- 无标题文档
查看论文信息

论文中文题名:

 GNSS精密卫星钟差估计及钟差综合研究    

姓名:

 王浩存    

学号:

 19210210055    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 精密卫星钟差估计    

第一导师姓名:

 陈宪冬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on GNSS precision satellite clock error and clock combination    

论文中文关键词:

 近实时钟差估计 ; 时间传递 ; K-means++聚类算法 ; 钟差综合    

论文外文关键词:

 Near Real-Time Clock Difference Estimation ; Time Transfer ; K-means++ Clustering Algorithm ; Clock Combinaton    

论文中文摘要:

       GNSS精密卫星单点定位技术(Precise Point Positioning,PPP)仅使用单台接收机便可获得全球范围内高精度的测站坐标、接收机钟差和大气延迟等多种信息,因此广泛应用于精密定位、导航、授时、大气监测等领域中。卫星钟差是制约精密单点定位精度的重要因素,但目前的卫星钟差产品仍存在以下问题:传统卫星钟差产品由于采用单日解算策略,天界处钟差相位模糊度的不重叠导致发生跳跃,使用这种钟差产品进行时间传递获得的钟差序列也会存在明显的天间跳变现象;预报卫星钟差产品虽然可以实时获取但精度不能满足高精度精密卫星单点定位的需求;各分析中心发布的钟差产品也存在粗差和部分历元卫星钟差缺失的问题。基于以上存在的问题,本文主要研究内容及成果如下:

     (1) 针对连续时间传递中天界处的跳变现象,采用一种基于多天观测数据估计的连续钟差产品解决。使用该连续钟差产品进行连续时间传递,天界处最大跳变仅为0.034ns,有效削弱了时间传递的天间跳变。

    (2) 针对近实时钟差估计计算耗时问题,提出了一种基于K-mean++聚类算法的全球跟踪站网选站策略。该选站策略不仅考虑了跟踪站的全球均匀分布而且顾及跟踪站的观测数据质量,仅需50个跟踪站便可解算出精度为0.016ns的事后卫星钟差产品。针对IGS超快产品(IGS Ultra-rapid products,IGU)预报钟差精度低,实测钟差发布时延长的问题,采用一种基于状态空间阈(State Space Representation,SSR)改正的近实时钟差产品,时延仅为1h,钟差精度优于0.09ns。使用该钟差产品进行PPP实验并与IGS周解坐标进行对比,GPS相位残差RMS值优于1cm,GALILEO相位残差RMS值在1cm左右。

    (3)针对钟差产品不可避免的会出现粗差和部分历元卫星钟差缺失的问题,对各分析中心钟差产品统一时间基准并剔除钟差产品中的粗差,使用多角帽定权法对各分析中心钟差产品进行加权平均生成一种可靠性更高的综合钟差产品。计算的GPS综合钟差与IGS最终 卫星钟差(IGS Final products,IGS)二次差的STD值优于40ps,GALILEO综合钟差与参与综合的钟差产品STD值均优于100ps。

    (4)东京海洋大学高须知二教授研发的开源软件GPSTools(GT)仅能对GPS卫星系统进行数据处理。本文对GT软件进行了二次开发,增加了计算GALILEO卫星系统、钟差二次差对比、跟踪站网选站等功能,并优化部分数据处理程序。

论文外文摘要:

    GNSS Precise Point Positioning ( PPP ) technology only uses a single receiver to obtain high-precision station coordinates, receiver clock offset and atmospheric delay in the global range. Therefore, it is widely used in precision positioning, navigation, timing, atmospheric monitoring and other fields. Satellite clock error is an important factor restricting the precision point positioning accuracy, but the current satellite clock error products still have the following problems : the traditional satellite clock error products due to the use of one-day solution strategy, the clock phase ambiguity at the boundary does not overlap lead to jump, the clock sequence obtained by using this clock error product for time transfer will also have obvious sky jump phenomenon ; although the prediction satellite clock error products can be obtained in real time, the accuracy cannot meet the needs of high precision satellite single point positioning. The clock error products released by each analysis center also have the problems of gross error and missing clock error of some epoch satellites. Based on the above problems, the main research contents and results of this paper are as follows :

    (1) Aiming at the sky boundary jump phenomenon in continuous time transfer, a continuous clock error product based on multi-day observation data estimation is adopted. Using this continuous clock error product for continuous time transfer, the maximum jump at the sky boundary is only 0.034 ns, which effectively weakens the sky jump of time transfer.

