- 无标题文档
查看论文信息

题名:

 CO2充注采空区条件下煤岩-碱性固废溶解矿化规律及安全储碳机理    

作者:

 张静非    

学号:

 21120089029    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 智能通风安全与瓦斯治理    

导师姓名:

 李树刚    

导师单位:

 西安科技大学    

提交日期:

 2024-12-13    

答辩日期:

 2024-12-03    

外文题名:

 Dissolution mineralization regularity and safe carbon storage mechanism of coal rock-alkaline solid waste under the condition of CO2 filling goaf    

关键词:

 煤矿采空区 ; 安全储碳 ; 溶解矿化规律 ; 采空区煤岩 ; 碱性固废    

外文关键词:

 Coal mining area ; safe carbon storage ; Dissolution mineralization regularity ; Coal rock in goaf ; Alkaline solid waste    

摘要:

采空区CO2储存作为解决煤炭行业碳排放难题的重要负碳技术储备,能够实现CO2储存与固废资源充填利用等多种目标,在废弃资源二次利用、碳减排等方面具有广泛应用前景。化学储碳作为安全性、稳定性较高的储碳方式之一,存在自然状态下储碳强度低、周期长等问题,为了探究解决以上难题的途径通过采空区充填碱性固废协同储碳的技术理念得到广泛关注。因此,本文依托自主研发的CO2地质储存综合实验平台,探讨了采空区储碳条件下CO2-水界面特性及溶解传质规律,明晰了采空区煤岩体-CO2反应的矿物溶解-矿化特征,揭示了碱性固废充填采空区协同CO2矿化储碳效应,并提出了关闭矿井采空区“碱性固废+碎胀煤岩体”联合储碳技术思路、关键技术和风险监测手段,旨在为煤矿采空区CO2安全高效封存提供理论支撑。主要成果如下:

自主研发了CO2地质储存综合实验平台,包含CO2-水原位界面张力测定系统、地球化学反应实验系统以及辅助检测设备。从气液界面张力、CO2溶解性以及煤岩体溶解-矿化特性参数等方面开展相关研究,并可以开展碱性固废矿化转变及安全储碳机理探究实验,为后续章节提供可靠实验手段。

掌握了采空区储碳条件下CO2-水界面特性及溶解传质规律,环境温度一定时,界面张力与环境压力呈线性负相关关系;环境温度升高,界面张力相应增加;界面张力与矿化度存在正相关性;CO2-盐溶液之间界面张力呈现出随着阳离子价态升高而增大的现象;采空区环境压力与CO2溶解度呈正相关关系,当温度为25℃、纯水条件下,压力由0.5 MPa增至2.5 MPa,对应CO2溶解度由0.162 7 mol/kg升至0.714 1 mol/kg;CO2溶解度随着温度与矿化度升高而降低;相同质量分数下,一价阳离子溶液比二价阳离子溶液可溶解更多CO2

明晰了采空区煤岩体-CO2反应的矿物溶解-矿化特征,采空区煤岩体与CO2反应主要包含3个过程:矿物溶解→元素释放-迁移→矿物转化-沉淀;采空区煤岩体主要的溶解性矿物为碳酸盐矿物与硅酸盐矿物,SiO2溶解性较低,FeS2仅在煤体中存在;主要的沉淀性矿物以方解石、铁白云石、菱铁矿、钠蒙脱石为主;方解石、白云石、菱铁矿一般会经历溶解再沉淀过程,钠/钙蒙脱石主要是由于长石等矿物溶解后经过迁移转化形成。

阐明了不同碱性固废矿化储碳能力特性,温度和压力均会促进溶解-矿化作用,碱性固废矿化反应动力学与其比表面积(即反应接触面)以及活性含钙物质的量之间存在显著关系,反应后期表面覆盖(有效反应面积降低)和活性点位减少成为矿化反应限制主要因素;温压参数与矿化储碳量、矿化效率变化趋势均存在正相关性,升高压力对加速矿化的影响主要是由于压力促使反应液中HCO3-/CO32-离子加速溶解;碱性固废钙含量越高,对应矿化储碳量与矿化效率也会随之增大。

得出了CO2扩散-溶解作用对采空区储碳安全性的影响特征,温度越高,水环境矿化度越高,相应盖层储碳安全阈值也随之增大,进一步计算了目标采空区相应理论盖层储碳安全阈值为4.28~4.29 MPa;对于采空区储碳而言,当注入的CO2和密闭采空区流体之间压力差超过盖层储碳阈值时,毛细管就会发生破裂,注入的CO2就会泄漏到大气中,因此合理评价采空区环境储碳安全性及注入参数是该技术实现的基础。

揭示了矿物溶解-矿化效应对采空区储碳安全性影响机制。对于采空区而言,短期内CO2-H2O-煤岩以溶解作用为主,孔裂隙扩张会增加其储碳能力,钙镁铁含量越高,会增强采空区煤岩体溶解-矿化效应,有利于储碳稳定性提升以及安全性增加;对于盖层(稳定的上覆岩层)而言,应当选择钙镁铁含量较低的泥岩(黏土矿物为主),减少溶解作用,并通过黏土矿物水化膨胀强化孔裂隙封堵能力,以此提升盖层密闭性和采空区储碳长时安全性。最后提出了关闭矿井采空区“碱性固废+碎胀煤岩体”联合储碳技术思路,对关键技术和风险监测手段进行了应用展望。

本研究立足于关闭矿井采空区安全高效储碳基础,通过完善CO2充注采空区条件下煤岩-碱性固废溶解矿化规律及安全储碳理论体系,探究加快采空区CO2安全高效稳定储碳的有效途径,为采空区CO2储存的推广提供理论支撑、数据基础和实践指导。

外文摘要:

As an important negative carbon technical reserve to solve the problem of carbon emission in coal industry, CO2 storage in goaf can achieve various goals such as CO2 storage and solid waste resource filling and utilization, and has a wide application prospect in the secondary utilization of waste resources and carbon emission reduction. Chemical carbon storage, as one of the safe and stable carbon storage methods, has some problems such as low carbon storage intensity and long period in natural state. In order to solve the above problems, the technical concept of collaborative carbon storage by filling industrial solid waste in goaf has been widely concerned. Therefore, based on the self-developed comprehensive experimental platform of CO2 geological storage, this paper discusses the characteristics of CO2-water interface and the law of dissolution and mass transfer under the condition of carbon storage in goaf, clarifies the mineral dissolution-precipitation characteristics of coal rock-CO2 reaction in closed mine goaf, reveals the synergistic effect of CO2 mineralization and carbon storage in goaf filled with alkaline solid waste, and puts forward the technical ideas, key technologies and risk monitoring methods of “alkaline solid waste + broken coal rock” combined carbon storage in closed mine goaf, aiming at providing theoretical support for safe and efficient storage of CO2 in coal mine goaf. The main results are as follows:

