protection: Transactions of the Institution of Chemical Engineers Part B, 2019,125: 207-218.

[159]张丽丽. 粘土/聚合物复合高吸水性树脂的制备与性能研究[D]. 青岛:山东科技大学, 2012.

[160]王向鹏, 郑云香, 张春晓. TAAB交联的聚丙烯酸-丙烯酰胺吸水树脂的高温耐水解性能[J]. 合成树脂及塑料, 2019,36(2):23-26.

[161]Ren X, Hu X, Xue D, et al. Novel sodium silicate/polymer composite gels for the prevention of spontaneous combustion of coal[J]. Journal of Hazardous Materials, 2019,371:643-654.

[162]Li J, Li Z, Yang Y, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Processing Technology, 2018,171: 350-360.

[163]Li J, Lu W, Cao Y, et al. Method of pre-oxidation treatment for spontaneous combustion inhibition and its application[J]. Process Safety & Environmental Protection: Transactions of the Institution of Chemical Engineers Part B, 2019,131:169-177.

[164]Pandey J, Mohalik N, Mishra R, et al. Investigation of the Role of Fire Retardants in Preventing Spontaneous Heating of Coal and Controlling Coal Mine Fires[J]. Fire Technology, 2015,51(2):227-245.

[165]位爱竹. 煤炭自燃自由基反应机理的实验研究[D]. 徐州:中国矿业大学, 2008.

[166]Wang J, Zhang Y, Wang J, et al. Study on the Chemical Inhibition Mechanism of DBHA on Free Radical Reaction during Spontaneous Combustion of Coal[J]. Energy & Fuels, 2020,34(5):6355-6366.

[167]Li J, Li Z, Yang Y, et al. Inhibitive effects of antioxidants on coal spontaneous combustion[J]. Energy & Fuels, 2017,31(12):14180-14190.

[168]李金亮, 陆伟, 徐俊. 化学阻化剂防治煤自燃及其阻化机理分析[J]. 煤炭科学技术, 2012,40(1):50-53.

[169]Ma L, Wang D, Kang W, et al. Comparison of the staged inhibitory effects of two ionic liquids on spontaneous combustion of coal based on in situ FTIR and micro-calorimetric kinetic analyses[J]. Process Safety and Environmental Protection, 2019,121:326-337.

[170]Cui C, Jiang S,WangK, et al. Effects of ionic liquid concentration on coal low‐temperature oxidation[J]. Energy Science & Engineering, 2019,7(5):2165-2179.

[171]Deng J, Bai Z, Xiao Y, et al. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation[J]. Fuel, 2019, 246:160-168.

[172]To T, Shah K,Tremain P, et al. Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures[J]. Fuel, 2017,202:296-306.

[173]王婕, 张玉龙, 王俊峰, 等. 无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报, 2020,45(12):4132-4143.

[174]刘博. Zn/Mg/Al-LDHs/神府煤复合材料结构与性能研究[D]. 西安:西安科技大学, 2014.

[175]Deng J,Yang Y, Zhang Y, et al. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion[J], Energy, 2018,160:1174-1185.

[176]Dou G, Wang D, Zhong X, et al. Effectiveness of catechin and poly(ethylene glycol) at inhibiting the spontaneous combustion of coal[J]. Fuel Processing Technology, 2014,120(1):123-127.

[177]Xi Z, Jin B, Jin L, et al. Characteristic analysis of complex antioxidant enzyme inhibitors to inhibit spontaneous combustion of coal[J]. Fuel, 2020,267:117301.

[178]Lu Y, Xi Z, Jin B, et al. Reaction mechanism and thermodynamics of the elimination of peroxy radicals by an antioxidant enzyme inhibitor complex[J]. Fuel, 2020,272:117719.

[179]孙达旺. 植物单宁化学[M]. 北京:中国林业出版社, 1922.

[180]徐曼, 陈笳鸿, 汪咏梅, 等. 落叶松原花青素的没食子酰化及其抗氧化活性增强效应[J]. 林产化学与工业, 2010,30(6):55-60.

[181]张钰娟. 基于氨基酸辅色作用的黑莓花青素稳定性研究及其作用机理初步探究[D]. 贵阳:贵州师范大学, 2017.