    (2) Aiming at the time-consuming problem of near-real clock error estimation, a global tracking station network selection strategy based on K-mean + + clustering algorithm is proposed. The station selection strategy takes into account not only the global uniform distribution of the tracking station but also the quality of the observation data of the tracking station. Only 50 tracking stations can be used to calculate the post-satellite clock product with a precision of 0.016 ns. Aiming at the problem of low prediction accuracy of IGS Ultra-rapid products ( IGU ) and long release time of measured clock error, a near-real clock error product based on state space representation ( SSR ) correction is adopted. The delay is only 1 h, and the clock error accuracy is better than 0.09 ns. The PPP experiment was carried out using the clock error product and compared with the IGS circumferential solution coordinates. The RMS value of GPS phase residual is better than 1 cm, and the RMS value of GALILEO phase residual is about 1 cm.

    (3) In view of the inevitable problems of gross error and missing of some epoch satellite clock errors in clock error products, the time benchmark of clock error products in each analysis center is unified and the gross error in clock error products is eliminated. The multi-angle cap weighting method is used to weighted average the clock error products in each analysis center to generate a comprehensive clock error product with higher reliability. The STD of GPS integrated clock error and IGS final products ( IGS ) secondary error is better than 40ps, and the STD of GALILEO integrated clock error and integrated clock error products are better than 100ps.

    (4) The open-source software GPSTools ( GT ) developed by Professor Tomoji Takasu of Tokyo Ocean University can only process the data of GPS satellite system. In this paper, the secondary development of GT software is carried out, including the calculation of GALILEO satellite system, the comparison of clock error quadratic difference, and the selection of tracking station network, and some data processing procedures are optimized.

参考文献:

参考文献

[1] 宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8.

[2] 李星星. GNSS 精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.

[3] 赵静, 曹冲. GNSS系统及其技术的发展研究[J]. 全球定位系统, 2008, 33(5): 27-31.

[4] Hein G W . From GPS and GLONASS via EGNOS to Galileo – Positioning and Navigation in the Third Millennium[J]. Gps Solutions, 2000, 3(4): 39-47.

[5] Odijk D , Nadarajah N , Zaminpardaz S , et al. GPS, Galileo, QZSS and IRNSS differential ISBs: estimation and application[J]. Gps Solutions, 2017, 21(2): 439-450.

[6] 杨元喜, 李金龙, 王爱兵,等. 北斗区域卫星导航系统基本导航定位性能初步评估[J]. 中国科学:地球科学, 2014, 44(1): 72-81.

[7] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510.

[8] 雷雨. GPS载波相位时间比对数据处理[D]. 西安: 中国科学院研究生院(国家授时中心), 2010.

[9] 广伟. GPS PPP时间传递技术研究[D]. 西安: 中国科学院研究生院(国家授时中心), 2012.

[10] Ray J , Senior K . IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation[J]. Metrologia, 2003, 40(3): 270-288.

[11] Zhang X , Li X X , Fei G . Satellite clock estimation at 1 Hz for realtime kinematic PPP applications[J]. Gps Solutions, 2011, 15(4): 315-324.

[12] IGS. Products[DB/OL]. https://igs.org/products/#about, 2022.

[13] 郑涛, 徐爱功, 唐龙江,等. 基于非差观测量的BDS+GPS近实时钟差估计[J]. 测绘通报, 2019(5): 39-43+76.

[14] Kouba J . IGS Analysis Center Workshop[DB/OL]. IGS Website, 1993.

[15] Zumberge J F , Heflin M B , Jefferson D C , et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research Solid Earth, 1997, 102(B3): 5005-5017.

[16] Muellerschoen R J, Bertiger W I, Lough M F. Results of an internet-based dual-frequency global differential GPS system[C]//Proceedings of the IAIN World Congress and the 56th Annual Meeting of The Institute of Navigation (2000). San Diego, CA, 2000: 796-802.

[17] Hatch R. Satellite Navigation Accuracy: Past, Present and Future[C]//Proceedings of the 8th GNSS Workshop, Jeju Island, Korea, 2001: 7-9.

[18] 刘志强, 王解先. 广播星历SSR改正的实时精密单点定位及精度分析[J]. 测绘科学, 2014, 39(1): 15-19+109.