We independently developed a comprehensive experimental platform for CO2 geological storage. It includes CO2-water in-situ interfacial tension measurement system, geochemical reaction experimental system and auxiliary detection equipment. Relevant experiments are carried out from the aspects of gas-liquid interfacial tension, CO2 solubility and dissolution-mineralization characteristic parameters of coal and rock mass, and experiments on carbonation transformation of industrial solid waste and carbon storage mechanism can be carried out, providing reliable experimental means for subsequent chapters.

Grasp the characteristics of CO2-water interface and the law of dissolution and mass transfer under the condition of carbon storage in goaf. When the ambient temperature is constant, there is a linear negative correlation between reservoir pressure and interfacial tension in goaf, and the interfacial tension increases with the increase of reservoir temperature. There is a positive correlation between salinity and interfacial tension; The interfacial tension between CO2− salt solutions increases with the increase of cation valence. There is a positive correlation between the reservoir pressure in goaf and the solubility of CO2. When the temperature is 25℃ and the water is pure, the pressure increases from 0.5 MPa to 2.5 MPa, and the solubility of CO2 increases from 0.162 7 mol/kg to 0.7141 mol/kg. The solubility of CO2 decreases with the increase of temperature and salinity. At the same mass fraction, monovalent cation solution can dissolve more CO2 than divalent cation solution.

The mineral dissolution-precipitation characteristics of coal-rock mass -CO2 reaction in goaf with water accumulation are clarified. The reaction between coal and rock mass and CO2 in goaf with accumulated water mainly includes three processes: mineral dissolution → element release-migration → mineral transformation-precipitation; The main soluble minerals of coal and rock mass in goaf are carbonate minerals and silicate minerals, and the solubility of SiO2 is low, and FeS2 only exists in coal. The main sedimentary minerals are calcite, ankerite, siderite and sodium montmorillonite. Calcite, dolomite and siderite generally undergo the process of dissolution and re-precipitation, and sodium/calcium montmorillonite is mainly formed by mineral transformation after feldspar and other minerals are dissolved.

The characteristics of carbon storage capacity of different alkaline solid waste mineralization are clarified. Temperature and pressure will promote dissolution-mineralization. There is a significant relationship between the mineralization reaction kinetics of alkaline solid waste and its specific surface area (i.e. Reaction contacts surface) and the amount of active calcium-containing substances. In the later stage of the reaction, surface coverage (reduction of effective reaction area) and reduction of active sites become the main factors limiting the mineralization reaction. There is a positive correlation between temperature, pressure and mineralization carbon storage and mineralization efficiency. The effect of increasing pressure on accelerated carbonation is mainly due to the accelerated dissolution of HCO3-/ CO32-ions in the reaction solution by pressure. The higher the calcium content of alkaline solid waste, the corresponding carbon storage and mineralization efficiency will also increase.

The influence characteristics of CO2 diffusion-dissolution on the safety of carbon storage in goaf are obtained. The higher the temperature is, the higher the salinity of water environment is, and the corresponding safety threshold of carbon storage is also increased. Further, the safety threshold of sealing the corresponding cover is 4.28~4.29 MPa by using the water test in the goaf of the study area. For carbon storage in mined-out areas, when the pressure difference between injected CO2 and reservoir fluid exceeds the sealing threshold of caprock, the capillary will break, and the injected CO2 will leak into the atmosphere. Therefore, it is the basis for the realization of this technology to reasonably evaluate the environmental carbon storage safety and injection parameters in mined-out areas.

The influence mechanism of mineral dissolution-mineralization effect on the safety of carbon storage in goaf is revealed. For the reservoir, CO2-H2O- coal is mainly dissolved in a short period of time, and the expansion of pores and fractures will increase its carbon storage capacity. The higher the content of calcium, magnesium and iron, the better the dissolution-mineralization effect of the reservoir, which is conducive to the stable improvement of carbon storage and the increase of safety. For the caprock (stable overlying strata), mudstone (mainly clay minerals) with low calcium, magnesium and iron content should be selected to reduce dissolution, and the pore and fracture sealing effect should be increased through the hydration of clay minerals, so as to improve the sealing property of caprock and strengthen the long-term safety of carbon storage in goaf. Finally, the idea of “industrial solid waste+crushed coal and rock mass” combined carbon storage technology in goaf is put forward, and the application prospect of key technologies and industrial processes is carried out.

This study is based on the safe and efficient carbon storage in the closed mine goaf. By improving the dissolution and mineralization law of coal-rock-alkaline solid waste and the theoretical system of safe carbon storage under the condition of CO2 filling in the goaf, it explores effective ways to accelerate the safe, efficient and stable carbon storage in the goaf, providing theoretical support, data foundation and practical guidance for the promotion of CO2 storage in the goaf.

参考文献:

[1] Li H, Zick M E, Trisukhon T, et al. Capturing carbon dioxide from air with charged-sorbents[J]. Nature, 2024, 630(8017): 654-659.

[2] Stechemesser A, Mark E, Dilger E, et al. Climate policies that achieved major emission reductions: Global evidence from two decades[J]. Science, 2024, 385(6711): 884-892.

[3] 王双明,刘浪,朱梦博,等.“双碳”目标下煤炭绿色低碳发展新思路[J].煤炭学报,2024,49(1):152-171.

[4] 王帅峰,韩思杰,桑树勋,等.煤层亚临界/超临界CO2吸附特征与封存模式[J].天然气工业,2024,44(6):152-168.

[5] 王双明, 刘浪, 赵玉娇, 等. “双碳”目标下赋煤区新能源开发-未来煤矿转型升级新路径[J].煤炭科学技术,2023, 51 (1) : 59-79.

[6] 葛世荣,樊静丽,刘淑琴,等.低碳化现代煤基能源技术体系及开发战略[J].煤炭学报,2024,49(1):203-223.