[182]古明辉, 陈虎, 李希羽, 等. 苹果酸酰化对黑果枸杞花青素稳定性改善的研究[J].食品工业科技, 2017,38(23):58-63.

[183]卢晓蕊, 武彦文, 欧阳杰, 等. 响应面法优化萝卜红色素酯化修饰条件的研究[J].食品工业科技, 2017, 38(23):58-63.

[184]Zhong X, Qin B, Dou G, et al. A chelated calcium-procyanidine-attapulgite composite inhibitor for the suppression of coal oxidation [J]. Fuel, 2018,217:680-688.

[185]Rein M. Copigmentation reactions and color stability of berry anthocyanins[D]. Helsinki: University of Helsinki, 2005.

[186]张亚涛, 张林, 陈欢林. 聚(丙烯酸-丙烯酰胺)/水滑石纳米复合高吸水性树脂的制备及表征[J]. 化工学报, 2008,59(6):1565-1570.

[187]Kaji R, Muranaka Y, Otsuka K, et al. Water absorption by coals: effects of pore structure and surface oxygen. Fuel, 1986,65(2): 288-291.

[188]Svabova M, Weishauptová Z, Přibyl O. Water vapour adsorption on coal. Fuel, 2011,90(5): 1892-1899.

[189]李树刚, 白杨, 林海飞, 等. CH4, CO2 和N2 多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018,43(9):2476-2483.

[190]Shi T, Wang X, Deng J, et al. The mechanism at the initial stage of the room-temperature oxidation of coal [J]. combusition and flame, 2005,140(4):332-345.

[191]Qi X, Li, Q, Zhang H, et al, Thermodynamic characteristics of coal reaction under low oxygen concentration conditions[J]. Journal of the Energy Institute. 2017,90(4):544-555.

[192]王德明. 煤氧化动力学理论及应用[M]. 北京:科学出版社, 2012.

[193]徐精彩. 煤自燃危险区域判定理论[M]. 北京:煤炭工业出版社, 2001.

[194]杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安:西安科技大学, 2015.

[195]Misz M, Fabiańska M, Ćmiel S. Organic components in thermally altered coal waste: Preliminary petrographic and geochemical investigations[J]. International Journal of Coal Geology, 2009,71(4):405-424.

[196]金保升, 周宏仓, 仲兆平, 等. 煤气化多环芳烃初步研究[J]. 东南大学学报, 2005,35(1):100-104.

[197]Clemens A, Matheson T, Rogers D. Low temperature oxidation studies of dried New Zealand coals [J]. Fuel, 1991,70(2): 215-21.

[198]王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014,39(8): 1667-1674.

[199]Zhang Y, Yang C, Li Y, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion[J]. Fuel, 2019,242:287-294.

[200]Fujitsuka H, Ashida R, Kawase M, et al. Examination of low-temperatureoxidation of low-rank coals, aiming at understanding their self-ignition tendency[J]. Energy & Fuels, 2014,28(4): 2402-2407.

[201]葛岭梅, 薛韩玲, 徐精彩, 等. 对煤分子中活性基团氧化机理的分析[J]. 煤炭转化, 2001,24(3):23-28.

[202]Zhang Y, Wang J, Wu J, et al. Modes and kinetics of CO2 and CO production from low-temperature oxidation of coal[J]. International Journal of Coal Geology, 2015,140: 1-8.

[203]Wang H, Dlugogorski B, Kennedy E. Coal oxidation at low temperatures: oxygen consumption, oxidation products, reaction mechanism and kinetic modelling[J]. Progress in Energy and Combustion Science, 2003,29(6):487-513.

[204]Wang Z, Fu Z, Zhang B, et al. Adsorption and desorption on coals for CO2 sequestration[J]. Mining Science and Technology, 2009,19(1):8-13.

[205]Su H, Zhou F, Li J, et al. Effects of oxygen supply on low-temperature oxidation of coal: A case study of Jurassic coal in Yima, China [J]. Fuel, 2017,202:446-454.

[206]Lu P, Liao G, Sun J, et al. Experimental research on index gas of the coal spontaneous at low-temperature stage[J]. Journal of Loss Prevention in the Process Industries, 2004,17(3):243-247.

[207]袁绍. 褐煤自燃特性及提质改性处理影响的机理研究[D]. 杭州:浙江大学. 2018.

中图分类号:

 TD752.2    

开放日期:

 2027-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式