论文中文题名: | 中国电力供应链碳减排策略选择研究 |
姓名: | |
学号: | 22302230170 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 125600 |
学科名称: | 管理学 - 工程管理 |
学生类型: | 硕士 |
学位级别: | 工程管理硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 供应链管理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-17 |
论文答辩日期: | 2025-06-03 |
论文外文题名: | Research on the Selection of Carbon Emission Reduction Strategies in China's Electric Power Supply Chain |
论文中文关键词: | 电力供应链 ; 碳减排 ; Stackelberg博弈 ; 算例仿真 ; 系统动力学 |
论文外文关键词: | power supply chain ; carbon emission reduction ; Stackelberg game ; example simulation ; system dynamics |
论文中文摘要: |
在全球气候治理深化与“双碳”目标约束下,电力供应链作为能源系统的关键环节,其减排路径优化成为重要议题。国际能源署(IEA)数据显示,电力行业碳排放占全球总量的40%,而电力供应链协同减排存在显著潜力。本文针对电力供应链企业的单独减排、内部合作减排及基于合同能源管理模式与节能服务公司合作减排三种策略,探讨其减排效果与选择机制。 本文在碳交易机制背景下,首先基于理论角度构建了Stackelberg博弈模型来研究电力供应链的三种减排策略的减排效果,然后通过算例仿真对博弈模型得出的主要结论进行了验证并做了多组参数的敏感性检验,最后为了增强本文结论的可靠性、弥补博弈算例仿真模拟数值的不足,建立了基于J公司真实数据的电力供应链碳减排的系统动力学模型进行不同减排策略下减排效果的情景分析。 研究结果表明:(1)发电商和售电商合作减排以及电力供应链企业与第三方节能服务公司合作减排,这两种合作减排策略都优于单独减排。(2)根据碳减排率和利润的标准,电力供应链减排策略从高到低依次排序为:电力供应链与节能服务公司合作减排>发电商和售电商合作减排>单独减排。(3)发电商与售电商合作减排比单独减排产生的总减排量平均提升12%,节能服务公司参与的合作减排比发电商和售电商合作减排产生的总减排量平均提升7%。据此建议电力供应链企业应该加强碳减排合作,通过降低需求预测误差来优化减排效果;电力供应链企业还应该深化与节能服务公司减排合作,把合同能源管理模式纳入公司低碳化转型战略的实施方案。 本文融合了博弈论和系统动力学理论,把节能服务公司引入了电力供应链合作减排研究,把供应链合作减排策略模型拓展至电力行业,丰富了供应链合作减排策略研究,并为电力供应链碳减排策略选择提供了科学决策依据。 |
论文外文摘要: |
In the context of global climate governance and the constraints imposed by "dual carbon" goals, optimizing the emission reduction pathways of the power supply chain—a critical component of the energy system—has become a significant challenge. According to data from the International Energy Agency (IEA), the power sector accounts for approximately 40% of global carbon emissions, underscoring the substantial collaborative emission reduction potential within the power supply chain. This study examines the emission reduction impacts and selection mechanisms of three strategies for power supply chain enterprises: independent emission reduction, internal collaborative emission reduction, and collaborative emission reduction with energy service companies based on the contract energy management model. Within the framework of the carbon trading mechanism, this paper theoretically develops a Stackelberg game model to analyze the implementation outcomes of the three emission reduction strategies in the power supply chain. Subsequently, it validates the key conclusions of the game model through case simulations and conducts sensitivity analyses across multiple parameter sets. To enhance the robustness of the findings and address the limitations of numerical simulations in the game case, a system dynamics model of carbon emission reduction in the