- 无标题文档
查看论文信息

论文中文题名:

 多组分气体在煤狭缝微孔中吸附和扩散的分子模拟及工程应用    

姓名:

 杨晓娜    

学号:

 19220214104    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 非常规气体安全开采    

第一导师姓名:

 石钰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-17    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Molecular simulation and engineering application of multi-component gases adsorption and diffusion in coal slit micropores    

论文中文关键词:

 多组分气体 ; 吸附 ; 扩散 ; 分子结构 ; 煤阶 ; 表面活性剂    

论文外文关键词:

 Multi-component gases ; Adsorption ; Diffusion ; Molecular structure ; Coal rank ; Surfactant    

论文中文摘要:

       高效开发煤层气不仅能够遏制煤矿瓦斯事故,而且对于缓解我国天然气供给压力和优化能源结构具有重大战略意义。煤中多组分气体的吸附和扩散机理是煤层气开采过程中的关键问题。本文基于巨正则蒙特卡洛方法和分子动力学方法,从微观角度探究了多组分气体在煤狭缝微孔中的竞争吸附和扩散规律。

       基于煤的微晶结构参数,建立了不同分子结构的煤狭缝孔隙模型,并对煤的芳香单元延展度、芳香单元堆砌层数、表面缺陷及含氧官能团四个因素对CO2和CH4竞争吸附和扩散的影响机制进行研究。发现CO2和CH4的吸附量、平均等量吸附热和扩散系数均随芳香单元延展度增加显著增大;随着芳香单元堆砌层数的增加,CO2和CH4的吸附量及平均等量吸附热有所减小,扩散系数呈现先增大后减小的趋势;表面缺陷导致CO2和CH4吸附量、平均等量吸附热和扩散系数均减小;表面含氧官能团降低了CO2和CH4的吸附能力和扩散能力。

       基于不同种类煤的分子结构,建立了褐煤、烟煤和无烟煤的狭缝孔隙模型,探讨了煤阶对多组分气体竞争吸附和扩散的影响。发现多组分气体吸附能力随煤阶升高而增强;CH4/CO2、N2/CH4和CO2/H2O在不同煤阶煤狭缝微孔中的吸附选择性大小关系为褐煤<烟煤<无烟煤;不同煤阶煤与气体的相互作用能大小关系为褐煤<烟煤<无烟煤;多组分气体在煤狭缝微孔中扩散系数大小随煤阶的升高而增大;吸附和扩散膨胀比均随煤阶升高而增大。

       通过构建不同体系的煤-水-纳米颗粒改性表面活性剂模型,探究了纳米颗粒改性表面活性剂对煤体润湿性以及CH4吸附和扩散的影响。发现纳米颗粒改性表面活性剂可以促进水和煤的结合与吸附,CH4优先吸附在煤的狭缝孔隙中,含表面活性剂压裂液可抑制CH4的吸附和扩散。

         结合山西寺河煤矿的矿井条件和气体吸附理论,开展分子模拟的工程应用,对3号煤层中CH4的含气量进行预测,发现与实测值吻合较好,研究对预防煤与瓦斯突出及瓦斯治理具有指导意义。

论文外文摘要:

    The efficient development of coalbed methane (CBM) can not only curb coal mine gas accidents, but also has important strategic significance for relieving natural gas supply pressure and optimizing China's energy structure. The mechanism of multi-component gases adsorption and diffusion in the coal is still a key problem in the process of CBM exploitation. The adsorption and diffusion mechanism of multi-component gases in coal slit micropores and its influencing factors were explored from the microscopic level using the Grand Canonical Monte Carlo (GCMC) method and Molecular Dynamics (MD) method.

