- 无标题文档
查看论文信息

论文中文题名:

 石墨烯-钛复合材料的多尺度结构设计及性能研究    

姓名:

 周悦    

学号:

 18211026004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080501    

学科名称:

 工学 - 材料科学与工程 - 材料物理与化学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料物理与化学    

研究方向:

 复合材料    

第一导师姓名:

 杨庆浩    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-24    

论文答辩日期:

 2021-05-27    

论文外文题名:

 Study on properties of graphene-titanium composites with multi-scale configuration    

论文中文关键词:

 钛基复合材料 ; 石墨烯 ; 构型化 ; 力学性能 ; 组织    

论文外文关键词:

 Titanium matrix composites ; Graphene ; Configuration ; Mechanical property ; Microstructure    

论文中文摘要:

钛及钛合金具有密度低、比强度高、抗蚀性能佳等优点,成为航空航天领域理想 的结构材料。而航空工业的高速发展对其构件性能愈加要求苛刻,传统观念下,研究 者总是追求钛基复合材料的增强相和基体呈均匀分布,仅产生有限的增强。因此,本 文以石墨烯纳米片(GNPs)为增强体,广泛应用的纯钛和 Ti-6Al-4V(TC4)为基体, 利用粉末冶金调控 GNPs 的分布形态及基体的变形建立复合材料的多尺度结构,改善 其性能。通过光学显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)、 拉曼光谱(Raman)、X 射线光电子能谱(XPS)和 X 射线衍射仪(XRD)等表征复合 粉体形貌及特性、材料组织结构等,测试了复合材料硬度、压缩等力学性能,探究不 同高能球磨体系下石墨烯及尺度结构对其组织与力学行为的影响。 利用不同高能球磨时间(0、2、5、10、15 h)制备单尺度构型 GNPs/TC4 复合材 料,随球磨时间增加,复合粉体细化越明显,同时原位生成 TiC。烧结后复合材料晶粒 逐级细化,晶界 TiC 相层逐渐变厚,改善强度和硬度,塑性下降。球磨 10 h 时,强度 (1929 MPa)和塑性(17%)达到良好平衡,15h 时强度最高。 利用不同粗细晶比例(9:1、8:2、7:3、6:4、5:5)建立双尺度构型 GNPs/TC4 复合 材料,采用最高强度球磨粉体为细晶粉体与 GNPs 球磨混合,再加入粗晶粉体即原始 TC4。随细晶含量增加,“核-壳”结构越明显,细晶“壳”层变厚,提升强度和硬度, 降低塑性。强塑性匹配最佳的条件为 7:3,其屈服强度 1287 MPa,延伸率 13%。 利用三种不同球磨工艺并引入不同 GNPs 含量制备分级复合构型 GNPs/Ti 复合材 料。分步加入 GNPs 时,组织存在多种的 TiC 形态且石墨烯较完整,提高强度。分步 加入 Ti 时,形成非均质结构,晶粒间应力重新分布,改善塑性。随 GNPs 含量增加, 强度增大,分步加 Ti 的 0.5 wt.%GNPs/Ti 复合材料压缩屈服 1256 MPa,硬度为 480 HV, 比纯钛分别高出 402%和 238%。较于对照组复合材料均质组织的有限增强,非均质组 织晶粒尺寸差异造成位错塞积,使其具有协调变形能力,改善材料力学性能。

论文外文摘要:

As promising structural materials used for aerospace applications, titanium and titanium alloy owns many advantages of low density, high specific strength, good corrosion resistance and so on. However, with the rapid development of aviation industry, the performance of components is increasingly demanding. While affected by conventional view, researchers always pursue the goal of uniform distribution of reinforcing phase and matrix about titanium matrix composites, and only produce limiting strengthening effect. In this paper, graphene nanoplates (GNPs) as reinforcement, widely used pure titanium and Ti-6Al-4V (TC4) as matrix, the distribution and morphology of GNPs and the deformation matrix were controlled by powder metallurgy to establish multi-scale structure of the composites to improve performance. By optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), the morphology and properties of composite powder and materials were characterized. Besides, the hardness and compression performance of composites as mechanical property were tested. The effects of graphene and scale-structure on composites microstructure and mechanical behavior in different high-energy ball milling systems were investigated. The single-scale configuration GNPs/TC4 composites were prepared by different high-energy ball milling times (0,2,5,10,15 h). With the increasing time, the refinement of the composite powder became more obvious, and TiC was formed in situ. After sintering, the grains of composites were refined step by step, and the TiC phase layer at grain boundary was gradually thickened, improving the strength and hardness. But the plasticity decreased. After milling for 10 h, the strength (1929 MPa) and plasticity (17%) reached a good balance, and 15h sample reached the highest strength. The dual-scale configuration GNPs/TC4 composites were constructed by different grain size ratios (9:1, 8:2, 7:3, 6:4, 5:5). The ball milling powder with the highest strength as fine grain powder was mixed with GNPs, and then the coarse grain powder as original TC4 was added. With the increase of fine grain content, the "core-shell" structure became more obvious. The "shell" layer of fine grain became thicker, the strength and hardness increased, and plasticity decreased. The optimum ratio of better strength and plasticity matching was 7:3, thus the yield strength was 1287 MPa and the elongation was 13%. The hierarchical configuration GNPs/Ti composites were prepared by three different ball milling processes with the introduction of different GNPs contents. When GNPs was added hierarchically, a variety of TiC existed on microstructure and GNPs kept a better structural integrity, which improved the strength. When Ti was added hierarchically, the heterogeneous structure was formed, redistributing the stress between grains, leading a better plasticity. The compressive yield of 0.5 wt.% GNPs/Ti composite was 1256 MPa and the hardness was 480 HV, which was 402% and 238% higher than that of pure titanium, respectively. Compared with the limiting strengthening of the homogeneous composites in the control group, the difference of grain size in the heterogeneous composites caused dislocation pile-up, which made the composites own the coordinated deformation ability and improve the mechanical properties of material

参考文献:

[1] 何蕾, 王运锋. 世界钛工业现状及发展趋势[J]. 新材料产业, 2018, (01): 29-34.

[2] 李飞. 世界钛工业现状及发展趋势[J]. 低碳世界, 2016, (24): 127-128.

[3] Inagaki I, Takechi T, Shirai Y,et al. Application and features of titanium for the aerospace

industry[J]. Nippon steel & sumitomo metal technical report, 2014, 106: 22-27.

[4] Schutz R W, Watkins H B. Recent developments in titanium alloy application in the

energy industry[J]. Materials Science and Engineering: A, 1998, 243(1): 305-315.

[5] Zhang L C, Chen L Y. A Review on Biomedical Titanium Alloys: Recent Progress and

Prospect[J]. Advanced Engineering Materials, 2019, 21(4): 1801215.

[6] 李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(S1):

280-282.

[7] 刘世锋, 宋玺, 薛彤,等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空

材料学报, 2020, 40(03): 77-94.

[8] 黄陆军, 耿林. 网状结构钛基复合材料研究进展[J]. 中国材料进展, 2016, 35(09):

674-685+701.

[9] 吕维洁. 原位自生钛基复合材料研究综述[J]. 中国材料进展, 2010, 29(04): 41-48+47.

[10] 黄陆军, 耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报, 2014, 34(04):

126-138.

[11] Tjong S C, Mai Y-W. Processing-structure-property aspects of particulate- and

whisker-reinforced titanium matrix composites[J]. Composites Science and Technology,

2008, 68(3-4): 583-601.

[12] Zhang X, Zhao N, He C. The superior mechanical and physical properties of nanocarbon

reinforced bulk composites achieved by architecture design–A review[J]. Progress in

Materials Science, 2020, 113: 100672.

[13] Huang L J, Geng L. Discontinuously Reinforced Titanium Matrix Composites [M].

National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2017:

Springer, Singapore,2017.

[14] Anthony Xavior M, Prashantha Kumar H G. Processing and Characterization Techniques

of Graphene Reinforced Metal Matrix Composites (GRMMC); A Review[J]. Materials

Today: Proceedings, 2017, 4(2, Part A): 3334-3341.

[15] Shin S E, Choi H J, Shin J H,et al. Strengthening behavior of few-layered

graphene/aluminum composites[J]. Carbon, 2015, 82: 143-151.西安科技大学硕士学位论文

49

[16] Jiang R, Zhou X, Fang Q,et al. Copper–graphene bulk composites with homogeneous

graphene dispersion and enhanced mechanical properties[J]. Materials Science and

Engineering: A, 2016, 654: 124-130.

