- 无标题文档
查看论文信息

论文中文题名:

 泾河流域生态系统服务权衡 与协同关系研究    

姓名:

 孙彦旭    

学号:

 19310210001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地理空间建模    

第一导师姓名:

 周自翔    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Research on the trade-offs and synergies of ecosystem services in the Jinghe River Basin    

论文中文关键词:

 生态系统服务 ; 权衡与协同 ; 地形因素 ; 泾河流域    

论文外文关键词:

 Ecosystem Services ; Tradeoff & synergy ; Topographical factors ; Jinghe Watershed    

论文中文摘要:

在黄河流域生态保护和高质量发展背景下,研究流域生态系统服务之间的复杂关系对区域生态重建具有重要意义。而黄土高原流域尺度主要生态系统服务的权衡与协同关系有待深入探析。本文以泾河流域为研究对象,基于SWAT模型和InVEST模型,借助生产可能性边界(帕累托曲线)定量化分析2000-2020年泾河流域生态系统土壤保持服务、产水服务以及生境质量三者之间的权衡与协同关系,并探讨不同地形条件下权衡与协同关系的变化机制。主要结论如下:

(1)泾河流域2000-2020年主要生态系统服务时空变化显著。产水服务多年均值为243.76mm,多集中于5-10月份,空间上集中于流域中部及南部地区,且服务功能随着高程的增加和坡度的降低而提高;同时多年平均土壤保持量为4.21×108t,土壤保持量受地形影响明显,随坡度增高而增高,随高程增高先降后升,在六盘山地区较大;受地形影响显著,生境质量随坡度增加而增加,随高程增加持续下降。生境退化与城镇扩张紧密相关,而子午岭与六盘山地区生境质量较高。

(2)产水服务与土壤保持、生境质量与土壤保持之间是协同关系,随着一种服务的累积,另一种服务呈加速增长态势。但产水服务与生境质量之间是权衡关系,生境质量越高越不利于产水,而且这种权衡关系在逐渐减弱。同时生态系统服务的权衡与协同关系在不同阶段表现不同并有尺度效应,即子流域尺度下各类服务之间的相关性与全流域尺度存在差异。

(3)不同地形条件下权衡与协同关系的变化有一定的规律性。高程的变化对权衡与协同的累积效益产生了影响,在高程1245-1627m范围内表现更为显著。而在人类活动干扰下坡度对不同服务之间的权衡与协同关系的影响效应差异较大。

论文外文摘要:

In the context of ecological protection and high-quality development in the Yellow River Basin, it is of great significance to study the complex relationship among ecosystem services in the basin for regional ecological reconstruction. The trade-offs and synergies of major ecosystem services in the Loess Plateau need to be further analyzed at basin scale. The paper took the Jinghe River Basin as the research object, based on the SWAT model and the InVEST model, and used the production possibility frontier (Pareto curve) to quantitatively analyze the soil conservation services, water production services and habitat quality in the Jinghe River Basin ecosystem from 2000 to 2020. The trade-offs and synergies among them are discussed, and the changing mechanisms of that under different terrain conditions are discussed.The main conclusions showed that:

(1) The spatiotemporal changes of major ecosystem services in the Jinghe River Basin from 2000 to 2020 were significant. The mean annual value of water production service is 243.76mm, which is mostly concentrated in May-October, and spatially concentrated in the central and southern areas of the basin, and the service function improves with the increase of elevation and the decrease of slope. At the same time, the mean annual soil conservation amount is 4.21 ×108t, and the soil conservation capacity is obviously affected by terrain, and increased with the increase of slopeand reduced first and increased later with the increase of elevation, which is relatively large in Liupan Mountains area. Significantly affected by terrain, the habitat quality increases with the increase of the slope and decreases constantly with the increase of the elevation. Habitat degradation is closely related to urbanization, and the habitat quality of Ziwuling forest region and Liupan Mountains is relatively high.

(2) There is a synergistic relationship between water production service and soil conservation and between habitat quality and soil conservation. With the accumulation of one service, another service shows an accelerated growth trend. But there is a trade-off relationship between water production service and habitat quality. The higher the habitat quality, the less conducive the water production. In addition, the trade-off relationship between water production services and habitat quality is gradually weakening. At the same time, the trade-off and synergistic relationship between ecosystem services is different at different stages and has scale effects. That is, the correlation among various services at the sub-basin scale is different from that of the whole basin scale.