     According to the microcrystal structure parameters of coal obtained from experiments, the influence of molecular structure on the competitive adsorption and diffusion of CO2 and CH4 was investigated by constructing different coal slit models with different extension degree of basic structural unit, the number of basic structural unit, surface defects, and oxygen-containing functional groups. It is found that the adsorption capacity, the isosteric heat of adsorption and diffusion coefficients of CO2 and CH4 increase significantly with the increase of the extension degree of basic structural unit. With the increase of the number of basic structural unit, the adsorption capacity and the isosteric heat of adsorption of CO2 and CH4 increase, and the diffusion coefficients show a trend of frist increasing and then decreasing. The surface defects lead to the decrease of CO2 and CH4 adsorption capacity, the isosteric heat of adsorption and diffusion coefficients. The presence of surface oxygen-containing functional groups can reduce the adsorption and diffusion capacity of CO2 and CH4.

    Based on the molecular structure of different types of coal, slit models of brown coal, bituminous coal and anthracite coal were established to investigate the effect of coal rank on competitive adsorption and diffusion of multi-component gases. It is found that the multi-component gases adsorption capacity increase with the increase of coal rank. The adsorption selectivity of CH4/CO2, N2/CH4 and CO2/H2O in three rank coal slit micropores is brown coal < bituminous coal < anthracite coal. The interaction energy relationship between the three coal molecules and the multi-component gases is brown coal < bituminous coal < anthracite coal. With the increase of coal rank, both the diffusion coefficients of multi-component gases and the swelling ratio of adsorption and diffusion increase in coal slit micropores.

     The influence of nanoparticles modified surfactant on coal wettability and CH4 adsorption and diffusion was investigated by constructing different system models. The results show that the nanoparticle modified surfactant can promote the bonding and adsorption of H2O and coal, and reduce the interaction between coal surface and H2O, and the hydrophobic effect of surfactant decreases obviously. CH4 is preferentially adsorbed in slit pores of coal, and the fracturing fluid containing surfactant can inhibit the adsorption and diffusion of CH4 in coal seam.

    Combined with the mine conditions of Sihe Coal mine in Shanxi Province and gas adsorption theory, the engineering application of molecular simulation was studied, and the gas content of CH4 in No.3 coal seam was predicted, which is of great significance to the prevention of coal and gas outburst and gas control.

参考文献:

邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-58.

[2] 白桦. 全球非常规天然气开发利用及经验借鉴[J]. 中国石油企业, 2019, 12: 64-68.

[3] Moore T A. Coalbed methane: a review[J]. International Journal of Coal Geology, 2012, 101(1): 36-81.

[4] Wang Z Z, Fu X H, Deng Z, et al. Investigation of adsorption-desorption, induced strains and permeability evolution during N2-ECBM recovery[J]. Natural Resources Research, 2021, 30: 3717-3734.

[5] Zarrouk S J, Moore T A. Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam, Huntly Coalfield, New Zealand[J]. International Journal of Coal Geology, 2009, 77(1-2): 153-161.

[6] 管保山, 刘玉婷, 刘萍, 等. 煤层气压裂液研究现状与发展[J]. 煤炭科学技术, 2016, 44(5): 11-17.

[7] Zhao Y X, Liu S M, Elsworth D, et al. Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy[J]. Energy & Fuels, 2014, 28: 3704-3711.

[8] 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854.

[9] Zhang M, Fu X H. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 49-62.

[10] 边强, 白刚, 张潇文. 高阶煤孔隙特性及对吸附气体影响的研究[J]. 山西焦煤科技, 2018, 7: 18-23.

[11] 王翠霞, 刘伟, 刘纪坤. 阜康矿区气煤孔隙结构特征研究[J]. 工矿自动化, 2019, 45(7): 92-96.

[12] 洪林, 高大猛, 王继仁, 等. 低温低压下煤微孔吸附特性研究[J]. 中国安全科学学报, 2018, 28(12): 77-82.

[13] 武腾飞, 都喜东, 李琪琦. 煤与泥页岩孔隙结构和吸附特性的对比分析[J]. 煤矿安全, 2020, 51(11): 169-174.

[14] 孟宪明. 煤孔隙结构和煤对气体吸附特性研究[D]. 山东科技大学, 2007.