[7] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的储库构筑与封存方法探索[J]. 煤炭学报, 2022, 47(3): 1072-1086.

[8] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7): 2197-2211.

[9] 袁亮, 姜耀东, 王凯, 等.我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 2018, 43(1):14-20.

[10] Dawson G K W, Golding S D, Massarotto P, et al. Experimental supercritical CO2 and water interactions with coal under simulated in situ conditions[J]. Energy Procedia, 2011, 4: 3139-3146.

[11] 梁冰,李磊磊,郝建峰,等.咸水层CO2地质封存储层岩石化学损伤及力学性质劣化实验研究[J/OL].岩土工程学报,1-10[2024-10-17]. DOI: 10.11779/CJGE20240023

[12] 刘肖, 王福刚, 岳高凡, 等. 鄂尔多斯盆地石盒子组地层二氧化碳矿物封存能力评估[J]. 矿物岩石地球化学通报, 2015, 34(2): 395-400.

[13] 秦波涛,冯乐乐,邵旭.粉煤灰矿化电厂烟气CO2技术及关键科学问题[J].煤炭学报,2024,49(2):1161-1173.

[14] 奚弦,桑树勋,刘世奇.煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J].煤炭学报,2024,49(8):3619-3634.

[15] 张金超,桑树勋,韩思杰,等.不同含水性无烟煤CO2吸附行为及其对地质封存的启示[J].煤田地质与勘探,2022,50(9):96-103.

[16] Shaffer G. Long-term effectiveness and consequences of carbon dioxide sequestration[J]. Nature Geoscience, 2010, 3(7): 464-467.

[17] 王恬, 桑树勋, 刘世奇, 等. ScCO2-H2O作用下不同煤级煤化学结构变化的实验研究[J]. 煤田地质与勘探, 2018, 46(5): 60-65.

[18] 熊鹰, 谭秀成, 伍坤宇, 等. 碳酸盐岩储集层成岩作用中“孔隙尺寸控制沉淀”研究进展、地质意义及鄂尔多斯盆地实例[J]. 古地理学报, 2020, 22(04): 744-760.

[19] 崔振东, 刘大安, 曾荣树, 等.二氧化碳在砂岩透镜体中充注封存的盖层岩石抗断裂性能分析[J].工程地质学报,2010,18(2):204-210.

[20] 王福刚, 郭兵, 杨永智, 等.中高渗倾斜地层与水平地层中CO2地质封存的差异性对比[J].地球科学与环境学报,2020,42(2):246-255.

[21] 张松航,唐书恒,张守仁,等.不同排采程度煤储层注CO2驱煤层气模拟评价[J].煤炭学报,2022,47(3):1275-1285.

[22] 刘操, 闫江伟, 赵春辉, 等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J]. 煤炭学报, 2024, 49(7): 3154-3166.

[23] 王永胜.CO2咸水层封存砂岩储层孔隙尺度变化规律及可注性研究[D].武汉: 中国地质大学,2021.

[24] 吴宇. 煤层中封存二氧化碳的双重孔隙力学效应研究[J]. 煤炭学报, 2011, 36(5): 889-890.

[25] 刘子剑,张楠,张凤君.CO2地质封存技术及其同位素在咸水层的化学行为研究进展[J].科技导报,2015,33(11):108-113.

[26] 李志伟. 咸水层CO2地质封存的长期稳定性分析及控制[D]. 北京: 北京交通大学, 2012.

[27] Shi Q, Cui S, Wang S, et al. Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment[J]. Energy, 2022, 254: 124392.

[28] 张文东, 唐书恒, 张松航, 等. 基于CCUS的深部煤层煤层气采收及CO2封存效果[J]. 煤炭科学技术, 2014, 42(8): 33-37.

[29] Li P, Hao Y, Wu Z, et al. Experimental study on the effect of CO2 storage on the reservoir permeability in a CO2-based enhanced geothermal system[J]. geothermal energy, 2023, 11(1): 1-21.

[30] Jeon P R, Lee C-H. Reaction of drilled-cores from the Janggi basin with CO2-saturated brine from subcritical to supercritical condition of CO2: Implications on sequestration of dissolved CO2[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103804

[31] 阳平坚,彭栓,王静,等.碳捕集,利用和封存(CCUS)技术发展现状及应用展望[J].中国环境科学, 2024, 44(1):404-416.

[32] 姜彬, 王华. 强水驱凝析气田干气回注提高凝析油采收率的实例研究—挪威北海南维京地堑地区的Sleipner Ty油田[J]. 能源科学进展, 2008, 4(2): 1-11.

[33] Li W, Ren T W, Su E L, et al. Is the long-term sequestration of CO2 in and around deep, abandoned coal mines feasible? [J]. Proceedings of the institution of mechanical engineers, Part A: Journal of Power and Energy, 2018, 232(1):27-38.

[34] Piessens K, Dusar M. Feasibility of CO2 sequestration in abandoned coal mines in belgium[J]. Geologica Belgica, 2004, 7(3): 165-180.

[35] 刘浪, 方治余, 张波, 等. 矿山充填技术的演进历程与基本类别[J]. 金属矿山, 2021, 537(3): 1-10.

[36] Busch A, Alles S, Gensterblum Y, et al. Carbon dioxide storage potential of shales[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 297-308.

[37] Busch A, Krooss B M. Carbon dioxide storage in abandoned coal mines[C] //Carbon Dioxide Sequestration in Geological Media-State of the Science: AAPG Studies in Geology,2019

[38] Tongeren P, Dreesen R. Residual space volumes in abandoned subsurface coal mines and possibilities for re-use, in Dutch [J]. Geologica Belgica, 2004, 7(3):157-164.

[39] Jalili P, Saydam S, Cinar Y. CO2 storage in abandoned coal mines[C] // Australia: 11th Underground Coal Operators’ Conference, 2011, 355-360.

[40] 黄定国, 侯兴武, 吴玉敏. 煤矿废弃矿井采空区封存CO2的机理分析和能力评价[J]. 环境工程, 2014, 32(S1): 1076-1080.

[41] 黄定国, 杨小林, 余永强, 等. CO2地质封存技术进展与废弃矿井采空区封存CO2[J]. 洁净煤技术, 2011, 17(5): 93-96.