(3) There are certain regularities in the changes of the trade-off and synergy relationship under different terrain conditions. The changes in elevation have an impact on the cumulative benefits of trade-offs and synergy, which is more pronounced in the elevation range of 1245-1627m. However, under the disturbance of human activities, the influence of slope on the trade-off and synergy between different ecosystem services varies greatly.

参考文献:

[1]刘国彬,上官周平,姚文艺,等.黄土高原生态工程的生态成效[J].中国科学院院刊,2017,32(01):11-19.

[2]戴尔阜,王晓莉,朱建佳,等.生态系统服务权衡/协同研究进展与趋势展望[J].地球科学进展,2015,30(11):1250-1259.

[3]Loomes R, O'Neill K. Nature's services: Societal dependence on natural ecosystems[J]. Pacific Conservation Biology, 2000, 6(3): 274-274.

[4]党宏媛. 区域生态系统服务功能形成机理及评价研究[D]. 石家庄:河北师范大学, 2013.

[5]Westman, W. E . How Much Are Nature's Services Worth?[J]. Science, 1977, 197(4307):960-964.

[6]E. D . Extinction: The causes and consequences of the disappearance of species[J]. Biological Conservation, 1983, 26(4):378–379.

[7]于德永,郝蕊芳.生态系统服务研究进展与展望[J].地球科学进展,2020,35(08):804-815.

[8]Costanza R , D'Arge R , Groot R D , et al. The value of the world's ecosystem services and natural capital[J]. Ecological Economics, 1997, 25(1):3-15.

[9]马世骏,王如松.社会-经济-自然复合生态系统[J].生态学报, 1984(01):3-11.

[10] 赵景柱,肖寒,吴刚.生态系统服务的物质量与价值量评价方法的比较分析[J].应用生态学报, 2000(2):290-292.

[11]尹飞,毛任钊,傅伯杰,等.农田生态系统服务功能及其形成机制[J].应用生态学报,2006(05):929-934.

[12]郑华,李屹峰,欧阳志云,等.生态系统服务功能管理研究进展[J].生态学报,2013,33(03):702-710.

[13] 谢高地,张彩霞,张雷明,等.基于单位面积价值当量因子的生态系统服务价值化方法改进[J].自然资源学报,2015,30(08):1243-1254.

[14] 朱青. 基于土地利用模拟的泛河流域生态系统土壤保持服务研究[D].西安:西安科技大学,2021

[15]徐洁,肖玉,谢高地,等.东江湖流域水供给服务时空格局分析[J].生态学报,2016,36(15):4892-4906..

[16]窦攀烽,左舒翟,任引,等.气候和土地利用/覆被变化对宁波地区生态系统产水服务的影响[J].环境科学学报,2019,39(07):2398-2409.

[17] Arnold J G , Allen P M . Estimating Hydrologic Budgets for Three Illinois Watersheds[J]. Journal of Hydrology, 1996, 176(1):57-77.

[18]Sahin V , Hall M J . The effects of afforestation and deforestation on water yields[J]. Journal of Hydrology, 1996, 178(1):293-309.

[19]Vanshaar J R , Ingjerd H , Lettenmaier D P . Effects of land‐cover changes on the hydrological response of interior Columbia River basin forested catchments[J]. Hydrological Processes, 2002, 16(13):2499-2520..

[20] Farley K A , EG Jobbágy, Jackson R B . Effects of afforestation on water yield: a global synthesis with implications for policy[J]. Global Change Biology, 2005, 11(10):1565–1576..

[21]叶泽纲,黄祖发,秦远清.洞庭湖平原水网区地表产水量计算[J].水文,2007(04):80-82.

[22]刘贤赵,宿庆,宋孝玉,等.黄土高原长武试区土地利用变化对产水量的影响[J].农业现代化研究,2004(01):59-63.

[23]高俊峰,闻余华.太湖流域土地利用变化对流域产水量的影响[J].地理学报,2002(02):194-200.

[24]史培军,袁艺,陈晋.深圳市土地利用变化对流域径流的影响[J].生态学报,2001(07):1041-1049+1217.