[15] 李祥春, 李忠备, 张良, 等. 不同煤阶煤样孔隙结构表征及其对瓦斯解吸扩散的影响[J]. 煤炭学报, 2019, 44(S1): 142-156.

[16] 聂百胜, 伦嘉云, 王科迪, 等. 煤储层纳米孔隙结构及其瓦斯扩散特征[J]. 地球科学, 2018, 43(5): 1755-1762.

[17] 杜肖. 煤层气非均匀介质中扩散渗流耦合数值研究[D]. 中国矿业大学, 2014.

[18] 张路路, 魏建平, 温志辉, 等. 基于动态扩散系数的煤粒瓦斯扩散模型[J]. 中国矿业大学学报, 2020, 49(1): 62-68.

[19] 安丰华, 贾宏福, 刘军. 基于煤孔隙构成的瓦斯扩散模型研究[J]. 岩石力学与工程学报, 2021, 40(5): 987-996.

[20] 陆云, 边春杨, 徐秀丽, 等. 各表征方法下煤焦微观结构的研究进展[J]. 化工管理, 2021, 30: 6-8.

[21] 葛涛, Wang M, 李芬, 等. 高阳炼焦煤碳,氧结构研究与光谱学表征[J]. 煤炭学报, 2021, 46(3): 1024-1031.

[22] 姜波, 秦勇. 高温高压实验变形煤XRD结构演化[J]. 煤炭学报, 1998, 23(2): 188-193.

[23] 孙丽娟. 不同煤阶软硬煤的吸附-解吸规律及应用[D]. 中国矿业大学, 2013.

[24] 李子文. 低阶煤的微观结构特征及其对瓦斯吸附解吸的控制机理研究[D]. 中国矿业大学, 2015.

[25] 杨华平, 李明. 煤表面分子对甲烷吸附力场研究[J]. 西安科技大学学报, 2015, 35(1): 96-99.

[26] Ju Y W, Li X S. New research progress on the ultrastructure of tectonically deformed coals[J]. Progress in Natural Science, 2009, 19: 1455-1466.

[27] Ju Y W, Yan Z F, Li X S, et al. Structural characteristics and physical properties of tectonically deformed coals[J]. Journal of Geological Research, 2012: 852945.

[28] Hao S X, Wen J, Yu X P, et al. Effect of the surface oxygen groups on methane adsorption on coals[J]. Applied Surface Science, 2013, 264: 433-442.

[29] Dang Y, Zhao L M, Lu X Q, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017, 423: 33-42.

[30] 章丽娜. 煤分子结构与外界环境对煤层气生成及运移的影响[D]. 太原理工大学, 2015.

[31] 王宝俊, 章丽娜, 凌丽霞, 等. 煤分子结构对煤层气吸附与扩散行为的影响[J]. 化工学报, 2016, 67(6): 2548-2557.

[32] 潘保龙. 煤的微观结构对软硬煤瓦斯吸附差异的影响[D]. 河南理工大学, 2017.

[33] 唐巨鹏, 马圆, 田虎楠, 等. 煤变质程度对CH4吸附行为影响研究[J]. 西南石油大学学报: 自然科学版, 2018, 40(4): 143-150.

[34] 赵俊龙, 汤达祯, 许浩, 等. 煤基质甲烷扩散系数测试及其影响因素分析[J]. 煤炭科学技术, 2016, 44(10): 77-82+145.

[35] 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业, 2005, 25(1): 19-21.

[36] 陈刚, 秦勇, 胡宗全, 等. 不同煤阶深煤层含气量差异及其变化规律[J]. 高校地质学报, 2015, 21(2): 274-279.

[37] 孟帅. 不同变质程度煤的扩散规律研究[D]. 河南理工大学, 2018.

[38] Liu Z J, Zhang Z Y, Lu Y Y, et al. Sorption hysteresis characterization of CH4 and CO2 on anthracite, bituminous coal, and lignite at low pressure[J]. Journal of Energy Resources Technology, 2018, 140(1): 012203.