[42] 高飞, 邓存宝, 王雪峰, 等. 烟气注入采空区封存的可行性与安全性分析[J]. 中国安全生产科学技术, 2016, 12(7): 60-64.

[43] Ge Z L, Deng K, Zhang L, et al. Development potential evaluation of CO2‐ECBM in abandoned coal mines[J]. Greenhouse Gases: Science and Technology, 2020, 10(3): 643-658.

[44] 荆蕊, 王雪峰, 乔玲, 等. 电厂烟气注入采空区防灭火技术的研究进展[J]. 煤炭工程, 2021, 53(11): 125-130.

[45] 李树刚, 张静非, 尚建选, 等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报, 2022, 47(4): 1416-1429.

[46] 蒋春跃, 吴建峰, 孙志娟, 等. 水在超临界二氧化碳中的溶解度[J]. 化学工程, 2014, 42(7): 42-47.

[47] 程程. 盐溶液对CO2溶解度影响的微观机理和分子模拟研究[D]. 锦州:渤海大学, 2015.

[48] Jiang L L, Wu B H, Liu Y, et al. Dynamic evolution of the CO2-brine interfacial area during brine imbibition in porous media[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1125-1135.

[49] Wu B, Li X, Teng Y, et al. Characterizing the dissolution rate of co2-brine in porous media under gaseous and supercritical conditions[J]. Applied Sciences, 2017, 8(1): 1-14.

[50] 傅强, 张会书, 胡楠, 等. 水溶解CO2过程界面对流现象的PIV/LIF测量及传质系数预测[J]. 化工学报, 2018, 69(2): 586-594+886.

[51] Chow Y, Maitland G C, Trusler J. Interfacial tensions of the (CO2+N2+H2O) system at temperatures of (298 to 448) K and pressures up to 40 MPa[J]. Journal of Chemical Thermodynamics, 2016, 93: 392-403.

[52] Saraji S, Piri M, Goual L. The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems[J]. International Journal of Greenhouse Gas Control, 2014, 28: 147-155.

[53] 美合日阿依·穆太力普. CO2地质封存气-液-固相界面特性及其对渗流的影响研究[D]. 辽宁:大连理工大学,2020.

[54] Xu R N, Li R, Ma J, et al. Effect of mineral dissolution/precipitation and CO2 exsolution on CO2 transport in geological carbon storage[J]. Accounts of Chemical Research, 2017, 50(9): 2056-2066.

[55] Takenouchi S, Kennedy G C. The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures[J]. Amer.jour, 1965, 263(5): 1-8.

[56] Ellis A J, Golding R M. The solubility of carbon dioxide above 100 °C in water and in sodium chloride solutions[J]. Amer.jour, 1963, 261(1): 47-60.

[57] Malinin S D, Kurovskaya N A. Investigation of CO2 solubility in a solution of chlorides at elevated temperatures and pressures of CO2[J]. Geokhimiya, 1975, 4(4): 547-551.

[58] Malinin S D, Savelyeva N I. The solubility of CO2 in NaCl and CaCl2 solutions at 25, 50, and 75 С under elevated CO2 pressures[J]. Geokhimiya, 1972, 9(1): 410-418.

[59] Portier S, Rochelle C. Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar application to the Utsira formation at Sleipner[J]. Chemical Geology, 2005, 217(3-4): 187-199.

[60] 王璐, 于青春. 鄂尔多斯盆地地下咸水中不同离子对CO2溶解度的影响[C]// 废物地下处置学术研讨会. 2014: 136-141.

[61] 李树刚,张静非,林海飞,等.采空区碳封存条件下CO2-水界面特性及溶解传质规律[J].煤炭学报,2024,49(1):513-527.

[62] Duan Z, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3-4): 257-271.

[63] 于立松, 张卫东, 吴双亮, 等. 二氧化碳在深部盐水层中溶解封存规律的研究进展[J]. 新能源进展, 2015, 3(1): 75-80.

[64] Deng T, Jia G. Prediction of aqueous solubility of compounds based on neural network[J]. Molecular Physics, 2019: 1-8.

[65] Deng T, Liu F H, Jia G Z. Prediction carbon dioxide solubility in ionic liquids based on deep learning[J]. Molecular physics, 2020, (5/6): 1-18.

[66] 包一翔,李井峰,郭强,等.二氧化碳用于地质资源开发及同步封存技术综述[J].煤炭科学技术,2022,50(6):84-95.

[67] 马铭婧, 郗凤明, 凌江华, 等. 二氧化碳矿物封存技术研究进展[J]. 生态学杂志, 2019, 38(12): 1-10.

[68] Neeraj X X , Yadav S .Carbon storage by mineral carbonation and industrial applications of CO2[J].Materials Science for Energy Technologies, 2020, 3: 494-500.

[69] 袁亮,张通,张庆贺,等.双碳目标下废弃矿井绿色低碳多能互补体系建设思考[J].煤炭学报,2022,47(6):2131-2139.

[70] Dahmani J, Kharchafi A, El-Khalfaouy R, et al. Sequestration of carbon dioxide by a mineral residue: application on the ca-sepiolite material composite[J]. Chemistry Africa, 2022, 5(5): 1703-1713.

[71] 邹屹, 陈俊行, 吴佳林, 等. 变质地质学中的扩散:原理、前沿应用和问题[J].岩石学报,2022,38(10):2949-2970.

[72] Wang K, Xu T, Wang F, et al. Experimental study of CO2–brine–rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154–155: 265-274.

[73] Liu Z H, Wolfgang D, Han J, et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions [J]. Carsologica Sinica, 2005, (1): 1-14.

[74] Jeon P R, Lee C-H. Reaction of drilled-cores from the Janggi basin with CO2-saturated brine from subcritical to supercritical condition of CO2: Implications on sequestration of dissolved CO2[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103804.

[75] Du Y, Sang S, Wang W, et al. Experimental study of the reactions of supercritical CO2 and minerals in high-rank coal under formation conditions[J]. Energy & Fuels, 2018, 32(2): 1115-1125.

[76] Du Y, Sang S, Pan Z, et al. Experimental study of supercritical CO2-H2O-coal interactions and the effect on coal permeability[J]. Fuel, 2019, 253: 369–382.

[77] 孟繁奇, 李春柏, 刘立, 等. CO2-咸水-方解石相互作用实验[J].地质科技情报,2013,32(3):171-176.