[17] Dong L L, Xiao B, Liu Y,et al. Sintering effect on microstructural evolution and

mechanical properties of spark plasma sintered Ti matrix composites reinforced by

reduced graphene oxides[J]. Ceramics International, 2018, 44(15): 17835-17844.

[18] Rashad M, Pan F, Asif M,et al. Powder metallurgy of Mg–1%Al–1%Sn alloy reinforced

with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial and

Engineering Chemistry, 2014, 20(6): 4250-4255.

[19] 李梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景[J]. 钛工业进展, 2004, (05):

19-24.

[20] 陈劲松. 工业纯钛及 TC4 钛合金的深冷处理研究[D]. 湖南大学, 2011.

[21] 刘正红, 陈志强. 高纯钛的应用及其生产方法[J]. 稀有金属快报, 2008, (02): 1-8.

[22] 张喜燕, 赵永庆, 白晨光编著. 钛合金及应用[M]. 2005.

[23] 李勇. 钛合金发展现状及展望[J]. 建材与装饰, 2018, (02): 216-217.

[24] 程巨强, 史超. 钛合金的组织、性能及加工技术研究进展[J]. 热加工工艺, 2016,

45(02): 5-8+13.

[25] 祝力伟, 王新南, 朱知寿. 不同热处理工艺下 TC4-DT 钛合金的显微组织及力学性

能[J]. 钛工业进展, 2012, 29(01): 9-12.

[26] 周伟, 曲恒磊, 赵永庆,等. 热处理对 TC4 合金组织与性能的影响[J]. 热加工工艺,

2005, (08): 26-27.

[27] 刘超平. 热加工工艺对 TC4-DT 钛合金组织和性能的影响[D]. 东北大学, 2011.

[28] Tiwari S K, Sahoo S, Wang N,et al. Graphene research and their outputs: Status and

prospect[J]. Journal of Science: Advanced Materials and Devices, 2020, 5(1): 10-29.

[29] Lee C, Wei X, Kysar J W,et al. Measurement of the Elastic Properties and Intrinsic

Strength of Monolayer Graphene[J]. Science, 2008, 321(5887): 385.

[30] Güler Ö, Bağcı N. A short review on mechanical properties of graphene reinforced metal

matrix composites[J]. Journal of Materials Research and Technology, 2020, 9(3):

6808-6833.

[31] 郭强, 赵蕾, 李赞,等. 金属材料的石墨烯强韧化[J]. 中国材料进展, 2019, 38(03):

205-213+250.

[32] Chen S, Li W, Li X,et al. One-dimensional SiC nanostructures: Designed growth,

properties, and applications[J]. Progress in Materials Science, 2019, 104: 138-214.

[33] Nie K B, Wang X J, Deng K K,et al. Magnesium matrix composite reinforced by 参考文献

50

nanoparticles–A review[J]. Journal of Magnesium and Alloys, 2021, 9(1): 57-77.

[34] Zan Y N, Zhou Y T, Liu Z Y,et al. Enhancing strength and ductility synergy through

heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al

composites[J]. Materials & Design, 2019, 166: 107629.

[35] Irshad H M, Ahmed B A, Ehsan M A,et al. Investigation of the structural and mechanical

properties of micro-/nano-sized Al2O3 and cBN composites prepared by spark plasma

sintering[J]. Ceramics International, 2017, 43(14): 10645-10653.

[36] Hayat M D, Singh H, He Z,et al. Titanium metal matrix composites: An overview[J].

Composites Part A: Applied Science and Manufacturing, 2019, 121: 418-438.

[37] Van De Werken N, Tekinalp H, Khanbolouki P,et al. Additively manufactured carbon

fiber-reinforced composites: State of the art and perspective[J]. Additive Manufacturing,

2020, 31: 100962.

[38] Shirvanimoghaddam K, Hamim S U, Karbalaei Akbari M,et al. Carbon fiber reinforced

metal matrix composites: Fabrication processes and properties[J]. Composites Part A:

Applied Science and Manufacturing, 2017, 92: 70-96.

[39] Chen X, Tao J, Liu Y,et al. Interface interaction and synergistic strengthening behavior in

pure copper matrix composites reinforced with functionalized carbon nanotube-graphene

hybrids[J]. Carbon, 2019, 146: 736-755.

