论文中文题名: | 含磷盐细水雾/惰性气体灭火效果研究 |
姓名: | |
学号: | 19220089002 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防科学与工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-10 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Study on fire extinguishing effect lor='red'>of phosphorous salt water mist/inert gas |
论文中文关键词: | Cup-Burner ; 细水雾 ; 磷盐添加剂 ; 惰性气体 ; 协同灭火 |
论文外文关键词: | Cup-Burner ; Water mist ; Phosphate additive ; Inert gas ; Synergistic fire extinguishing |
论文中文摘要: |
火灾作为各类事故中发生最为普遍的灾害之一,不仅造成较大的经济损失和人员伤亡,同时对城市公共安全和工业发展造成了极大的威胁。细水雾作为绿色、环保高效的灭火剂应用广泛,但是普通的纯水细水雾灭火系统仅发挥其物理灭火作用,灭火效率低,因此本文通过Cup-Burner实验装置,研究了纯细水雾、含磷盐细水雾及它们分别与惰性气体复合灭火剂熄灭乙醇火和庚烷火的灭火性能,并通过化学灭火效能模型及协同因子模型来研究不同灭火剂的灭火机制及灭火过程中的相互作用。主要研究内容及结论如下: (1)通过对单一灭火剂纯细水雾及惰性气体的灭火实验研究发现:N2熄灭乙醇火和正庚烷火的最小灭火体积分数分别为34.92%和31.97%,CO2熄灭乙醇火和正庚烷火的最小灭火体积分数分别为24.43%和22.08%,纯细水雾熄灭乙醇火和正庚烷火的最小灭火浓度分别为26.4%和25.1%,它们单一的灭火体积分数与氧化剂流量大小无关。将纯细水雾与两种惰性气体复配发现N2与纯细水雾存在相互促进的协同灭火效应,而CO2与纯细水雾协同效应不明显。 (2)通过对含磷盐添加剂细水雾灭火效果研究发现:含植酸钠、磷酸二氢铵、次磷酸镁、次磷酸钙四类磷盐细水雾均能提高纯细水雾的灭火能力,综合来看灭火效率植酸钠>次磷酸镁>磷酸二氢铵>次磷酸钙。其中含次磷酸镁和磷酸二氢铵细水雾均随着质量分数的增加最小灭火浓度降低,当质量分数为5%时,灭火效果最佳。而含植酸钠细水雾和次磷酸钙细水雾随着质量分数的增加,其最小灭火浓度会先降低后增加且当质量分数为3%时,灭火效果达到最佳。 (3)其次,通过对含添加剂细水雾灭火过程研究发现:各类灭火介质与乙醇和正庚烷火焰作用其火焰形态变化过程有较为明显的区别,但大体均经历了改变火焰颜色-增加火焰高度-火焰出现褶皱部分脱离杯口-火焰完全脱离杯口熄灭四个阶段,火焰根部失稳脱离燃烧杯杯口是火焰熄灭的关键。 (4)为了对单一及复合灭火剂灭火机制进行更为细致的研究,根据热平衡方程得到了能够预测最小灭火浓度模型及量化不同种类磷盐细水雾的化学灭火效能模型和量化不同种类磷盐细水雾与惰性气体复合灭火剂化学灭火效能的模型。根据模型计算得到气液复合灭火剂的灭火效果排序为:含植酸钠细水雾-惰性气体>含次磷酸镁细水雾-惰性气体>含磷酸二氢铵细水雾-惰性气体>含次磷酸钙细水雾-惰性气体与化学灭火作用一致。说明磷盐的加入能提高化学作用进而提升细水雾的灭火效率。且通过对单一灭火剂物理化学作用量化发现,单一灭火剂细水雾、氮气和二氧化碳在熄灭火焰过程中物理热容吸热作用占据主导地位。 (5)通过建立协同因子模型表示复合灭火剂相互之间灭火作用的影响。对于气液复合灭火剂氮气-含磷盐添加剂细水雾复合灭火剂,氮气的加入明显提升了细水雾的灭火效率,随着氮气体积分数的增加,含添加剂细水雾灭火浓度减小,化学作用增强。但是二氧化碳的加入相对于氮气,化学抑制作用提升较小,同时氮气与含磷盐添加剂细水雾表现出正协同作用,而二氧化碳与含磷盐添加剂细水雾协同作用不明显。这是因为在抑制熄灭火焰过程中,二者发挥着不同作用并具有良好的协同性,吸热冷却、稀释氧气、化学抑制3种作用同时存在,互相竞争,最终达到平衡。 |
论文外文摘要: |
As one lor='red'>of the most common disasters in all kinds lor='red'>of accidents, fire not only causes great economic losses and casualties, but also poses a great threat to urban public safety and industrial development. Water mist is widely used as a green, environmentally friendly and efficient fire extinguishing agent, but the ordinary pure water mist fire extinguishing system only exerts its physical fire extinguishing effect, and the fire extinguishing efficiency is low. Therefore, this paper studies the pure water mist through the Cup-Burner experimental device. The fire-extinguishing performance lor='red'>of ethanol fire and heptane fire by compound fire-extinguishing agent with inert gas, phosphorus-containing salt water mist and them respectively, and the fire-extinguishing mechanism lor='red'>of different fire-extinguishing agents and the fire-extinguishing process lor='red'>of fire-extinguishing process were studied through chemical fire-extinguishing efficiency model and synergistic factor model. interaction. The main research contents