[78] 郭慧, 王延斌, 倪小明, 等. 高岭石与水、CO2作用后硅元素、铝元素溶出动力学研究[J].中国矿业大学学报,2016,45(03):591-596.

[79] Gaus I. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks[J]. International Journal of Greenhouse Gas Control, 2010, 4(1): 73-89.

[80] 施雷庭, 户海胜, 张玉龙, 等. 致密砂砾岩矿物与超临界CO2和地层水相互作用[J].油田化学,2019,36(4):640-645.

[81] 陈润, 秦勇. 超临界CO2与煤中矿物的流固耦合及其地质意义[J]. 煤炭科学技术, 2012, 40(10): 17-21.

[82] 林玉桓. 地下咸水越流补给深层淡水的水—岩相互作用[D]. 天津:天津科技大学, 2018.

[83] 魏俊峰,吴大清.矿物—水界面的表面离子化和络合反应模式[J].地球科学进展,2000,15(1):90-96.

[84] 杨志杰, 王福刚, 杨冰, 等. 砂岩中绿泥石含量对CO2矿物封存影响的模拟研究[J]. 矿物岩石地球化学通报, 2014, 33(2): 201-207.

[85] Gherardi F , Xu T , Pruess K . Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir[J]. Chemical Geology, 2007, 244(1-2):103-129.

[86] Gysi A P, Stefánsson A. CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts[J]. Geochimica Et Cosmochimica Acta, 2011, 75(17): 4728-4751.

[87] 莫绍星,龙星皎,李瀛,等.基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J].吉林大学学报(地球科学版),2014,44(5):1647-1658.

[88] Okuyama Y, Sasaki M, Nakanishi S, et al.Geochemical CO2 trapping in open aquifer storage-the Tokyo Bay model[J]. Energy Procedia, 2009, 1(1): 3253-3258.

[89] Tambach T, Koenen M, Bergen F V. Geochemical evaluation of CO2 injection into storage reservoirs based on case-studies in The Netherlands[J]. Energy Procedia, 2011, 4: 4747-4753.

[90] Xu T, Sonnenthal E, Spycher N, et al. TOUGHREACT-A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration[J]. Computers and geosciences, 2006, 32(2): 146-165.

[91] Xu T, Zheng L, Tian H. Reactive transport modeling for CO2 geological sequestration[J]. Journal of Petroleum Science and Engineering, 2011, 78(3-4): 765-777.

[92] Liu H, Hou Z, Were P, et al. Modelling CO2-brine-rock interactions in the Upper Paleozoic formations of Ordos Basin used for CO2 sequestration[J]. Environmental Earth Sciences, 2015, 73(5): 2205-2222.

[93] 匡冬琴, 李琦, 王永胜, 等. 神华碳封存示范项目中CO2注入分布模拟[J].岩土力学,2014,35(9):2623-2633+2641.

[94] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J].煤炭学报,2022,47(1):45-60.

[95] 张尚军, 张宇, 胡静娟, 等. 煤炭地下气化矿物碳酸化固定二氧化碳的研究[J]. 煤炭转化, 2013, 36(3): 9-13+38.

[96] 马立强, 翟江涛, NGO Ichhuy. CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J].煤炭学报,2022,47(12):4228-4236.

[97] 张吉雄, 张强, 周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12):4167-4181.

[98] 钟秀平,陈晨,郭威,等.“以废治废”的CO2封存新思路——碱性固废固化于地下废弃空间[J].钻探工程,2023,50(S1):492-497.

[99] 谢和平,张吉雄,高峰,等.煤矿负碳高效充填开采理论与技术构想[J].煤炭学报,2024,49(1):36-46.

[100] 刘浪, 方治余, 王双明, 等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术, 2024, 52(2): 292-308.

[101] 李树刚,张静非,林海飞,等.双碳战略中煤气共采技术发展路径的思考[J].煤炭科学技术,2024,52(1):138-153.

[102] Ngo I, Ma L, Zhai J, et al. Enhancing fly ash utilization in backfill materials treated with CO2 carbonation under ambient conditions[J]. International Journal of Mining Science and Technology, 2023, 33(3):323-337.

[103] Li Z, Chen J, Cheng Y, et al. Kinetic evaluation and applicability analysis on direct aqueous carbonation of industrial/mining solid wastes[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111358.

[104] Wang Z, Xu S, Zheng S, et al. Accelerated carbonation and stabilization of BOF slag: data fitting relationship between particle size and CO2 sequestration[J]. Journal of Sustainable Cement-Based Materials, 2024, 13(5):726-737.

[105] 张亚朋,崔龙鹏,刘艳芳,等.3种典型碱性固废的CO2矿化封存性能[J].环境工程学报,2021,15(7):2344-2355.

[106] 任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.

[107] 马佳慧,王毅斌,冯敬武,等.工业含钙固废矿化CO2的实验[J].化工进展,2024,43(6):3440-3449.

[108] 韩思杰, 桑树勋. 煤岩超临界CO2吸附机理及表征模型研究进展[J]. 煤炭科学技术, 2020, 48(1): 227-238.

[109] Kasala E E , Wang J , Lwazi H M ,et al. The influence of hydraulic fracture and reservoir parameters on the storage of CO2 and enhancing CH4 recovery in Yanchang formation[J].Energy, 2024, 296: 131184.

[110] Portier S, Rochelle C. Modelling CO2 solubility in pure water and NaCl-type waters from 0 to 300 °C and from 1 to 300 bar application to the Utsira formation at Sleipner[J]. Chemical Geology, 2005, 217(3-4): 187-199.

[111] Di M , Sun R , Geng L ,et al. An Accurate model to calculate CO2 solubility in pure water and in seawater at hydrate–liquid water two-phase equilibrium[J].Minerals, 2021, 11(4):1-22.

[112] Chen Z, Yang D. Prediction of equilibrium interfacial tension between CO2 and water based on mutual solubility[J]. Industrial & Engineering Chemistry Research, 2018, 26(57): 8740–8749.

[113] 孙亚军, 熊小锋, 陈歌, 等. 煤矿矿井水水质形成及演化的水动力场-水化学场-微生物场耦合作用与数值模拟[J]. 煤炭学报, 2024, 49(2): 941-957.

