- 无标题文档
查看论文信息

论文中文题名:

 厚尾序列均值变点的线下检验与在线监测    

姓名:

 乔瑞    

学号:

 19201103018    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0701    

学科名称:

 理学 - 数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 时间序列分析    

第一导师姓名:

 杨云锋    

第一导师单位:

 西安科技大学    

第二导师姓名:

 金浩    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Offline test and online monitoring of mean change point of heavy-tailed sequence    

论文中文关键词:

 厚尾序列 ; 均值变点 ; 最小二乘估计 ; Bootstrap抽样 ; M估计 ; 在线监测 ; 平均运行长度    

论文外文关键词:

 heavy-tailed sequence ; mean change point ; the least square estimation ; Bootstrap sampling ; M-estimation ; online monitoring ; average run length    

论文中文摘要:

       变点问题的统计推断对分析数据和数学建模有着非常重要的地位。在实际应用中,高斯序列不能刻画呈现尖峰厚尾的高频数据的特性,且高斯序列变点问题的理论研究已经非常完善。另一方面,厚尾序列中存在较多的异常值,呈现尖峰厚尾的特征,对其进行变点检验存在一定困难,且理论研究尚不完善。因此对厚尾序列的变点检验成为了目前变点问题需要攻克的热点研究内容之一。此外,在现实生活中同时存在着线下数据和在线数据,对于在线数据利用线下检验的方法并不可行,因此本文将对厚尾序列的均值变点分别进行线下检验和在线监测,具体如下:

       线下检验的内容主要基于最小二乘估计的方法讨论了p阶自回归过程的厚尾序列均值变点检验问题。为了得到检验统计量精确的极限分布和消除变点位置对检验的影响,提出了两个修正的Ratio检验统计量:supremum型检验统计量和integral型检验统计量。其次在原假设下证明了这两种检验统计量的极限分布是Lévy过程的泛函,并在备择假设下证明其一致性。为了避免对未知参数的估计,采用Bootstrap子抽样方法确定更精确的统计量临界值,并理论证明了原假设下Bootstrap抽样方法的一致性。蒙特卡洛模拟表明,基于Bootstrap方法的Ratio检验统计量不仅很好的控制了经验水平,且经验势也达到令人满意的效果,大幅度提高了变点位置位于样本后半段时检验的经验势。此外在原假设下integral型检验统计量的经验水平更接近于显著性水平,备择假设下supremum型检验统计量的经验势更高。随后将两个检验统计量的结论推广到了两个变点的情形,并给出了具体的极限分布。最后通过两组实际数据验证了所提均值变点线下检验方法的有效性和可行性。

       鉴于基于最小二乘估计的厚尾序列均值变点检验严重受厚尾指数的影响,在线监测的主要内容考虑了基于M估计的厚尾指数为0到2的独立厚尾序列的均值变点在线监测。基于修正的监测统计量,得到原假设下修正的监测统计量的极限分布不再是Lévy过程的泛函,而是布朗运动的泛函,并推导了备择假设下的一致性。数值模拟表明了基于M估计的厚尾序列均值变点在线监测的检验势达到非常可观的程度,且平均运行长度也较短。这验证了本文所提监测方法的合理性和有效性。

论文外文摘要:

      Statistical inference of change point problems plays a very important role in analyzing data and mathematical modeling. In practical applications, the Gaussian sequence cannot describe the characteristics of high-frequency data with sharp pe- aks and heavy tails, and the theoretical study of the Gaussian sequence change  point problem has been very perfect. On the other hand, there are many outliers in the heavy-tailed sequence, showing the characteristics of sharp peaks and heavy tails, which is difficult to test the change point, and the theoretical research is not perfect. Therefore, the change point test of heavy-tailed sequence has become one of the hot research contents that need to be overcome in the current change point problem. In addition, there are both offline data and online data in real life, and it is not feasible to use offline testing for online data. Therefore, this paper will con- duct offline testing and online monitoring of the mean change point of the heavy- tailed sequence respectively,as follows:

        The content of the offline test is mainly based on the method of least squares estimation, and the problem of the mean change point test of the heavy-tailed seq- uence of the p-order autoregressive process is discussed. In order to obtain the exact limiting distribution of the test statistics and eliminate the influence of the position of the change point on the test, two modified Ratio test statistics are proposed: the supremum test statistic and the integral test statistic. Secondly, the limiting distributions of the two test statistics are proved to be functional of Lévy process under the null hypothesis, and their consistency is proved under the altern- ative hypothesis.In order to avoid the estimation of unknown parameters,Bootstrap sub-sampling method is used to determine the more accurate critical value of stati- stics, and the consistency of Bootstrap sampling method under the null hypothesis is proved theoretically. Monte Carlo simulations show that the Ratio test statistics based on the Bootstrap method not only controls the empirical size well, but also achieves a satisfactor effect of the empirical power, which greatly improves the test empirical power when the change point is located in the second half of the sample. In addition, the empirical size of the integral-type test statistic under the null hypothesis is closer to the significance level, and the empirical power of the supremum-type test statistic under the alternative hypothesis is higher. Then the conclusions of the two test statistics are extended to the case of two change points, and the specific limiting distribution is given. Finally, the validity and feasibility of the proposed method mean change point offline test are verified by two sets of actual data.

         The main content of the online monitoring is to consider the online monitori- ng of the mean change point of the independent heavy-tailed sequence with a heavy-tailed index from 0 to 2 based on M estimation. Based on the modified monitoring statistic, the limiting distribution of the modified monitoring statistic under the null hypothesis is no longer the functional of the Lévy process, but the functional of the Brownian motion, and the consistency under the alternative hypothesis is deduced. Numerical simulation shows that the online monitoring of mean change point of heavy-tailed sequence based on M-estimation has a very considerable empirical power and a short average run length, which verifies the rationality and effectiveness of the monitoring method proposed in this paper.

参考文献:

[1]Page E S.Continuous inspection schemes[J].Biometrika,1954,42(1):100-115.

[2]Picard D.Testing and estimating change-points in time series[J].Advances in Applied Probability,1985,17(4):841-867.

[3]Csörgő M,Horváth L.Invariance principles for change point problems[J].Jour- nal of Multivariate Analysis,1988,27(2):151-168.

[4]Perron P.Dealing with structural breaks[M].Working Papers Series,Departme- nt of Economics,Boston University,2005.

[5]Bai J.Least squares estimation of a shift in linear process[J].Journal of Time Series Analysis,2010,15(5):453-472.

[6]程贝丽,周菊玲.几何分布中变点的贝叶斯分析[J].新疆师范大学学报(自然科学版),2021,40(2):1-5.

[7]郑金辉,余旌胡,丁义明,等.回归模型参数的变点检测方法研究[J].数学物理学报,2021,41(4):1124-1134.

[8]胡尧,谌业文.广义Pareto分布变点检测似然比模型[J].应用数学学报,2021, 44(4):553-573.

[9]徐小平,刘君,李拂晓.面板数据中方差多变点的估计[J].统计与决策,2021,37 (12):10-14.

[10]Chen L,Wu W B.Testing for trends in high-dimensional time series[J].Journal of the American Statistical Association,2019,114(526):869-881.

[11]Ling J,Li X Q,Yang W Z,et al.The CUSUM statistic of change point under NA sequences[J].Applied Mathematics:A Journal of Chinese Universities,2021, 36(4):512-520.

[12]Kim D,Kon S J.Structural change and time dependence in models of stock returns[J].Journal of Empirical Finance,1999,6(5):283-308.

[13]Pešta M,Wendler M.Nuisance-parameter-free changepoint detection in non st- ationary series[J].Test:An Official Journal of the Spanish Society of Statistics and Operations Research,2020,29(2):379-408.