and conclusions are as follows: (1) Through the fire extinguishing experiments lor='red'>of pure water mist and inert gas as a single fire extinguishing agent, it is found that the minimum extinguishing volume fractions lor='red'>of N2 extinguishing ethanol fire and n-heptane fire are 34.92% and 31.97%, respectively, and CO2 extinguishing ethanol fire and n-heptane fire. The minimum extinguishing volume fractions lor='red'>of pure water mist were 24.43% and 22.08%, respectively, and the minimum extinguishing concentrations lor='red'>of pure water mist extinguishing ethanol fire and n-heptane fire were 26.4% and 25.1%, respectively. Their single extinguishing volume fraction had nothing to do with the flow rate lor='red'>of oxidant. Combining pure water mist and two inert gases, it is found that N2 and pure water mist have a synergistic fire-fighting effect that promotes each other, while CO2 and pure water mist have no obvious synergistic effect. (2) Through the research on the fire extinguishing effect lor='red'>of water mist containing phosphorus salt additives, it is found that the water mist containing four types lor='red'>of phosphorus salts, including sodium phytate, ammonium dihydrogen phosphate, magnesium hypophosphite, and calcium hypophosphite, can improve the fire extinguishing effect lor='red'>of pure water mist. In general, the fire extinguishing efficiency is sodium phytate>magnesium hypophosphite> ammonium dihydrogen phosphate>calcium hypophosphite. Among them, the water mist containing magnesium hypophosphite and ammonium dihydrogen phosphate both decreased with the increase lor='red'>of mass fraction, and the minimum extinguishing concentration decreased. When the mass fraction was 5%, the fire extinguishing effect was the best. With the increase lor='red'>of mass fraction lor='red'>of sodium phytate fine water mist and calcium hypophosphite fine water mist, the minimum fire extinguishing concentration will first decrease and then increase, and when the mass fraction is 3%, the fire extinguishing effect is the best. (3) Secondly, through the research on the fire extinguishing process lor='red'>of fine water mist containing additives, it is found that there are obvious differences in the flame shape change process lor='red'>of various fire extinguishing media and ethanol and n-heptane flames, but generally they have experienced the change lor='red'>of flame color-increased flame. Height - the wrinkled part lor='red'>of the flame is separated from the cup mouth - the flame is completely separated from the cup mouth and extinguished in four stages. (4) In order to conduct a more detailed study on the fire extinguishing mechanism lor='red'>of single and compound fire extinguishing agents, according to the heat balance equation, a chemical fire extinguishing efficiency model that can predict the minimum fire