[39] 崔永君, 张群, 张泓, 等. 不同煤级煤对CH4、N2和CO2单组分气体的吸附[J]. 天然气工业, 2005, 25(1): 61-65.

[40] Qiu F, Liu D M, Cai Y D, et al. Methane adsorption interpreting with adsorption potential and its controlling factors in various rank coals[J]. Processes, 2020, 8: 390.

[41] Li X C, Chen X L, Zhang F, et al. Energy calculation and simulation of methane adsorbed by coal with different metamorphic grades[J]. ACS Omega, 2020, 5(25): 14976-14989.

[42] 降文萍. 煤阶对煤吸附能力影响的微观机理研究[J]. 中国煤层气, 2009, 6(2): 19-22+34.

[43] 高正阳, 杨维结. 不同煤阶煤分子表面吸附水分子的机理[J]. 煤炭学报, 2017, 42(3): 753-759.

[44] 郑贵强. 不同煤阶煤的吸附、扩散及渗流特征实验和模拟研究[D]. 中国地质大学, 2012.

[45] Li Y, Yang Z Z, Li X G. Molecular simulation study on the effect of coal rank and moisture on CO2/CH4 competitive adsorption[J]. Energy & Fuels, 2019, 33(9): 9087-9098.

[46] 任子阳. 寺家庄矿无烟煤对CH4和CO2混合气体的吸附特性研究[J]. 现代矿业, 2013, 7: 178-180.

[47] 崔永君. 煤吸附多组分气体的特征及模型研究[J]. 煤田地质与勘探, 2004, 32(z1): 36-41.

[48] 林海飞, 蔚文斌, 李树刚, 等. 煤体吸附CH4及CO2热力学特性试验研究[J]. 中国安全科学学报, 2018, 28(6): 129-134.

[49] 周军平, 鲜学福, 李晓红, 等. CO2/CH4在狭缝型孔内竞争吸附的分子模拟[J]. 煤炭学报, 2010, 35(9): 1512-1517.

[50] 韩金轩. 含水煤层中气体吸附、解吸-扩散的分子模拟研究[D]. 西南石油大学, 2015.

[51] 白俊杰, 侯朝阳. CH4、N2、CO2在煤中的解吸扩散特性研究[J]. 煤, 2018, 27(4): 24-27.

[52] Zhou W N, Wang H B, Zhang Z, et al. Molecular simulation of CO2/CH4/H2O competitive adsorption and diffusion in brown coal[J]. RSC Advances, 2019, 9(6): 3004-3011.

[53] 李树刚, 白杨, 林海飞, 等. CH4, CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9): 2476-2483.

[54] Liu X Q, He X, Qiu N X, et al. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal[J]. Applied Surface Science, 2016, 389(15): 894-905.

[55] Long H, Lin H F, Yan M, et al. Adsorption and diffusion characteristics of CH4, CO2, and N2 in micropores and mesopores of bituminous coal: Molecular dynamics[J]. Fuel, 2021, 292(1): 120268.

[56] Liu J, Li S K, Wang Y. Molecular dynamics simulation of diffusion behavior of CH4, CO2, and N2 in mid-rank coal vitrinite[J]. Energies, 2019, 12(19): 3744.

[57] Song Y, Jiang B, Li F L. Molecular dynamic simulations of selective self-diffusion of CH4/CO2/H2O/N2 in coal[C]. IOP Conf. Series: Materials Science and Engineering, 2017: 012014.

[58] Charrière D, Pokryszka Z, Behra P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine basin(France)[J]. International Journal of Coal Geology, 2010, 81(4): 373-380.

[59] 谢向向, 张玉贵, 姜家钰, 等. 钻井液对煤心煤层气解吸损失量的影响[J]. 煤田地质与勘探, 2015(1): 30-34+42.

[60] 高晓荣,崔勇,赵晓霞,等. 羟基和酯基型Gemini双季铵盐表面活性剂在煤沥青表面的润湿特性[J]. 化工学报, 2017, 68(1): 230-237.