[14]Kai W,Leschinski C,Sibbertsen P.Change-in-mean tests in long-memory time series:a review of recent developments[J].Asta Advances in Statistical Analy- sis,2019,103(2):237-256.

[15]Gardner L A.On detecting changes in the mean of normal variates[J].The Ann- als of Statistics,1969,40(1):116-126.

[16]Sen A,Srivastava S.On tests for detecting change in mean when variance is unknown[J].Annals of the Institute of Statistical Mathematics,1975,27(1): 479-486.

[17]李彩彩.时变波动情形下相依序列均值变点的统计推断[D].西安:西安科技大学, 2021.

[18]Dehling H,Rooch A,Taqqu M S.Power of change-point tests for long-range dependent data[J].Electronic Journal of Statistics,2017,11(1):2168-2198.

[19]Habibi R.A note on change point detection using weighted least square[J].Applied Mathematics,2011,2(10):1309-1312.

[20]韩四儿,田铮,武新乾.一类股市波动性预测模型的多变点检验[J].系统工程理论与实践,2006,26(3):94-101.

[21]齐培艳,段西发,田铮.基于小波的非参数回归模型均值变点的Bootstrap监测[J].系统工程理论与实践,2014,34(10):2650-2655.

[22]潘婉彬,丁瑜,罗丽莎.基于自正则的K-S方法对QFII羊群行为的变点检验[J].数理统计与管理,2016,35(5):943-950.

[23]张靖泽,沈根祥.央行沟通与通货膨胀预期[J].财经科学,2021,46(7):51-65.

[24]杜刚,赵冬梅,刘鑫,等.基于重尾分布的风电功率波动特性概率分布[J].电力自动化设备,2021,41(7):52-57+72.

[25]吴亚玲,姜珊,吴先华,等.基于极值理论的广东省台风灾害损失分布及其金融对策研究[J].灾害学,2017,32(1):126-131+220.

[26]孙成娇.基于声学测距的水下协同导航状态估计方法研究[D].哈尔滨:哈尔滨工程大学,2019.

[27]星艳.具有未知输入的事件触发状态估计方法研究[D].北京:北方工业大学, 2021.

[28]于群,刘启林.广义Pareto分布在南方电网大停电事故分析中的应用[J].数学的实践与认识,2020,50(19):175-185.

[29]程然,缪礼锋,王婷婷.带厚尾噪声的鲁棒Student's t容积滤波器[J].控制理论与应用,2019,36(7):1174-1181.

[30]李雪松.卡尔曼滤波在多普勒测速中的应用研究[D].哈尔滨:哈尔滨工程大学,2019.

[31]刘舰东,金浩.基于稳定分布的ARCH模型均值变点Subsampling检验[J].统计与信息论坛,2018,33(6):14-18.

[32]Jin H,Tian Z,Qin R B.Bootstrap tests for structural change with infinite variance observations[J].Statistics & Probability Letters,2009,79(19):1985- 1995.

[33]Wang D,Guo P J,Xia Z M.Detecting and estimation of structural change in heavy-tailed sequence[J].Communications in Statistics-Theory and Methods, 2016,46(2):815-827.

[34]高奎.厚尾序列均值变点的统计推断及其应用研究[D].西安:西安科技大学, 2020.

[35]Qin R B,Liu W Q.Ratio detection for mean change in mixing observations [J].Communications in Statistics-Theory and Methods,2018,48(7):1-16.

[36]赵文芝,吕会琴.厚尾相依序列均值变点Ratio检验[J].山西大学学报(自然科学版),2016,39(3):410-414.

[37]王丹,皮林.重尾序列均值变点的经验似然比检验[J].应用概率统计,2021,37 (2):111-122.

[38]Cribben I.Change points in heavy-tailed multivariate time series:methods using precision matrices[J].Applied Stochastic Models in Business and Indus- try,2019,35(2):299-320.

[39]Horváth L,Horváth Z,Hušková M.Ratio tests for change point detection[J].Ins- titute of Mathematical Statistics,2008,63(9):293-304.

