- 无标题文档
查看论文信息

题名:

 单级高功率因数副边磁复位正激变换器研究    

作者:

 王自恒    

学号:

 20206227119    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085800    

学科:

 工学 - 能源动力    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 功率变换器技术及应用    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

提交日期:

 2023-06-25    

答辩日期:

 2023-06-01    

外文题名:

 Research on single - stage high power factor secondary - side magnetic reset forward converter    

关键词:

 正激变换器 ; 磁复位 ; 单位功率因数 ; 平均电流控制策略    

外文关键词:

 Forward Converter ; Magnetic Reset ; Unity Power factor ; Average current control strategy    

摘要:

针对典型正激变换器应用于单级功率因数校正中存在能量传输死区,输入电流谐波大的问题,本文对副边附加电容实现磁复位的单级正激PFC变换器进行研究,对于正激变换器在单级功率因数校正中的推广应用具有重要指导意义。

首先通过分析副边附加电容磁复位正激变换器的电路组成和基本工作原理,得出了变换器在半个工频周期内五种工作状态下的能量传输过程及相应特性。其次,对半个工频周期内变换器不同工作状态的演变过程进行了深入研究,指出附加电容既可使变压器磁复位,还能解决典型正激变换器在工频周期内存在的能量传输死区问题,并推导了变换器在不同工作状态下的输入电流表达式,以及实现单位功率因数的占空比变化关系,指出在交流输入电压过零点附近时,变换器的占空比保持恒定即可实现单位功率因数;随着输入电压瞬时值的升高,变换器实现单位功率因数的占空比开始逐渐下降。然后,探讨了输入电压和负载电阻对变换器临界正激电感及正激电感电流过零临界相角的影响,指出正激电感的临界值随输入电压瞬时值的升高或负载电阻的减小而减小,其电流过零的临界相角随交流输入电压有效值或负载电阻的增大而增大,考虑到附加电容与变压器励磁能量转移过程的关系,综合得出了附加电容的取值范围。最后,在给定的输入电压和负载电阻变化范围内结合输入功率脉动对功率器件应力的影响后,提出了功率器件的选型方法。

根据样机设计指标及所提出的变换器设计方法,研制了一台基于平均电流控制策略的48V/4A实验样机。实验结果表明:所研制样机在给定的交流输入电压和负载电阻变化范围内最高可获得0.996的功率因数,且其它各项电气技术指标均满足预期,验证了理论分析的正确性和设计方法的可行性。

外文摘要:

Aiming at the problems of energy transmission dead zone and large input current harmonics in typical forward converters applied to single-stage power factor correction, this paper investigates the single-stage forward PFC converter with magnetic reset by attaching capacitors on the secondary side, which is an important guideline for the application of forward converter in single-stage power factor correction.

Firstly, the circuit composition and basic working principle of the magnetic reset forward converter with additional capacitor on the secondary side are analyzed, and the energy transfer process and corresponding characteristics of the converter under five operating states in half an operating frequency cycle are derived. Secondly, the evolution of different operating states of the converter in half an operating frequency cycle is studied in depth, and it is pointed out that the additional capacitor can not only magnetically reset the transformer, but also solve the problem of energy transfer dead zone in the operating frequency cycle of a typical forward converter. It is pointed out that the duty cycle of the converter can realize the unit power factor when the AC input voltage passes the zero point; as the input voltage transient value increases, the duty cycle of the converter to realize the unit power factor starts to decrease gradually. Then, the effects of input voltage and load resistance on the critical forward inductance and the critical phase angle of the forward inductance current over zero of the converter are discussed. The range of values of the additional capacitance is synthesized. Finally, the selection method of power devices is proposed after combining the influence of input power pulsation on power device stress within the given range of input voltage and load resistance variation.

According to the prototype design index and the proposed converter design method, a 48V/4A experimental prototype based on the average current control strategy was developed. The experimental results show that the developed prototype can obtain a power factor of up to 0.996 within the range of AC input voltage and load resistance, and other electrical technical indicators meet expectations, which verifies the correctness of the theoretical analysis and the feasibility of the design method.

参考文献:

[1]张艳杰. 单相有源功率因数校正电路的设计与实现[D]. 成都: 电子科技大学, 2015.

[2]Mohanty P R , Panda A K , Das D . An active PFC boost converter topology for power factor correction[C]// 2015 Annual IEEE India Conference (INDICON). IEEE, 2016.

[3]于广, 刘龙, 申华, 鞠尔男. 带功率因数校正的开关电源磁性元件设计[J]. 电气传动, 2021, 51(15): 20-24.

[4]纪丙华, 龚超, 黄学龙, 张靖维. 一种新型无桥双Boost PFC变换器[J]. 电力电子技术, 2018, 52(12): 129-132.