[61] Xu G, Chen Y P, Eksteen J, et al. Surfactant-aided coal dust suppression: a review of evaluation methods and influencing factors[J]. Science of the Total Environment, 2018, 639(22):1060-1076.

[62] 林海飞, 刘宝莉, 严敏, 等. 非阳离子表面活性剂对煤润湿性能影响的研究[J]. 中国安全科学学报,2018, 28(5): 123-128.

[63] 李树刚,郭豆豆,白杨, 等. 不同质量分数SDBS 对煤体润湿性影响的分子模拟[J]. 中国安全科学学报,2020, 30(3): 21-27.

[64] 高波, 康毅力, 史斌, 等. 压裂液对煤岩储层解吸-扩散性能的影响[J]. 煤田地质与勘探, 2016, 44(6): 79-84.

[65] 陆钰, 康毅力, 李相臣, 等. 压裂液对致密煤岩甲烷吸附/解吸及扩散行为的影响[C]. 2019年煤层气学术研讨会, 2019.

[66] Kang Y L, Huang F S, You L J, et al. Impact of fracturing fluid on multi-scale mass transport in coalbed methane reservoirs[J]. International Journal of Coal Geology, 2016, 154-155: 123-135.

[67] 杨兆中, 韩金轩, 张健, 等. 泡沫压裂液添加剂对煤层甲烷扩散影响的分子模拟[J]. 煤田地质与勘探, 2019, 47(5): 94-103.

[68] 李超飞. 屯兰2#煤与压裂液相互作用机制的实验与分子模拟[D]. 太原理工大学, 2019.

[69] Helgeson M E, Hodgdon T K, Kaler E W, et al. Formation and rheology of viscoelastic “double networks” in wormlike micelle-nanoparticle mixtures[J]. Langmuir, 2010, 26(11): 8049-8060.

[70] Alsaba M T, Dushaishi M, Abbas A K. A comprehensive review of nanoparticles applications in the oil and gas industry[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(4): 1389-1399.

[71] 张霜霜, 东野升富, 徐灿, 等. SiO2纳米粒子型低浓度阳离子表面活性剂压裂液研究[J]. 钻采工艺, 2021, 44(2): 102-106.

[72] 翟恒来, 齐宁, 孙逊, 等. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.

[73] 肖博, 蒋廷学, 张正道, 等. 纳米复合纤维基表面活性剂压裂液性能评价[J]. 科学技术与工程, 2018, 18(29): 64-69.

[74] 战丽颖. 煤岩气藏压裂液损害评价及加入纳米粒子改性[D]. 西南石油大学, 2015.

[75] Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid[J]. Industrial & Engineering Chemistry Research, 2015, 54: 9456-9477.

[76] Allen M P, Tildesley D J. Computer simulation of liquids[M]. New York: Oxford University Press, 1987: 110-112.

[77] 阳庆元, 刘大欢, 仲崇立. 金属-有机骨架材料的计算化学研究[J]. 化工学报, 2009, 4(60): 805-819.

[78] 金智新, 武司苑, 邓存宝, 等. 基于蒙特卡洛方法的煤吸附水机理[J]. 煤炭学报, 2017, 42(11): 2968-2974.

[79] 唐巨鹏, 马圆, 田虎楠, 等. 基于蒙特卡洛方法的无烟煤中甲烷分子吸附量模拟研究[J]. 地球物理学进展, 2017, 32(4): 1823-1827.

[80] 赵春. 成庄区块3号煤层煤层气储层特征[J]. 煤, 2017, 26(3): 12-14+40.

[81] Yin T T, Liu D M, Cai Y D, et al. A new constructed macromolecule-pore structure of anthracite and its related gas adsorption: A molecular simulation study[J]. International Journal of Coal Geology, 2020, 220: 103415.

[82] Shen X Z, Yan F, Li M Q, et al. Molecular simulation of adsorption of quinolone homologues on FAU zeolite[J]. China Petroleum Processing and Petrochemical Technology, 2016, 18: 110-116.