extinguishing concentration and quantify the water mist lor='red'>of different types lor='red'>of phosphorus salts and quantify different types lor='red'>of phosphorus salts are obtained. Modeling lor='red'>of chemical fire-extinguishing efficacy lor='red'>of water mist and inert gas composite fire extinguishing agents. According to the model calculation, the fire extinguishing effect lor='red'>of the gas-liquid composite fire extinguishing agent is ranked as follows: water mist containing sodium phytate-inert gas>water mist containing magnesium hypophosphite-inert gas>water mist containing ammonium dihydrogen phosphate-inert gas>containing Calcium hypophosphite water mist-inert gas is consistent with chemical fire extinguishing effect. It shows that the addition lor='red'>of phosphorus salt can improve the chemical effect and then improve the fire extinguishing efficiency lor='red'>of water mist. And through the quantification lor='red'>of the physical and chemical effects lor='red'>of a single fire extinguishing agent, it is found that the single fire extinguishing agent water mist, nitrogen and carbon dioxide play a dominant role in the physical heat capacity and heat absorption in the process lor='red'>of extinguishing the flame. (5) By establishing a synergistic factor model, the influence lor='red'>of the fire-extinguishing effect lor='red'>of the compound fire extinguishing agents on each other is represented. For the gas-liquid composite fire extinguishing agent nitrogen-phosphorus-containing salt additive water mist composite fire extinguishing agent, the addition lor='red'>of nitrogen significantly improves the fire extinguishing efficiency lor='red'>of the water mist. Enhanced chemical action. However, compared with nitrogen, the addition lor='red'>of carbon dioxide has a small increase in chemical inhibition. At the same time, nitrogen and phosphorus-containing salt additive fine water mist show a positive synergistic effect, while carbon dioxide and phosphorus-containing salt additive water mist synergy is not obvious. This is because in the process lor='red'>of suppressing the flame, the two play different roles and have good synergy. The three effects lor='red'>of endothermic cooling, oxygen dilution, and chemical suppression exist simultaneously, compete with each other, and finally reach a balance. |
参考文献: |
[1]何邦瑗. 四川:筑牢森林防火人民防线[N]. 中国应急管理报, 2021-11-09. [2]朱磊磊. 1-10月全市共发生火灾2758起[N]. 江门日报, 2021-11-06. [3]时言. 防患于未“燃”[N]. 兵团日报(汉), 2021-11-09. [4]范维澄, 刘乃安. 火灾安全科学一个新兴交叉的工程科学领域[J]. 中国工程科学, 2001(01): 6-14. [5]周恒宇. 筑牢“防火墙” 防患于未“燃”[N]. 陕西日报, 2021-11-09. [6]李子涵. 将使命放在心上 用行动践行誓言[N]. 中国应急管理报, 2021-11-06. [7]刘静, 赵乘寿, 冒龚玉, 等. 我国哈龙替代灭火技术的现状及发展趋势[J]. 中国西部科技, 2010,9(34): 8-10. [8]司戈, 何嘉兵. 哈龙替代品研究的最新进展[J]. 消防技术与产品信息, 2002(09): 76-79. [9]刘江虹, 金翔, 黄鑫. 哈龙替代技术的现状分析与展望[J]. 火灾科学, 2005(03): 160-166. [10]李申. 细说哈龙灭火剂[J]. 上海消防, 1999(04): 38. [11]王明武. 