[5]何大印, 许建平, 吕润泽, 罗欢, 王磊. 电流源电荷泵串联谐振PFC变换器分析与设计[J]. 中国电机工程学报, 2020, 40(09): 2996-3008.

[6]刘树林, 刘健. 开关变换器分析与设计[M]. 北京:机械工业出版社,2011.

[7]孟宪增, 孟涛, 贲洪奇. 基于无源钳位方式的三相单级全桥功率因数校正变换器电压尖峰抑制策略[J]. 电工技术学报, 2019, 34(16): 3373-3385.

[8]IEC 61000-3-2: 2009 Electromagnetic Compatibility (EMC), Part 3-2: Limits- limits for harmonic current emissions (equipment current ≤ 16A per phase)[S], 2009.

[9]章治国, 刘俊良, 郭强等. 一种单级隔离型软开关功率因数校正变换器[J]. 电工技术学报, 2018, 33(14): 3222-3230.

[10]张志, 孟利伟, 唐校, 张兆云, 谢小鲲. 有源钳位单级隔离型AC-DC功率因数变换器[J]. 电工技术学报, 2021, 36(12): 2616-2626.

[11]Kim J S, Lee S H, Cha W J, et al. High-efficiency bridgeless three-level power factor correction rectifier[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2) :1130-1136.

[12]郑学林. 新型单级PFC变换器及输出电压二次谐波消减控制策略[D]. 重庆:重庆大学,2020.

[13]罗欢, 许建平, 罗艺文, 沙金. 全输入电压范围高功率因数脉冲序列控制DCM Boost PFC变换器[J]. 中国电机工程学报,2019,39(06) :1758-1872.

[14]贾益行, 吴红飞, 韩蒙等. 准单级功率变换的高效单相三端口功率因数校正变换器[J]. 电力系统自动化 ,2018, 42(18): 136-141.

[15]Hac, Bodur, Suat, et al. A new ZVT snubber cell for PWM-PFC boost converter[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 300-309.

[16]Bist V, Singh B. A unity power factor bridgeless isolated Cuk converter-fed brushless DC motor drive[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4118-4129.

[17]Chiu H J, Lo Y K, Lee H C, et al. A single-stage soft-switching flyback converter for power-factor-correction applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 2187-2190.

[18]Yan T, Xu J, Zhang F, et al. Variable-on-time-controlled critical-conduction-mode flyback PFC converter[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6091-6099.

[19]Shin J W, Choi S J, Cho B H. High-efficiency bridgeless flyback rectifier with bidirectional switch and dual output windings[J]. IEEE transactions on power electronics, 2014, 29(9): 4752-4762.

[20]林通, 江平, 姚佳. 一种基于耦合电感的零电流纹波功率因数校正变换器[J]. 电工技术学报, 2022, 37(18): 4732-4744.

[21]曹勇, 杨飞, 李春晖, 王一娉, 彭富明. 不同耦合系数下的交错并联电流连续模式Boost功率因数校正变换器的传导电磁干扰[J]. 电工技术学报, 2019, 34(10): 2176-2186.

[22]周玉婷, 吴羽, 任小永, 陈乾宏, 张之梁. 基于改进恒导通时间控制的临界连续导通模式Boost功率因数校正变换器[J]. 电工技术学报,2021,36(20):4329-4338.

[23]Sartori H C , Beltrame F , Mário L. Martins, et al. Evaluation of an optimal design for a single-phase boost PFC converter (CCM) considering different magnetic materials core[C]// 2013 Brazilian Power Electronics Conference. IEEE, 2014.

[24]Lin, Xiang, Wang, et al. AC-DC bridgeless buck converter with high PFC performance by inherently reduced dead zones[J]. IET Power Electronics, 2018, 11(9):1575-1581.

[25]吕寻斋, 刘雪山, 周群等. 谐振式单开关多路低纹波输出LED驱动器[J]. 电工技术学报, 2021, 36(10): 2081-2091.

[26]Lee, Sin-Woo, Do, et al. A single-Switch AC-DC LED driver based on a Boost-Flyback PFC converter with lossless snubber[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 1375-1384.

[27]阎铁生, 李明洪, 陶权保等. DCM-CRM Boost-Flyback单级PFC变换器[J]. 电力自动化设备, 2019, 39(11): 152-158.

[28]姚凯, 阮新波. Boost-Flyback单级PFC变换器[J]. 南京航空航天大学学报, 2009, 41(04): 505-509.

[29]吕惠. 基于单级功率因数校正的开关电源设计[D]. 威海: 山东大学, 2022.