[25]张殿发,王世杰,李瑞玲.土地利用/土地覆被变化对长江流域水环境的影响研究[J].地域研究与开发,2003(01):69-72.

[26]张勃,丁文晖,孟宝.干旱区土地利用的地下水水文效应分析——以黑河中游地区为例[J].干旱区地理,2005(06):764-769..

[27]李佳,张小咏,杨艳昭.基于SWAT模型的长江源土地利用/土地覆被情景变化对径流影响研究[J].水土保持研究,2012,19(03):119-124+128+301.

[28]刘月,赵文武,贾立志.土壤保持服务:概念、评估与展望[J].生态学报,2019,39(02):432-440.

[29]史志华,刘前进,张含玉,等.近十年土壤侵蚀与水土保持研究进展与展望[J].土壤学报,2020,57(05):1117-1127.

[30] Wischmeier W H , Smith D D . Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[J]. Agricultural Handbook, 1965, 282.

[31] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[J]. Agriculture handbook, 1996, 703: 23.

[32]雷珊.水蚀预报模型WEPP的应用研究进展[J].绿色科技,2018(16):121-124+135.

[33]Mosbahi M, Benabdallah S. Assessment of land management practices on soil erosion using SWAT model in a Tunisian semi-arid catchment[J]. Journal of soil & sediments, 2020, 20(2):1129-1139.

[34] Markhi A, Laftouhi N, Grusson Y, et al. Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model[J]. Acta Geophysica, 2019, 67(1): 263-272.

[35] Munoth P , Goyal R . Impacts of Land Use Land Cover Change on Runoff and Sediment Yield of Upper Tapi River Sub Basin, India[J]. International Journal of River Basin Management, 2019:1-37.

[36] 刘宝元, 谢云, 张科利. 土壤侵蚀预报模型[M]. 中国科学技术出版社, 2001.

[37]田宇,朱建华,李奇,等.三峡库区土壤保持时空分布特征及其驱动力[J].生态学杂志,2020,39(04):1164-1174..

[38] 刘婷,周自翔,朱青,等.延河流域生态系统土壤保持服务时空变化[J].水土保持研究,2021,28(01):93-100.

[39]郑婷. 泾河流域生态系统土壤保持服务流模拟与分析[D].西安:西安科技大学,2021.

[40] Bai J , Zhou Z , Zou Y , et al. Watershed Drought and Ecosystem Services: Spatiotemporal Characteristics and Gray Relational Analysis[J]. International Journal of Geo-Information, 2021, 10(2):43.

[41]王彬. 东北典型薄层黑土区土壤可蚀性关键因子分析与土壤可蚀性计算[D]. 西安:西北农林科技大学, 2009..

[42]刘智方,唐立娜,邱全毅,等.基于土地利用变化的福建省生境质量时空变化研究[J].生态学报,2017,37(13):4538-4548.

[43] Horne B V . Density as a Misleading Indicator of Habitat Quality[J]. Journal of Wildlife Management, 1983, 47(4):893-901.

[44] 巩杰, 马学成, 张玲玲,等.基于InVEST模型的甘肃白龙江流域生境质量时空分异[J].水土保持研究,2018,25(03):191-196.

[45] Yang X, Zhou Z, Li J, et al. Trade-offs between carbon sequestration, soil retention and water yield in the Guanzhong-Tianshui Economic Region of China[J]. Journal of Geographical Sciences, 2016, 26(10): 1449-1462.

[46] 艾嘉会. 基于土地利用/覆被变化的柯西河流域生境质量时空演变分析[D].南昌:江西师范大学,2021.

[47] Berger A R, Hodge R A. Natural change in the environment: a challenge to the pressure-state-response concept[J]. Social Indicators Research, 1998, 44(2): 255-265.

[48] Smith E R. An overview of EPA's regional vulnerability assessment (ReVA) program[J]. Environmental Monitoring and Assessment, 2000, 64(1): 9-15.

[49] Bastola S, Lee S, Shin Y, et al. An assessment of environmental impacts on the ecosystem services: Study on the Bagmati Basin of Nepal[J]. Sustainability, 2020, 12(19): 8186.

[50] Berta Aneseyee A, Noszczyk T, Soromessa T, et al. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia[J]. Remote Sensing, 2020, 12(7): 1103.