power supply chain is constructed using real data from Company J, enabling scenario-based evaluations of emission reduction effects under varying strategies. The research findings reveal that: (1) Both collaborative emission reduction approaches—between power generators and power sellers, and between power supply chain enterprises and third-party energy service companies—are more effective than independent emission reduction. (2) Based on carbon emission reduction rates and profitability, the ranking of power supply chain emission reduction strategies from most to least effective is as follows: collaboration between the power supply chain and energy service companies > collaboration between power generators and power sellers > independent emission reduction. (3) On average, the total emission reduction achieved through collaboration between power generators and power sellers exceeds independent emission reduction by 12%, while the total emission reduction achieved through collaboration involving energy service companies surpasses that of generator-seller collaboration by an additional 7%. Based on these insights, it is recommended that power supply chain enterprises strengthen carbon emission reduction cooperation, optimize emission reduction outcomes by minimizing demand prediction errors, and deepen partnerships with energy service companies, integrating the contract energy management model into their low-carbon transformation strategies. This paper combines game theory and system dynamics theory, introduces energy service companies into the research of power supply chain cooperative emission reduction, and extends the supply chain cooperative emission reduction strategy model to the power industry, which enriches the research of supply chain cooperative emission reduction strategy and provides scientific decision-making basis for the selection of carbon emission reduction strategy in power supply chain. |
参考文献: |
[2]马鹏,卢雨佳.碳税政策下考虑三重底线的低碳供应链优化决策及协调[J].南京信息工程大学学报,2024,16(04):573-586. [4]刘杰,王煜鑫,张景宣.换电模式下考虑政府补贴和权力结构的电动汽车供应链减排决策研究[J].工业工程与管理,2024,29(06):141-152. [5]朱晨,马静,李犟.混合碳政策下的供应链联合减排决策与优化[J].系统管理学报,2024,33(05):1204-1217. [6]姜力文,唐金环,饶卫振,等.碳中和视角下奖惩机制对逆向供应链碳减排与回收价格的影响[J].管理工程学报,2024,38(02):121-138. [7]邱俊,杨玉香.考虑低碳政策和权力结构的低碳供应链减排决策比较研究[J].计算机集成制造系统,2024,30(07):2566-2587. [9]张玉豪,张涛.碳交易和绿色补贴政策下的低碳供应链最优决策与协调[J].技术经济,2024,43(04):159-176. [10]王红春,卢意,宁旭.考虑股权合作的逆向供应链减排决策[J].会计之友,2023,(23):67-73. [11]王茜薇.政府补贴对供应链企业低碳减排和绩效提升的有效性研究[J].商业经济研究,2023,(18):153-157. [12]王道平,殷悦,朱梦影.基于不同碳配额交易路径的供应链减排决策研究[J].运筹与管理,2024,33(05):35-41. [14]王玉燕,林飞,申亮.低碳合作供应链的内部合作协调与外部补贴激励机制设计[J].经济研究,2024,59(06):164-183. [16]潘晨,杨柏,冯鹤林,等.碳交易制度下绿色供应链不同成本分担合同选择[J].系统工程学报,2023,38(04):555-576. [20]王心,王雅生,张书华,等.