[19] Ge M , Gendt G , Rothacher M , et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. Journal of Geodesy, 2008, 82(7): 389-399.

[20] 李盼. GNSS 精密单点定位模糊度快速固定技术和方法研究[J]. 武汉: 武汉大学, 2016.

[21] Li X, Zhang X. Improving the estimation of uncalibrated fractional phase offsets for PPP ambiguity resolution[J]. The Journal of Navigation, 2012, 65(3): 513-529.

[22] Li X, Ge M, Zhang H, et al. A method for improving uncalibrated phase delay estimation and ambiguity-fixing in real-time precise point positioning[J]. Journal of Geodesy, 2013, 87(5): 405-416.

[23] Senior K, Powers E, Matsakis D. Attenuating day-boundary discontinuities in GPS carrier-phase time transfer[C]//Proceedings of the 31th Annual Precise Time and Time Interval Systems and Applications Meeting. 1999: 481-490.

[24] Dach R, Beutler G, Hugentobler U, et al. Time transfer using GPS carrier phase: error propagation and results[J]. Journal of Geodesy, 2003, 77(1): 1-14.

[25] Dach R, Hugentobler U, Schildknecht T, et al. Precise continuous time and frequency transfer using GPS carrier phase[C]//Proceedings of the 37th Annual Precise Time and Time Interval Systems and Applications Meeting. 2005: 329-336.

[26] Dach R , Sc Hildknecht T , Hugentobler U , et al. Continuous geodetic time-transfer analysis methods[C]// IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2006: 1250-1259.

[27] 李滚. GPS载波相位时间频率传递研究[D]. 西安: 中国科学院研究生院(国家授时中心), 2007.

[28] Defraigne P, Bruyninx C, Guyennon N. PPP and phase-only GPS time and frequency transfer[C]//2007 IEEE international frequency control symposium joint with the 21st European frequency and time forum. IEEE, 2007: 904-908.

[29] 陈宪冬. GPS 精密定位定轨软件研究[D]. 成都: 西南交通大学, 2009.

[30] 黄观文, 杨元喜, 张勤,等. 一种单差观测值的连续实时载波相位时频传递方法[J]. 武汉大学学报(信息科学版), 2013, 38(9): 1018-1022.

[31] Yao J, Levine J. A new algorithm to eliminate GPS carrier-phase time transfer boundary discontinuity[C]//Proceedings of the 45th Annual Precise Time and Time Interval Systems and Applications Meeting. 2013: 292-303.

[32] Han S C, Kwon J H, Jekeli C. Accurate absolute GPS positioning through satellite clock error estimation[J]. Journal of Geodesy, 2001, 75(1): 33-43.

[33] Bock H, Dach R, Yoon Y, et al. GPS clock correction estimation for near real-time orbit determination applications[J]. Aerospace science and technology, 2009, 13(7): 415-422.

[34] Hauschild A, Montenbruck O. Kalman-filter-based GPS clock estimation for near real-time positioning[J]. GPS solutions, 2009, 13(3): 173-182.

[35] Zhang X, Li X X, Guo F. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications[J]. GPS solutions, 2011, 15(4): 315-324.

[36] Ge M, Chen J, Douša J, et al. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime[J]. GPS solutions, 2012, 16(1): 9-17.

[37] 李星星, 徐运, 王磊. 非差导航卫星实时/事后精密钟差估计[J]. 武汉大学学报(信息科学版), 2010, 35(6): 661-664.

[38] 何明宪, 李星星, 李盼,等. 基于非差与历元差分两种观测模型估计精密卫星钟差的方法比较[J]. 大地测量与地球动力学, 2011, 31(1): 95-99.

[39] 李黎, 匡翠林, 朱建军,等. 基于IGU预报轨道实时估计精密卫星钟差[J]. 大地测量与地球动力学, 2011, 31(2): 111-116.

[40] 高旺, 高成发, 潘树国, 等. 基于区域参考站网络的精密卫星钟差估计及其在实时精密单点定位中的应用[J]. 东南大学学报 (自然科学版), 2013, 43(S2): 400-405.

[41] 潘宗鹏, 柴洪洲, 刘鸣,等. 实时GLONASS精密卫星钟差估计及实时精密单点定位[J]. 大地测量与地球动力学, 2015, 35(6): 992-996.