[114] 孙亚军, 张莉, 徐智敏, 等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报, 2022, 47(1): 423-437.

[115] Luo Y, He D. Research status and future challenge for CO2 sequestration by mineral carbonation strategy using iron and steel slag[J]. Environmental Science and Pollution Research, 2021, 28(36): 49383-49409.

[116] 杨涛,胡婧妍,韩世勇,等.煤矿CO2矿化充填技术研究进展[J].华北科技学院学报,2023,20(5):30-35.

[117] 武鸽,刘艳芳,崔龙鹏,等.典型工业固体废物矿化反应性能的比较[J].石油学报(石油加工),2020,36(1):169-178.

[118] 周林邦,孙星海,刘泽,等.大掺量粉煤灰基矿井充填材料的制备、工作性能与微观结构的研究[J].煤炭学报,2023,48(12):4536-4548.

[119] 高影,涂亚楠,王卫东,等.含钙镁煤基固废CO2矿化封存及其产物性能研究进展[J].煤炭科学技术,2024,52(5):301-315.

[120] 冉武平,张永太,艾贤臣,等.工业固体废弃物矿化封存CO2研究综述[J].科学技术与工程,2023,23(16):6718-6727.

[121] 王秋华,吴嘉帅,张卫风.碱性固废矿化封存二氧化碳研究进展[J].化工进展,2023,42(3):1572-1582.

[122] 李文秀,杨宇航,黄艳,等.二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J].化工进展,2023,42(4):2047-2057.

[123] 孙小辉,孙宝江,王志远,等.酸性天然气与水体系内超临界-气-液-水合物多相平衡模型[J].石油学报,2021,42(9):1212-1223.

[124] Chiquet P , Daridon J L , Broseta D ,et al. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage[J].Energy Conversion & Management, 2007, 48(3):736-744.

[125] Bikkina P K , Shoham O , Uppaluri R .Equilibrated interfacial tension data of the CO2–water system at high pressures and moderate temperatures[J].Journal of Chemical & Engineering Data, 2011, 56(10): 3725-3733.

[126] A C C, A M R, A J M L, et al. Interfacial tension measurements and wettability evaluation for geological CO2 storage[J]. Advances in Water Resources, 2009, 32(1): 98-109.

[127] 李星. 强化泡沫体系气液界面流变性对驱油效果的影响[J]. 石油地质与工程, 2021,35(2): 72-75+79.

[128] Wang C, Ou L. Molecular dynamics investigation of the liquid-gas interface behavior: Simulations of the sodium oleate/sodium abietate/water system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635:128086-128093.

[129] 孙长宇,王文强,陈光进,等.注CO2油气藏流体体系油/水和油/气界面张力实验研究[J].中国石油大学学报(自然科学版),2006, 30(5):109-112.

[130] Zhang J, Feng Q, Wang S ,et al. Estimation of CO2–brine interfacial tension using an artificial neural network[J].The Journal of Supercritical Fluids, 2016, 107(4):31-37.

[131] Pereira L M C, Chapoy A, Burgass R, et al. I Interfacial tension of CO2+brine systems: Experiments and predictive modelling[J]. Advances in Water Resources, 2017, 103:64-75.

[132] 张春会, 靳静, 黄鹂. CO2注入咸水层的动力弥散-对流-溶解计算模型[J]. 辽宁工程技术大学学报(自然科学版), 2012, 31(1): 42-45.

[133] Li W, Nan Y, You Q, et al. CO2 solubility in brine in silica nanopores in relation to geological CO2 sequestration in tight formations: Effect of salinity and pH[J]. Chemical Engineering Journal, 2021, 411:127626.

[134] 朱宁军, 宋永臣, 张毅, 等. 地质封存中CO2溶解度的测量与模型研究进展[J]. 环境科学与技术, 2011, 34(3): 162-166.

[135] Duan Z, Sun R, Zhu C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl−, and SO42−[J]. Marine Chemistry, 2006, 98(2-4): 131-139.

[136] 黄成刚,袁剑英,曹正林,等.咸化湖盆储集层中咸水流体与岩石矿物相互作用实验模拟研究[J].矿物岩石地球化学通报,2015,34(2):343-348.

[137] 邢俊涛.储层矿物溶解动力学探究及机理分析[D].青岛:中国石油大学(华东),2018.

[138] Verma G, Reddy K R. Review of carbon sequestration by alkaline industrial wastes: potential applications in landfill biogeochemical cover systems[J].Journal of Material Cycles and Waste Management, 2024, 26(4):1934-1958.

[139] Li R , Wen H , Fan S ,et al. Migration characteristics of constant elements in the process of coal dissolution by liquid CO2[J].Energy, 2024, 295: 131006.1-131006.16.

[140] Shaw R , Mukherjee S .The development of carbon capture and storage (CCS) in India: A critical review[J].Carbon Capture Science & Technology, 2022,2: 10036.

[141] 吕文玉, 吕超, 张文忠, 等. 木里地区煤系天然气水合物储层中CO2封存试验研究[J]. 煤田地质与勘探, 2023, 51(6): 40-49.

[142] 张烈辉,张涛,赵玉龙,等.二氧化碳-水-岩作用机理及微观模拟方法研究进展[J].石油勘探与开发,2024,51(1):199-211.

[143] 刘肖,王福刚,岳高凡,等.鄂尔多斯盆地石盒子组地层二氧化碳矿物封存能力评估[J].矿物岩石地球化学通报,2015,34(2):395-400.

[143] 王天齐, 李红艳, 王栋. 胶东大尹格庄金矿碳酸盐矿物的特征、物源及其在金成矿过程中的作用[J]. 岩石学报, 2024, 40(4): 1264-1284.

[145] 张小东, 靳沙沙, 张瑜, 等. scCO2作用下不同含水性煤孔裂隙结构变化机制[J]. 煤炭学报, 2024, 49(7): 3143-3153.

[146] 杜佰松, 朱光有, 刘舒飞, 等. 浅析影响方解石生长和溶解的动力学因素及机制[J]. 地学前缘, 2023, 30(4): 335-351.

[147] 王明格, 宋土顺, 徐九华, 等. 乙酸条件下方解石溶解特征及其地质意义[J]. 科技导报, 2016, 34(18): 230-235.

[148] 唐红梅, 鲜海洋, 朱建喜, 等. 文石与方解石在含Cu2+溶液中的界面溶解—再沉淀[J]. 地球化学, 2022, 51(3): 251-260.