[51] Sallustio L, De Toni A, Strollo A, et al. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy[J]. Journal of Environmental Management, 2017, 201: 129-137.

[52] 傅伯杰.中国各省区生态环境质量评价与排序[J].中国人口·资源与环境,1992(02):48-54.

[53] 王平, 马立平, 李开. 南京市城市生态环境质量评价体系[J]. 生态学杂志, 2006, 25(1):60-63.

[54] 冯舒,孙然好,陈利顶.基于土地利用格局变化的北京市生境质量时空演变研究[J].生态学报,2018,38(12):4167-4179.

[55] He J, Huang J, Li C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model[J]. Ecological Modelling, 2017, 366: 58-67.

[56] Song S , Liu Z , He C , et al. Evaluating the effects of urban expansion on natural habitat quality by coupling localized shared socioeconomic pathways and the land use scenario dynamics-urban model[J]. Ecological Indicators, 2020, 112:106071.

[57] Zhang X, Zhou J, Li G, et al. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010[J]. Journal of Geographical Sciences, 2020, 30(4): 601-620.

[58] 刘振生,高惠,滕丽微,等.基于MAXENT模型的贺兰山岩羊生境适宜性评价[J].生态学报,2013,33(22):7243-7249.

[59] Zhang J, Hull V, Huang J, et al. Natural recovery and restoration in giant panda habitat after the Wenchuan earthquake[J]. Forest Ecology and Management, 2014, 319: 1-9.

[60] 李咏红, 香宝, 袁兴中,等. 成渝经济区生物多样性空间分异特征[J]. 环境科学研究, 2012, 25(10):7.

[61] 谢怡凡,姚顺波,邓元杰,等.延安市退耕还林(草)工程对生境质量时空格局的影响[J].中国生态农业学报(中英文),2020,28(04):575-586.

[62] 朱杰,龚健,李靖业.青藏高原东部生态敏感区生境质量时空演变特征——以青海省河湟谷地为例[J].资源科学,2020,42(05):991-1003

[63] Farber S C, Costanza R, Wilson M A. Economic and ecological concepts for valuing ecosystem services[J]. Ecological economics, 2002, 41(3): 375-392.

[64] Zheng Z , Fu B , Hu H , et al. A method to identify the variable ecosystem services relationship across time: a case study on Yanhe Basin, China[J]. Landscape Ecology, 2014, 29(10):1689-1696.

[65] Lu N , Fu B , Jin T , et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014, 29(10):1697-1708.

[66] Palacios-Agundez I , Onaindia M , Barraqueta P , et al. Provisioning ecosystem services supply and demand: The role of landscape management to reinforce supply and promote synergies with other ecosystem services[J]. Land Use Policy, 2015, 47:145-155.

[67] Harmáčková Z V, Vačkář D. Modelling regulating ecosystem services trade-offs across landscape scenarios in Třeboňsko Wetlands Biosphere Reserve, Czech Republic[J]. Ecological Modelling, 2015, 295: 207-215.

[68] Jia X, Fu B, Feng X, et al. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China[J]. Ecological indicators, 2014, 43: 103-113.

[69] Mutoko, MC, Hein, et al. Tropical forest conservation versus conversion trade-offs: Insights from analysis of ecosystem services provided by Kakamega rainforest in Kenya[J]. ECOSYST SERV, 2015, 2015,14(-):1-11.

[70] 饶胜,林泉,王夏晖,等.正蓝旗草地生态系统服务权衡研究[J].干旱区资源与环境,2015,29(03):81-86.

[71] Williams A, Hedlund K. Indicators and trade-offs of ecosystem services in agricultural soils along a landscape heterogeneity gradient[J]. Applied Soil Ecology, 2014, 77: 1-8.

[72]Yang G, Ge Y, Xue H, et al. Using ecosystem service bundles to detect trade-offs and synergies across urban–rural complexes[J]. Landscape and Urban Planning, 2015, 136: 110-121..

[73]杨晓楠,李晶,秦克玉,等.关中—天水经济区生态系统服务的权衡关系[J].地理学报,2015,70(11):1762-1773.

[74]巩杰,柳冬青,高秉丽,等.西部山区流域生态系统服务权衡与协同关系——以甘肃白龙江流域为例[J].应用生态学报,2020,31(04):1278-1288.