[42] 赵齐乐, 戴志强, 王广兴,等. 利用非差观测量估计北斗卫星实时精密钟差[J]. 武汉大学学报:信息科学版, 2016, 41(5): 686-691.

[43] 屈利忠, 杜明义, 王坚,等. 多模GNSS精密卫星钟差估计与分析[J].武汉大学学报(信息科学版), 2018, 43(01): 107-111.

[44] Kouba J, Mireault Y, Lahaye F. 1995, 1994 IGS Orbit/Clock Combination and Evaluation, Appendix I of the Analysis Coordinator Report, International GPS Service for Geodynamics (IGS)[J]. 1994.

[45] Kouba J, Mireault Y. IGS orbit, clock and EOP combined products: an update[M]//Advances in Positioning and Reference Frames. Springer, Berlin, Heidelberg, 1998: 245-251.

[46] Kouba J, Springer T. New IGS station and satellite clock combination[J]. GPS solutions, 2001, 4(4): 31-36.

[47] 雷雨, 赵丹宁. 三种综合预报卫星钟差的方法[J]. 测绘通报, 2014(4): 22-25.

[48] 陈康慷, 徐天河, 杨玉国,等. iGMAS GNSS钟差产品综合与评估[J]. 测绘学报, 2016(S2): 46-53.

[49] Chen K, Xu T, Yang Y. Robust combination of IGS analysis center GLONASS clocks[J]. GPS Solutions, 2017, 21(3): 1251-1263.

[50] 苗伟, 王潜心, 程彤,等. 基于多项式附加周期项模型的iGMAS钟差产品综合方法[J]. 浙江理工大学学报(自然科学版), 2021, 45(5): 649-656.

[51] GuochangXu. GPS理论、算法与应用[M]. 北京: 清华大学出版社, 2011.

[52] 唐卫明, 刘智敏. GPS载波相位平滑伪距精度分析与应用探讨[J]. 测绘信息与工程, 2005(03): 37-39.

[53] 饶鹏文, 毛亚. BDS卫星实时钟差估计[J]. 测绘通报, 2020(5): 69-72+100.

[54] 张小红, 李盼, 李星星,等. 天线相位中心改正模型对PPP参数估计的影响[J]. 武汉大学学报(信息科学版), 2011, 36(12): 1470-1473.

[55] Schmid R, Steigenberger P, Gendt G, et al. Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas[J]. Journal of Geodesy, 2007, 81(12): 781-798.

[56] 涂锐, 黄观文, 邹顺. 天线相位中心偏差变化及改正模型对精密单点定位精度的影响[J]. 大地测量与地球动力学, 2010, 30(3): 113-117.

[57] 李征航. GPS测量与数据处理[M]. 武汉: 武汉大学出版社, 2013.

[58] 赵文娇, 王虎, 党亚民,等. 多GNSS全球电离层建模特性及其精度检验[J]. 空间科学学报, 2015, 35(3): 306-314.

[59] Marini J W. Correction of satellite tracking data for an arbitrary tropospheric profile[J]. Radio Science, 1972, 7(2): 223-231.

[60] 王瑾芳,杨玲. 对流层延迟对GNSS单点定位影响的全球评估[J]. 大地测量与地球动力学, 2020, 40(11): 1194-1199.

[61] 甘雨, 隋立芬, 张鹤,等. 利用接收机钟差实时滤波提高GNSS精度[J]. 测绘工程, 2014, 23(5): 6-8.

[62] 邓科, 郝金明, 陈逸伦,等. GNSS接收机天线相位中心变化相对检测方法[J]. 全球定位系统, 2017, 42(1): 16-21.

[63] 王继刚. 基于GPS精密单点定位的时间比对与钟差预报研究[D]. 西安: 中国科学院研究生院(国家授时中心), 2010.

[64] 刘俊清, 丁广, 张晨侠,等. GPS接收机噪声及天线相位中心偏差检测技术应用[J]. 防灾减灾学报, 2012, 28(3): 77-81.

[65] 肖耐园, 时玮, 尹斌. 天体测量中的地球自转形变改正[J]. 时间频率学报, 1985(01): 49-56.

[66] 张捍卫, 郑勇, 赵方泉. 海洋负荷潮汐对测站位移影响的理论研究[J]. 大地测量与地球动力学, 2003, (1): 69-73.