[40]白会会.基于M-估计的厚尾序列结构变点检验研究[D].西安:西安科技大学, 2021.

[41]Belaire-Franch J,Kim J Y,Amador R B.Corrigendum to “Detection of change in persistence of a linear time series”[J].Journal of Econometrics,2002,109 (2):389-392.

[42]Peštová B,Pešta M.Abrupt change in mean using block bootstrap and avoiding variance estimation[J].Computational statistics,2018,33(1):413-441.

[43]陈璐.两类厚尾相依序列变点的估计和检验[D].淮北:淮北师范大学,2019.

[44]Chen Z S,Li F X,Zhu L,et al.Monitoring mean and variance change-points in long-memory time series[J].Journal of Systems Science & Complexity,2022, 35(03):1009-1029.

[45]Shao X.A simple test of changes in mean in the possible presence of long- range dependence[J].Journal of Time Series Analysis,2011,32(6):598-606.

[46]秦瑞兵,孙丽,宋冠仪.线性回归模型系数变点的在线监测[J].陕西科技大学学报,2020,38(1):175-179.

[47]Efron B.Bootstrap methods:another look at the jackknife[J].The annals of St- atistics.1979,7(1):1-26.

[48]Kokoszka P,Wolf M.Subsampling the mean of heavy-tailed dependent observ- ations[J].Journal of Time Series Analysis,2004,25(2):217-234.

[49]Antoch J,Hušková M,Prášková Z.Effect of dependence on statistics for deter- mination of change[J].Journal of Statistical Planning and Inference,1997,60 (2):291-310.

[50]Breiman L.On some limit theorems similar the arc-sin law[J].Theory of Proba- bility and its Applications,1965,10(2):323-331.

[51]Phillips P C B, Solo V.Asymptotics for linear processes[J].The Annals of Stat- istics,1992,20(2):971-1001.

[52]Mandelbrot B.The variation of certain speculative prices[J].The Journal of B- usiness,1963,36(4):394-491.

[53]Horváth L,Kokoszka P.A bootstrap approximation to a unit root test statistic for heavy-tailed observations[J].Statistics & Probability Letters,2003,62(2): 163-173.

[54]McMurry T L,Politis D N.Banded and tapered estimates for autocovariance matrices and the linear process bootstrap[J].Journal of Time Series Analysis, 2010,31(6):471-482.

[55]Nolan J P.Numerical calculation of stable densities and distribution functions [J].Communications in Statistics.Stochastic Models,1997,13(4):759-774.

[56]Aminikhanghahi S,Cook D J.A survey of methods for time series change point detection[J].Knowledge and Information Systems,2017,51(2):339-367.

[57]齐培艳,段西发.多项式回归模型系数变点的在线监测[J].山西大学学报(自然科学版),2019,42(3):507-516.

[58]贾伟亚,魏岳嵩,杨兆新.自回归模型参数变点的修正残差CUSUM监测[J].淮北师范大学学报(自然科学版),2020,41(1):1-7.

[59]陈占寿,田铮,丁明涛.线性回归模型参数变点的在线监测[J].系统工程理论与实践,2010,30(6):1047-1054.

[60]Chen Z S,Xiao Y T,Li F X.Monitoring memory parameter change-points in long-memory time series[J].Empirical Economics,2020,60(5):2365-2389.

[61]Qi P Y,Jin Z,Tian Z,et al.Monitoring persistent change in a heavy-tailed sequence with polynomial trends[J].Journal of the Korean Statistical Society, 2013,42(4):497-506.

[62]Chen Z,Tian Z,Wei Y S.Monitoring change in persistence in linear time series [J].Statistics & Probability Letters,2010,80(19):1520-1527.

[63]金浩,高奎,张思.基于Bootstrap方法的重尾相依序列均值变点Ratio检验[J].统计与决策,2019,35(23):11-16.

中图分类号:

 O212.1    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式