[75]余玉洋,李晶,周自翔,等.基于多尺度秦巴山区生态系统服务权衡协同关系的表达[J].生态学报,2020,40(16):5465-5477.

[76]Arnold, J.G., et al., Large Area Hydrologic Modeling and Assessment Part I: Model Development. 1998. 34(1): p. 1-17.

[77]Rui Y , Zhang X , Yan S , et al. Spatial patterns of hydrological responses to land use/cover change in a catchment on the Loess Plateau, China[J]. Ecological Indicators, 2017, 92(SEP.):151-160.

[78]Chen D, Li J, Yang X, et al. Quantifying water provision service supply, demand and spatial flow for land use optimization: A case study in the YanHe watershed[J]. Ecosystem Services, 2020, 43: 101117.

[79]杨畅. 生境质量时空变化与生态安全格局构建研究[D].武汉:华中师范大学,2021.

[80]陈学兄,毕如田,张小军,等.太原市城区植被覆盖变化地形分异效应[J].水土保持通报,2020,40(05):299-309.

[81]Anaya J A, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: A remote sensing approach[J]. Forest Ecology and Management, 2009, 257(4): 1237-1246.

[82].焦雄, 郭忠录, 郝好鑫, 宁都县植被覆盖度变化及其对地形因子的响应分析[J] 中国水土保持. 2020(11): p. 32-35+7.

[83]刘明霞, 刘友存, 陈明,等. 2000-2018年赣江上游植被覆盖度时空演化及其对气候变化的响应. [J].水土保持通报,2020,40(05):284-290.

[84]李苗苗. 植被覆盖度的遥感估算方法研究[D].北京:中国科学院遥感应用研究所, 2003.

[85]朱青,周自翔,刘婷,等.黄土高原植被恢复与生态系统土壤保持服务价值增益研究——以延河流域为例[J].生态学报,2021,41(07):2557-2570..

[86]黄清华,张万昌.SWAT模型参数敏感性分析及应用[J].干旱区地理,2010,33(01):8-15.

[87]林峰,陈兴伟,姚文艺,等.基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析[J].地理学报,2020,75(05):1065-1078.

[88]Renard B , Kavetski D , Kuczera G , et al. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors[J]. Water Resources Research, 2010, 46(5)..

[89]陈永国,刘维军,荣月静,等.基于土地利用与植被覆盖度的大通北川河源区自然保护区生境质量评估[J].水土保持研究,2020,27(06):332-337+393.

[90]胡文浩,张晓婧,陈雅杰,等.坝上地区不同年代退耕还林生境的草本层生境质量及影响因子[J].生态学报,2021,41(03):1116-1126.

[91]包玉斌. 基于InVEST模型的陕北黄土高原生态服务功能时空变化研究[D].西安:西北大学, 2015.

[92]薛卓彬. 基于InVEST模型的延河流域生态系统服务功能评估[D].西安:西北大学, 2017.

[93]姚云长. 基于InVEST模型的三江平原生境质量评价与动态分析[D].北京:中国科学院大学(中国科学院东北地理与农业生态研究所), 2017.

[94]张玲玲, 甘肃白龙江流域生态系统服务评估及影响因素[D]. 2016, 兰州:兰州大学.

[95].Brown A E, Western A W, McMahon T A, et al. Impact of forest cover changes on annual streamflow and flow duration curves[J]. Journal of Hydrology, 2013, 483: 39-50..

[96]刘婷. 泾河流域土壤保持服务时空分异特征及其影响因素分析[D].西安:西安科技大学,2021.

[97]白继洲. 气候变化背景下泾河流域生态系统土壤保持服务模拟[D].西安:西安科技大学,2021.

[98]柳冬青. 流域生态系统服务时空权衡与协同关系研究[D].兰州:兰州大学,2019.

[99]杨晓楠,李晶,秦克玉,等.关中—天水经济区生态系统服务的权衡关系[J].地理学报,2015,70(11):1762-1773.

[100]崔步礼,李小雁,姜广辉,等.基于DEM的山地丘陵区土地利用/覆被研究——以青海湖流域为例[J].自然资源学报,2011,26(05):871-880.

[101]毕如田,武俊娴,曹毅,等.涑水河流域地形因子对植被指数变化的影响[J].中国农学通报,2012,28(35):257-263.

中图分类号:

 X171    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式