[67] 周江存,许厚泽,孙和平.中国台湾地区海洋负荷潮汐对重力、位移、倾斜和应变固体潮观测的影响[J].大地测量与地球动力学,2002(01): 81-86.

[68] 叶世榕. GPS非差相位精密单点定位理论与实现[D]. 武汉: 武汉大学, 2002.

[69] 王晓岚, 马冠一. 基于双频GPS观测的电离层TEC与硬件延迟反演方法[J]. 空间科学学报, 2014, 34(2): 168-179.

[70] 赵英豪, 周乐韬, 冯威,等. GPS接收机硬件延迟时变特性分析[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1212-1219.

[71] 陈央央. GPS周跳探测与修复问题研究[D]. 西安: 长安大学, 2014.

[72] 范士杰, 陈冠旭, 刘焱雄,等. 低高度角双频非差数据的周跳探测方法研究[J]. 武汉大学学报(信息科学版), 2016, 41(3): 310-315.

[73] 生仁军. GPS载波相位定位中周跳探测方法的研究[D]. 南京: 东南大学, 2006.

[74] 王仁谦, 朱建军. 利用双频载波相位观测值求差的方法探测与修复周跳[J]. 测绘通报, 2004(6): 9-11.

[75] Blewitt G. An automatic editing algorithm for GPS data[J]. Geophysical research letters, 1990, 17(3): 199-202.

[76] Kim D, Langley R B. Instantaneous real-time cycle-slip correction of dual frequency GPS data[C]//Proceedings of the international symposium on kinematic systems in geodesy, geomatics and navigation. Alberta: Banff, 2001: 255-264.

[77] Bisnath S B. Efficient, automated cycle-slip correction of dual-frequency kinematic GPS data[C]//Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2000). 2000: 145-154.

[78] 吴丹. GNSS观测数据预处理及质量评估[D]. 西安: 长安大学, 2015.

[79] 袁玉斌, 党亚民, 成英燕,等. 非差相位数据预处理的TurboEdit算法及其改进[J]. 大地测量与地球动力学, 2009, 29(3): 109-113.

[80] 焦文海. 卡尔曼滤波在估计点位地心坐标中的应用[J]. 解放军测绘研究所学报, 2001, 021(1): 37-40.

[81] 费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社, 2004.

[82] 宋伟伟. 导航卫星实时精密钟差确定及实时精密单点定位理论方法研究[D]. 武汉: 武汉大学, 2011.

[83] 翟造成. 我国氢钟研制现状与用于卫星导航的可行性[J]. 宇航计测技术, 2003, (5): 1-9.

[84] 楼益栋, 施闯, 周小青,等. GPS精密卫星钟差估计与分析[J]. 武汉大学学报(信息科学版), 2009, 34(1): 88-91.

[85] 尹炬尧. 基于SSR改正的实时精密单点定位研究与应用[D]. 西安: 长安大学, 2018

[86] 杨文龙. GNSS跟踪站优化选取算法研究[D]. 淄博: 山东理工大学, 2020.

[87] 代桃高. GNSS精密卫星钟差实时解算及实时精密单点定位方法研究[D]. 郑州: 解放军信息工程大学, 2017.

[88] 王千, 王成, 冯振元,等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24.

[89] Vassilvitskii S. k-means++: The advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 2006: 1027-1035.

[90] 谭畅. GNSS轨道,钟差产品综合及性能分析[D]. 武汉: 武汉大学, 2017.

[91] 张守建, 李建成, 邢乐林,等. 两种IGS精密星历插值方法的比较分析[J]. 大地测量与地球动力学, 2007, (2): 80-83.

[92] 陈康慷. IGS分析中心轨道/钟差产品综合及网解模式动态精密单点定位研究[D]. 西安: 长安大学, 2014.

[93] 张小红, 郭斐, 李盼, 等. GNSS精密单点定位中的实时质量控制[J]. 武汉大学学报(信息科学版), 2012, 37(08): 940-944+1013.

[94] 杨元喜. 抗差估计理论及其应用[M]. 北京: 八一出版社, 1993.

[95] 白杉杉, 董绍武, 赵书红,等. 主动型氢原子钟性能监测及评估方法研究[J]. 天文学报, 2018, 59(6):11.

中图分类号:

 P228    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式