[149] Wang X , Kong X , Liu Q ,et al. Effect of Clay Minerals on Carbonate Precipitation Induced by Cyanobacterium Synechococcus sp[J].Microbiology Spectrum, 2023, 11(3): 1-13.

[150] Chen S , Kang B , Zha F ,et al.Effects of different Mg/Ca molar ratio on the formation of carbonate minerals in microbially induced carbonate precipitation (MICP) process[J].Construction and Building Materials, 2024, 442: 137643.

[151] 郭佩, 柏淑英, 李长志, 等. 准噶尔盆地玛湖凹陷风城组页岩自生长英质矿物的成因机理及其储层改造意义[J]. 地质学报, 2023, 97(7): 2311-2331.

[152] 蔡来星, 杨田, 田景春, 等. 致密砂岩储层中黏土矿物发育特征及其生长机理研究进展[J]. 沉积学报, 2023, 41(6): 1859-1889.

[153] 彭东宇, 唐洪明, 王子逸, 等. 致密砾岩储层与CO2作用机理及控制因素实验研究[J]. 油气地质与采收率, 2023, 30(2): 94-103.

[154] 汪其堃,马思齐,阳华龙,等.铝硅酸盐聚合物聚合机理与动力学研究进展[J].硅酸盐学报,2022,50(9):2551-2566.

[155] Chen M , Lu P , Song Y ,et al.Geochemical modeling to aid experimental design for multiple isotope tracer studies of coupled dissolution and precipitation reaction kinetics[J].Acta Geochimica, 2024,43(1):1-13.

[156] Schott J , Saldi G D , Zhu C ,et al. Mechanisms controlling albite dissolution/precipitation kinetics as a function of chemical affinity: New insights from experiments in 29Si spiked solutions at 150 and 180°C[J]. Geochimica et Cosmochimica Acta, 2024, 374: 284-303.

[157] 周实. (Ba,Mg)CO3和(Ca,Mg)CO3体系结晶动力学比较研究[D].天津: 天津大学, 2022.

[158] 王甜甜. 煤系铁赋存形态及水–煤/岩作用过程中的溶解释放机制[J]. 煤田地质与勘探, 2023, 51(7): 92-102.

[159] 张虎元, 李小雅, 童艳梅, 等. 高庙子膨润土在模拟水泥浸出液中的黏土矿物相变[J]. 硅酸盐学报, 2023, 51(1): 215-225.

[160] 李树刚, 周雨璇, 胡彪, 等. 低阶煤吸附孔结构特征及其对甲烷吸附性能影响[J]. 煤田地质与勘探, 2023, 51(2): 127-136.

[161] 代旭光, 王猛, 冯光俊, 等. 超临界CO2-水-页岩作用矿物溶蚀/沉淀特征及其对页岩吸附性的影响[J]. 煤炭学报, 2023, 48(7): 2813-2826.

[162] 田建锋, 喻建, 张志国. 砂岩中碱性溶蚀研究进展[J]. 地质科技通报, 2022, 41(5): 83-93+100.

[163] 邓家胜, 王子逸, 何旺达, 等. 绿泥石与CO2溶液反应实验研究[J]. 油气藏评价与开发, 2022, 12(5): 777-783+808.

[164] Li P , Ou Y , Chen H ,et al. Pore throat distributions and movable fluid occurrences in different diagenetic facies of tight sandstone reservoirs in the Triassic Chang 6 reservoirs, Wuqi Area, Ordos Basin, China[J]. Journal of Petroleum Exploration and Production Technology, 2024, 14(7): 1783-1797.

[165] 丁茜, 王静彬, 杨磊磊, 等. 基于模拟实验探讨断裂-流体-岩石体系中的矿物溶解-矿化过程[J]. 石油与天然气地质, 2023, 44(1): 164-177.

[166] 吕心瑞, 邬兴威, 孙建芳, 等. 深层碳酸盐岩储层溶洞垮塌物理模拟及分布预测[J]. 石油与天然气地质, 2022, 43(6): 1505-1514.

[167] 徐帆,谢巧勤,徐亮,等.甘肃临泽正北山凹凸棒石黏土矿物学及形成机制[J].地质科学,2022,57(2):587-605.

[168] Cai Y, Wei R, Jin D, et al. Complex precipitation behavior and mechanism of NbC during ferrite transformation in a HSLA steel[J].Metallurgical and Materials Transactions A, 2024, 55(9):3208-3213.

[169] Liu C, Wang K, Li W. Isotopic responses of magnesium to two types of dissolution-reprecipitation processes for the growth of the double-carbonate mineral norsethite[J]. American Mineralogist, 2023, 108(2): 326-337.

[170] 王婷,陈鹏,尹玲玲.矿物饱和指数对矿区地下水水化学场特性的研究[J].矿业安全与环保,2006,(6):24-25+29.

[171] 李富杰,齐有强,弓昊天.矿物溶解再沉淀过程研究综述[J].矿物岩石地球化学通报,2024,43(1):240-258.

[172] 胡婷,芮振华.CO2地质利用与封存中碳迁移及其相态分布规律[J].天然气工业,2024,44(4):56-67.

[173] Fang X, Zhang S. The complete chloroplast genome sequence of Rotheca myricoides (Hochst.) Steane & Mabb., a traditional medicinal plant[J]. Mitochondrial DNA Part B, 2021, 6(9): 2699-2700.

[174] 宋来弟, 李美蓉, 于海鹏, 等. 不同pH条件下长石和方解石矿物选择性溶蚀过程[J]. 东北石油大学学报, 2022, 46(3): 74-83+10.

[175] 杨源显, 陈强路, 丘靥, 等. 方解石与含硅流体的水-岩反应实验及其对“硅化碳酸盐岩”储层成因的启示[J]. 高校地质学报, 2021, 27(02): 218-228.

[176] 田希坤, 徐钿昕, 闫君, 等. 基于CaO/CaCO3的高温热化学储能改性机制研究[J]. 工程热物理学报, 2023, 44(9): 2541-2548.

[177] 邓宇林,郭绪磊,罗明明,等.基于扫描电镜和CT成像技术的碳酸盐岩溶蚀作用微观结构和变化规律研究[J].中国岩溶,2022,41(5):698-707.