区块链技术下绿色供应链减排策略与智能合约[J].计算机科学与探索,2024,18(01):265-278. [21]宋华,韩梦玮,于亢亢,等.数字技术如何助力供应链碳减排——基于国网浙江电力的案例研究[J].南开管理评论,2024,27(01):27-41. [22]宋德勇,汪涌,胡杨.外资持股的供应链低碳化效应研究[J].中国工业经济,2023,(11):155-173. [23]李婷,李远勤.绿色信贷下供应链低碳策略的演化博弈分析——碳减排挂钩贷款视角[J].上海大学学报(自然科学版),2023,29(03):407-420. [24]曹细玉,覃艳华,余小艳.考虑制造商资金约束的双渠道供应链定价与碳减排决策研究[J].华中师范大学学报(自然科学版),2023,57(06):859-869. [25]魏东.不同碳减排政策下制造业供应链企业碳减排策略研究[D].重庆大学,2023. [26]张娜,张克勇.碳限额下考虑风险规避的低碳供应链联合减排决策研究[J].工程数学学报,2023,40(04):576-590. [28]林强,赵震铮,霍宝锋,等.考虑碳交易政策的零售商合作减排策略:融资减排或技术减排[J].系统工程理论与实践,2024,44(03):986-1005. [30]曹柬,陈锦义,马修岩.考虑合同“双碳”服务的供应链减排策略动态协调[J].控制与决策,2025,40(03):755-764. [31]孙嘉轶,杨露,滕春贤.政府补贴与股权合作下低碳闭环供应链决策与协调[J].系统工程学报,2023,38(04):540-554. [32]王道平,常敬雅,郝玫.碳交易政策下基于技术投资的供应链纵向合作动态减排研究[J].控制与决策,2024,39(05):1654-1664. [33]邢鹏,杨畅.“双积分”政策下考虑区块链技术的供应链减排策略研究[J].工业技术经济,2023,42(09):75-85. [38]许海娟,叶春明,李芳.碳减排成本分担下的供应链运营决策分析[J].复杂系统与复杂性科学,2024,21(04):81-90. [39]张川,田雨鑫,崔梦雨.电动汽车动力电池制造商混合渠道回收模式选择与碳减排决策[J].中国管理科学,2024,32(06):184-195. [40]江晓壮,孙立成.权力结构变动下双向技术溢出和碳转移对供应链碳减排水平影响[J].科技管理研究,2023,43(17):209-217. [45]白世贞,吴东秀,鄢章华.不同资本结构下节能服务公司参与供应链减排合作策略研究[J].运筹与管理,2023,32(07):7-14. [46]廖诺,梁佩仪,贺勇,等.能源费用托管型合同下嵌入视角的供应链合作减排决策研究[J]中国管理科学,2024,32(05):113-121. [47]郭雨,白春光,张璐,郑月龙.碳交易政策下节能服务公司参与减排的合同选择[J].工程管理科技前沿,2022,41(02):17-25. [48]樊文平,王旭坪,刘名武,许茂增.不同减排合同下企业间纵向持股对供应链决策的影响[J].管理工程学报,2021,35(01):189-200. [49]陈彬嘉,季春艺,谭子恺.动态碳配额交易政策下高耗能企业减排方式选择研究[J].运筹与模糊学, 2024, 14(2):574-591. [50]徐陆缘,黄思奕,闫展,等.“双碳”目标下电力供应链运营的影响因素分析[J].物流工程与管理,2024,46(01):75-77. [51]李大为.基于电力供应链的节能减排策略研究[J].大众用电,2021,36(10):26-27. [52]黄凤莲.不同交易模式下考虑火力发电企业减排努力的电力供应链决策及协调研究[D].江苏大学,2021. [62]鲍熊剑涛,赵文会,宋亚君,等.可再生能源配额制与碳排放权交易并行实施的政策效果[J].运筹与管理,2022,31(04):129-135. [63]赵文会,高姣倩,宋亚君,等.基于供应链的电力行业碳减排投资决策[J].科技管理研究,2017,37(04):242-249+259. [64]魏鹏.碳达峰背景下我国制造业低碳发展问题与政策仿真研究[D].中共江苏省委党校,2022. [65]敬超,李姗珊.基于Stackelberg博弈定价的电力需求响应激励方法[J].计算机工程与设计,2023,44(12):3729-3737. [66]中国电力企业联合会.全球典型国家电力经济发展报告[M].中国水利水电出版社:201812.142. [67]谷桐.山东省制造业供应链低碳减排决策与路径设计研究[D].山东理工大学,2024. [68]魏鹏.碳达峰背景下我国制造业低碳发展问题与政策仿真研究[D].中共江苏省委党校,2022. [69]曹柬,陈锦义,马修岩.考虑合同“双碳”服务的供应链减排策略动态协调[J].控制与决策,2025,40(03):755-764. [70]金辉,张红旗,张传富,等.复杂网络中基于QRD的主动防御决策方法研究[J].信息网络安全,2020,20(05):72-82. [72]廖诺,卢晨,贺勇.碳交易政策下节能服务公司参与供应链合作减排策略研究[J].中国管理科学,2021,29(02):160-167. [73]綦勇,侯泽敏,向涛.减排技术的跨国转让与环境政策选择——基于Stackelberg竞争的博弈模型[J].产经评论,2015,6(03):54-66. [74]吴小雨.考虑低碳服务嵌入的Y企业供应链合作减排决策研究[D].哈尔滨理工大学,2024. [75]秦康平.节能减排背景下电力需求预测方法的研究[D].上海交通大学,2010. [76]曾小雪.电力供应链碳减排方式选择研究[D].北京交通大学,2017. [78]陈旭,刘炎明.空间功能分工对我国城市工业减排的影响[J].沈阳大学学报(社会科学版),2025,27(01):16-27. [80]任世华.“双碳”目标对煤炭行业影响的传导机制及产能布局研究[D].中国矿业大学(北京),2023. [81]吴菲阳.数字经济赋能无锡城市绿色低碳发展的影响机制与路径研究[J].现代营销(上旬刊),2024,(11):118-120. [83]曹细玉,吴晓志.碳税政策下的双渠道供应链碳减排技术创新协作策略[J].华中师范大学学报(自然科学版),2020,54(05):898-909. |
中图分类号: | F274 |
开放日期: | 2025-06-17 |