[30]Zhao Q , Lee F C , Tsai F S . Voltage and current stress reduction in single-stage power factor correction AC/DC converters with bulk capacitor voltage feedback[J]. IEEE Transactions on Power Electronics, 2002, 17(4): 477-484.

[31]Zhao C , Zhang J , Wu X . An improved variable On-Time control strategy for a CRM flyback PFC converter[J]. IEEE Transactions on Power Electronics, 2017, 32(2): 915-919.

[32]Kim M . Feed-forward control scheme to improve light-load power factor for single-stage flyback PFC converters[J]. Electronics Letters, 2019, 56(1).

[33]Rezazade S , Salehi M , Changizian M , et al. Analysis of PFC improvement and THD reduction achieved by PFC-based zeta converter and PWM-Rectifier[C]// 2019 International Power System Conference (PSC). 2019.

[34]李郎, 杨岳毅, 曾怡达. 一种高效率次级谐振单级反激PFC变换器[J]. 电源学报, 2015, 13(01): 56-60.

[35]赵金刚,马辉,张超兰,陈曦.基于LLC单级无桥PFC的无频闪LED驱动电源[J].电工电能新技术, 2019, 38(06): 79-88.

[36]许化民. 单级功率因数校正技术[D]. 南京:南京航空航天大学, 2002.

[37]周万传. 双管正激式单级PFC变换器的研究[D]. 株洲: 湖南工业大学, 2010.

[38]詹亮. 高效正反激组合式DC-DC变换器研究[D]. 合肥: 合肥工业大学, 2016.

[39]王星星, 嵇保健, 洪峰, 叶尊敬. 一种改进的正反激并网微型逆变器[J]. 电工技术学报, 2017, 32(18): 202-210.

[40]Tacca H.E. Power factor correction using merged flyback-forward converters[J].Power Electronics, IEEE Transactions on, 2000, 15(4): 585-594.

[41]Shet V N . A High Power Factor Forward Flyback Converter with Input Current Waveshaping[C]// International Conference on Power Electronics. IEEE, 2006.

[42]李江松. 基于准谐振控制的正激PFC变换器的研究[D]. 杭州: 杭州电子科技大学, 2016.

[43]王国礼, 金新民. 一种正-反激组合变换器的研究[J]. 电力电子技术, 2001(02): 4-6.

[44]刘树林, 曹剑, 胡传义, 严纪志, 王传良. 正-反激组合变换器的能量传输模式及输出纹波电压分析[J]. 电工技术学报, 2019, 34(08): 1647-1656.

[45]彭银乔, 刘树林, 吴浩, 陆斌, 吴星. 正-反激组合变换器变压器的优化设计[J]. 电工技术学报, 2020, 35(S2): 470-476.

[46]杨威. 单相功率因数校正控制技术的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

[47]刘潇. 基于单周期控制的Boost功率因数校正电路研究[D]. 孝感: 湖北工业大学, 2014.

[48]Chao H , Lin W M , Guo X J . One-Cycle Control of single-phase PFC rectifiers with fast dynamic response and low distortion[C]// 2012 7th International Power Electronics and Motion Control Conference (IPEMC 2012). IEEE, 2012.

[49]江涛, 毛鹏, 谢少军. 单周期控制PFC变换器的输入电流畸变研究[J]. 中国电机工程学报, 2011, 31(12): 51-56.

[50]王智, 方炜, 刘晓东. 数字控制的单周期PFC整流器的设计与分析[J]. 中国电机工程学报, 2014, 34(21): 3423-3431.

[51]张城. 基于非线性载波控制的boost型PFC电路研究[D]. 南宁: 广西大学, 2011.

[52]Zhu Y P , Zhang C J . Nonlinear-carrier control for power factor correction[J]. Power Electronics, 2006.

[53]Chiang, J.-H, Liu, et al. A Simple implementation of nonlinear-carrier control for power factor correction rectifier with variable slope ramp on field-programmable gate array[J]. IEEE Transactions on Industrial Informatics, 2013, 9(3): 1322-1329.

[54]Abedi M , Song B M , Ernzen B . Optimum tracking of nonlinear-model predictive control for Boost based PFC rectifier[C]// 2011 IEEE 43rd Southeastern Symposium on System Theory. IEEE, 2011.

[55]李文渝. Boost型功率因数校正电路的设计与研究[D]. 杭州: 浙江大学, 2017.

[56]鄂本. 交错降压型功率因数校正变换器研究[D]. 武汉: 武汉理工大学, 2018.

[57]杨汝.平均电流模式的控制电路设计[J]. 电力电子技术, 2002(04): 66-69.

[58]Bist V , Singh B . A Brushless DC motor drive with power factor correction using isolated zeta converter[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4):2064-2072.

中图分类号:

 TM46    

开放日期:

 2026-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式