美国哈龙灭火剂替代品研究进展[J]. 化学工程与装备, 2017(05): 205-207. [12]余鹏飞, 朱挺. 哈龙替代灭火剂的研究与使用[J]. 化学工程与装备, 2016(09): 290-292. [13]吴海涛, 柳华, 李志强, 等. 哈龙替代灭火剂环保及毒性研究进展[J]. 航空维修与工程, 2020(07): 37-40. [14]范如佳. 若干哈龙替代粉末灭火剂的火掐抑制机理研究[D]. 中国科学技术大学, 2021. [15]黄俊山. 新型灭火剂的性能研究[J]. 齐齐哈尔大学学报(自然科学版), 2011,27(05): 93-94. [16]陈智伟. 哈龙替代灭火剂介绍[J]. 科技信息, 2011(12): 397. [17]杨惠玲, 乔玲. 从哈龙替代物浅析绿色消防技术[J]. 科技信息, 2009(22): 676-684. [18]徐武. 若干哈龙替代物抑制碳氢火焰的机理研究[D]. 中国科学技术大学, 2017. [19]贺艳漫, 丁瑞金. 跨入第二代哈龙替代物[J]. 消防技术与产品信息, 2013(07): 97-98. [20]米欣, 张杰, 王晓文. 新型洁净灭火剂Novec1230介绍及应用[J]. 消防技术与产品信息, 2012(04): 32-34. [21]肖建华. 哈龙淘汰与环保替代技术[J]. 消防技术与产品信息, 2010(03): 6-9. [22]吴俊. 新时期绿色消防技术的发展探析[J]. 硅谷, 2013,6(11): 21-22. [23]陈亚红, 张树海, 奥成钢. 哈龙替代灭火剂的现状和发展趋势[J]. 中北大学学报(自然科学版), 2007(04): 341-345. [24]王晔. 洁净灭火剂日趋成熟[J]. 消防技术与产品信息, 2007(05): 62-63. [25]王冬娜, 刘志超. 哈龙替代产品的开发及其应用[J]. 工业安全与环保, 2007(05): 39-41. [33]黄鑫, 刘江虹, 廖光煊, 等. 细水雾扑灭油池火的临界条件[J]. 燃烧科学与技术, 2006(04): 323-328. [34]余明高, 郭明, 李振峰, 等. 细水雾熄灭障碍物火的实验研究和数值模拟[J]. 火灾科学, 2008(03): 159-164. [36]刘江虹, 廖光煊, 厉培德, 等. 受限空间中细水雾灭火的准稳态模型[J]. 燃烧科学与技术, 2003(04): 381-385. [37]丛北华. 多组分细水雾与扩散火焰相互作用的模拟研究[D]. 中国科学技术大学, 2006. [41]崔玉周. 细水雾灭火技术的研究现状及其在地铁消防中应用前景分析[J]. 水利与建筑工程学报, 2009,7(01): 100-103. [43]戴晶. 高压细水雾灭火系统在数据中心机房中的应用探讨[J]. 建筑施工, 2021,43(08): 1676-1679. [44]吴常军. 细水雾灭火系统在电子信息机房中的应用[J]. 安徽建筑, 2016,23(04): 219-221. [45]韦艳文, 姚效刚, 弋建州, 等. 军用舰船细水雾灭火系统研究[J]. 机械制造与自动化, 2006(02): 75-78. [50]景晓燕, 肖春红, 张密林. 绿色清洁灭火剂的研究现状[J]. 应用科技, 2001,28(001): 37-38. [50]景晓燕, 肖春红, 张密林. 绿色清洁灭火剂的研究现状[J]. 应用科技, 2001,28(001): 37-38. [51]张文成, 黄寅生. 一种水基灭火剂配方的实验研究[J]. 消防技术与产品信息, 2012,000(011): 47-49. [53]丛北华, 毛涛, 廖光煊. 含NaCl添加剂细水雾对不同燃料池火灭火性能的实验研究[J]. 热科学与技术, 2004,3(1): 6. [56]况凯骞, 从北华, 廖光煊. 含氯化亚铁添加剂细水雾灭火有效性的实验研究[J]. 火灾科学, 2005,14(001): 21-28. [57]余明高, 郝强, 段玉龙, 等. 含氯化钴添加剂细水雾灭火有效性的实验研究[J]. 火灾科学, 2007(02): 18-22. [59]段佳林, 黄寅生, 张辉建, 等. 次磷酸盐对水系灭火剂效能的影响研究[J]. 消防科学与技术, 2018,37(09): 1245-1248. [60]赵乘寿, 宫聪, 汪鹏, 等. 含磷酸二氢铵细水雾灭火有效性研究[J]. 消防科学与技术, 2011,30(09): 822-824. [63]朱长江. 新型无卤膨胀型阻燃剂的制备及其阻燃聚丙烯性能研究[D]. 中国科学技术大学, 2018. [64]王冬. 含磷氮阻燃单体和功能化二氧化硅的设计与阻燃不饱和聚酯的研究[D]. 中国科学技术大学. [65]赵霏越,富艳春.壳聚糖/植酸钠/纳米MgO复合涂层的组装层数对木材阻燃性能的影响[J].家具,2021,42(02):48-51. [68]余明高, 徐俊, 于水军, 等. 含复合添加剂细水雾熄灭煤油池火实验[J]. 煤炭学报, 2007(3): 4. [71]丛北华, 廖光煊. 水蒸气抑制熄灭杯式燃烧器扩散火焰的机理[J]. 中国科学(技术科学), 2009,039(005): 987-993. [73]刘皓, 商靠定. K_2C_2O_4溶液抑制甲烷-空气扩散火焰试验研究[J]. 中国安全科学学报, 2016,26(8): 46-51. [74]刘皓, 张天巍, 夏登友, 等. 水与K2CO3的协同灭火作用[J]. 燃烧科学与技术, 2018,24(1): 6. [76]王宗莹. 含铁基添加剂超细水雾的灭火有效性及其灭火机理研究[D]. 郑州大学, 2019. [77]梁天水, 王宗莹, 高坤, 等. 基于cupburner的含铁基添加剂超细水雾灭火有效性分析[J]. 化工学报, 2019,70(3): 7. [79]张先来. 化学灭火剂和物理灭火剂之间的协同作用[J]. 消防技术与产品信息, 1997(11): 37-40. [80]周彪, 周晓猛, 赵智, 等. 一溴三氟丙烯-氮气复合灭火介质灭火性能研究[J]. 安全与环境学报, 2010,10(3): 162-166. [81]卢大勇, 陈涛, 周晓猛. 7FA临界灭火浓度的测定及7FA/BTP协同灭火作用研究[J]. 安全与环境学报, 2015,15(004): 117-121. [83]赵洪海. 复合气体灭火剂协同灭火性能研究[J]. 消防科学与技术, 2017,36(2): 5. [84]梁天水, 刘德智, 王永锦, 等. 全氟三乙胺和全氟己酮混合气体的灭火效果研究[J]. 化工学报, 2020,71(7): 6. |
中图分类号: | X932 |
开放日期: | 2023-06-20 |