[83] Wu S Y, Deng C B, Wang X F. Molecular simulation of flue gas and CH4 competitive adsorption in dry and wet coal[J]. Journal of Natural Gas Science and Engineering, 2019, 71: 102980.

[84] Meng J Q, Li S C, Niu J X, et al. Effects of moisture on methane desorption characteristics of the Zhaozhuang coal: experiment and molecular simulation[J]. Environment Earth Sciences, 2020, 79(1): 44.

[85] Wen Z H, Yang Y P, Wang Q, et al. Mechanism and characteristics of CH4/CO2/H2O adsorption in lignite molecules[J]. Geofluids, 2021, 8: 5535321.

[86] Gao D M, Hong L, Wang J R, et al. Molecular simulation of gas adsorption characteristics and diffusion in micropores of lignite[J]. Fuel, 2020, 269: 117433.

[87] Staib G, Sakurovs R, Gray E. A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals[J]. International Journal of Coal Geology, 2013: 106-117.

[88] Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal: a review[J]. International Journal of Coal Geology, 2011, 87: 49-71.

[89] Zhao Y L, Feng Y H, Zhang X X. Molecular simulation of CO2/CH4 self- and transport diffusion coefficients in coal[J]. Fuel, 2016, 165: 19-27.

[90] 叶建平. 中国煤层气勘探开发进展综述[J]. 地质通报, 2006, 25(9-10): 1074-1078.

[91] 张小兵, 张子敏, 张玉贵. 力化学作用与构造煤结构[J]. 中国煤炭地质, 2009, 21(2):10-14.

[92] Li X S, Ju Y W, Hou Q L, et al. Response of macromolecular structure to deformation in tectonically deformed coal[J]. Acta Geologica Sinica, 2013, 87(1): 82-90.

[93] 卢守青, 撒占友, 张永亮, 等. 高阶原生煤和构造煤等量吸附热分析[J]. 煤矿安全, 2019, 50(4): 169-172.

[94] 杨兆中, 徐鸿涛, 付嫱, 等. 基于分子模拟的煤层CH4解吸规律研究[J]. 油气藏评价与开发, 2016, 6(5): 67-71.

[95] Li J R, Kuppler R J, Zhou H C, et al. Selective gas adsorption and seperation in metal-organic frameworks[J]. Chemical Society Review, 2009, 38(5): 1477-1504.

[96] Spiro C L, Kosky P G. Space-filling models for coal. 2. extension to coals of various ranks[J]. Fuel, 1982, 61: 1080-1084.

[97] Xiang J H, Zeng F G, Li B, et al. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. Journal of Fuel Chemistry and Technology, 2013, 41: 391-399.

[98] Milan R, John C C, Ondřej Š, et al. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic[J]. International Journal of Coal Geology, 2007, 71: 115-121.

[99] Han J X, Bogomolov A K, Makarova E Y, et al. Molecular simulations on adsorption and diffusion of CO2 and CH4 in moisture coals[J]. Energy & Fuels, 2017, 31: 13528-13535.

[100] Chen C G, Xian X H, Zhang D J, et al. The dependence of temperature to the adsorption of methane on anthracite coal and its char[J]. Coal Conversion, 1995, 18: 88-92.

[101] 尹锦涛, 田杰苗, 孙建博, 等. 煤层气水力压裂增产机理及效果评价方法研究[J]. 非常规油气, 2015, 2(5): 72-76.

[102] Helgeson M E, Hodgdon T K, Kaler E W, et al. Formation and rheology of viscoelastic “double networks” in wormlike micelle-nanoparticle mixtures[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2010, 26(11): 8049-8060.

[103] 刘德华, 肖佳林, 关富佳. 页岩气开发技术现状及研究方向[J]. 石油天然气学报, 2011, 33(1): 119-123.

[104] 贾秉义, 晋香兰, 李建武, 等. 低煤级煤储层游离气含量计算-以准噶尔盆地东南缘为例[J]. 煤田地质与勘探, 2015, 2: 33-36.

中图分类号:

 TD713    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式