[178] 赵博, 文光才, 孙海涛, 等. 煤岩渗透率对酸化作用响应规律的试验研究[J]. 煤炭学报, 2017, 42(8): 2019-2025.

[179] 常承兵, 刘生玉, 张雷, 等. 钙硅酸盐矿物湿法矿化封存二氧化碳实验研究[J]. 无机盐工业, 2023, 55(9): 57-65.

[180] 孔啸, 赵传文, 孙健, 等. 电石渣直接湿法矿化固定CO2的反应特性[J]. 洁净煤技术, 2023, 29(4): 129-136.

[181] 郎子轩, 张亚朋, 刘艳芳, 等. 响应面曲线法优化含盐污水协同电石渣矿化封存CO2[J]. 环境工程学报, 2022, 16(10): 3478-3485.

[182] 刘源涛, 董必钦, 邢锋, 等. NaAlO2对贻贝质碳铝酸盐胶凝材料水化和性能的影响[J]. 硅酸盐学报, 2023, 51(11): 2763-2779.

[183] Omar K ,Javier Vilcáez. The role of alkalinity on metals removal from petroleum produced water by dolomite[J].Applied Geochemistry, 2024, 161: 105879.

[184] 吴志豪, 高燕燕, 温芮, 等. 秦岭北麓沣河流域地下水-地表水化学特征及转化关系[J]. 地球科学与环境学报, 2024, 46(3): 334-350.

[185] 刘改过, 曾勇, 闫铁柱. 城市河流温室气体浓度及排放通量的时空特征[J]. 中国环境科学, 2023, 43(8): 4409-4417.

[186] 赵雯涵, 吴水木, 李英杰. 钙基碱性固废循环捕集CO2性能研究进展[J]. 煤炭学报, 2022, 47(11): 3926-3935.

[187] 梅杰琼, 陆诗建, 任雪峰, 等. CO2间接矿化碱性固废制备多晶型碳酸钙研究进展[J]. 洁净煤技术, 2024, 30(03): 59-71.

[188] 宋旭艳, 韩静云, 张伟, 等. 复合矿化剂作用下增钙煤矸石的活化效果研究[J]. 建筑材料学报, 2013, 16(4): 706-710.

[189] 王晓龙, 万超然, 郜时旺, 等. 粉煤灰CO2矿化利用溶出实验[J]. 电力建设, 2014, 35(7): 58-62.

[190] 赵康, 伍俊, 马超, 等. 我国煤矿固、液、气“三废”地质封存研究现状与生态环境协同发展的关系[J]. 煤炭学报, 2024, 49(6): 2785-2798.

[191] Miao E, Du Y, Zheng X, et al. CO2 sequestration by direct mineral carbonation of municipal solid waste incinerator fly ash in ammonium salt solution: Performance evaluation and reaction kinetics[J]. Separation and Purification Technology, 2023, 309:123103-.

[192] Shao X, Qin B, Shi Q, et al. The impacts of CO2 mineralization reaction on the physicochemical characteristics of fly ash: A study under different reaction conditions of the water-to-solid ratio and the pressure of CO2[J]. Energy, 2024, 287: 129676.

[193] 莫淳,廖文杰,梁斌,等.碱性固废活化钾长石-CO2矿化提钾的生命周期碳排放与成本评价[J].化工学报,2017,68(6):2501-2509.

[194] 李磊,潘鑫,刘鲁豫.碱性固废CO2矿化协同减污降碳关键技术进展[J].洁净煤技术,2024,30(7):1-12.

[195] 王洪跃.碱性固体废弃物液相直接矿化隔离CO2的实验研究[D].武汉: 华中科技大学,2019.

[196] Elkhaldi I , Roziere E ,Géraldine Villain, et al. Effect of accelerated carbonation on electrical resistivity and microstructure of clinker-slag-limestone cement based concretes[J]. Materials and structures, 2024, 57,(1): 1-16.

[197] 郭淑佳, 王晗, 秦张峰, 等. 水煤气变换反应作用下的CO和CO2混合物加氢转化制烃和醇–热力学平衡研究[J]. 燃料化学学报(中英文), 2023, 51(4): 482-491.

[198] 刘斌, 张林民, 宋旭东, 等. 残炭对高镁煤灰熔融特性影响机制研究[J]. 煤炭转化, 2022, 45(1): 73-81.

[199] 郭伟杰, 朱天彬, 李亚伟, 等. FactSage热力学计算在耐火材料抗渣侵蚀性中的应用[J]. 硅酸盐通报, 2024, 43(3): 1110-1122.

[200] 何宏平, 鲜海洋, 朱建喜, 等. 从矿物粉晶表面反应性到矿物晶面反应性—以黄铁矿氧化行为的晶面差异性为例[J]. 岩石学报, 2019, 35(1): 129-136.

[201] 杨科,魏祯,赵新元,等.黄河流域煤电基地固废井下绿色充填开采理论与技术[J].煤炭学报,2021,46(S2):925-935.

[202] 刘思楠,张力为,苏学斌,等.二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述[J].水利水电技术,2020,51(11):13-22.

[203] Mutailipu M, Liu Y, Jiang L, et al. Measurement and estimation of CO2–brine interfacial tension and rock wettability under CO2 and super-critical conditions[J]. Journal of Colloid and Interface Science, 2019, 534: 605-617.

[204] 梁艳玲,霍润科,宋战平,等.基于矿物溶解理论的砂岩化学损伤动态模型[J].材料导报,2024,38(8):163-169.

[205] 范钢伟,骆韬,张东升,等.碱水作用下弱胶结粉砂岩孔隙结构分形特征与非线性劣化机制[J].中国矿业大学学报,2024,53(1):34-45.

[206] 居隆. 二氧化碳咸水层溶解封存中对流混合机理的数值研究[D]. 武汉:华中科技大学, 2022.

[207] 刘娜娜,刘立,明晓冉,等.鄂尔多斯盆地伊金霍洛旗附近二叠系石千峰组岩石学、地球化学特征及其固碳能力分析[J].岩石矿物学杂志,2014,33(2):255-262.

[208] P.N.K. De Silva, Ranjith P G, Choi S K. A study of methodologies for CO2 storage capacity estimation of coal[J]. Fuel, 2012,91(1):1-15.

中图分类号:

 X701    

开放日期:

 2028-12-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式