[40] Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon

nanotube reinforced aluminum composites[J]. Carbon, 2011, 49(2): 533-544.

[41] Liu Z Y, Xiao B L, Wang W G,et al. Tensile Strength and Electrical Conductivity of

Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder

Metallurgy Combined with Friction Stir Processing[J]. Journal of Materials Science &

Technology, 2014, 30(7): 649-655.

[42] Tabandeh-Khorshid M, Ajay K, Omrani E,et al. Synthesis, characterization, and

properties of graphene reinforced metal-matrix nanocomposites[J]. Composites Part B:

Engineering, 2020, 183: 107664.

[43] Dong L L, Lu J W, Fu Y Q,et al. Carbonaceous nanomaterial reinforced Ti-6Al-4V

matrix composites: Properties, interfacial structures and strengthening mechanisms[J].

Carbon, 2020, 164: 272-286.

[44] Yan S J, Dai S L, Zhang X Y,et al. Investigating aluminum alloy reinforced by graphene

nanoflakes[J]. Materials Science and Engineering: A, 2014, 612: 440-444.

[45] Zhao L, Guo Q, Li Z,et al. Strain-rate dependent deformation mechanism of graphene-Al

nanolaminated composites studied using micro-pillar compression[J]. International 西安科技大学硕士学位论文

51

Journal of Plasticity, 2018, 105: 128-140.

[46] Li Z, Guo Q, Li Z,et al. Enhanced Mechanical Properties of Graphene (Reduced

Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure[J].

Nano Letters, 2015, 15(12): 8077-8083.

[47] Chen Y, Zhang X, Liu E,et al. Fabrication of in-situ grown graphene reinforced Cu

matrix composites[J]. Scientific Reports, 2016, 6(1): 19363.

[48] Wang L, Yang Z, Cui Y,et al. Graphene-copper composite with micro-layered grains and

ultrahigh strength[J]. Scientific Reports, 2017, 7(1): 1-10.

[49] Dong L L, Xiao B, Jin L H,et al. Mechanisms of simultaneously enhanced strength and

ductility of titanium matrix composites reinforced with nanosheets of graphene oxides[J].

Ceramics International, 2019, 45(15): 19370-19379.

[50] Zhang F, Wang J, Liu T,et al. Enhanced mechanical properties of few-layer graphene

reinforced titanium alloy matrix nanocomposites with a network architecture[J].

Materials & Design, 2020, 186:

[51] Cao H C, Liang Y L. The microstructures and mechanical properties of

graphene-reinforced titanium matrix composites[J]. Journal of Alloys and Compounds,

2020, 812: 152057.

[52] Mu X N, Cai H N, Zhang H M,et al. Interface evolution and superior tensile properties of

multi-layer graphene reinforced pure Ti matrix composite[J]. Materials & Design, 2018,

140: 431-441.

[53] Cao Z, Wang X, Li J,et al. Reinforcement with graphene nanoflakes in titanium matrix

composites[J]. Journal of Alloys and Compounds, 2017, 696: 498-502.

[54] Sergueeva A V, Stolyarov V V, Valiev R Z,et al. Advanced mechanical properties of pure

titanium with ultrafine grained structure[J]. Scripta Materialia, 2001, 45(7): 747-752.

[55] Ertorer O, Topping T D, Li Y,et al. Nanostructured Ti Consolidated via Spark Plasma

Sintering[J]. Metallurgical & Materials Transactions A, 42(4): 964-973.

[56] Wang S, Huang L, An Q,et al. Dramatically enhanced impact toughness of two-scale

laminate-network structured composites[J]. Materials & Design, 2018, 140: 163-171.

[57] Zhang S, Kang H, Li R,et al. Microstructure evolution, electrical conductivity and

mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix

composites[J]. Materials Science and Engineering: A, 2019, 762:

[58] Song K Q, Lu Z C, Zhu M,et al. A remarkable enhancement of mechanical and wear

properties by creating a dual-scale structure in an Al–Sn–Si alloy[J]. Surface and

Coatings Technology, 2017, 325: 682-688.参考文献

52

[59] 鄢国强. 材料质量检测与分析技术 [M]. 材料质量检测与分析技术, 2005.

[60] Marek I, Vojtěch D, Michalcová A,et al. The Structure and Mechanical Properties of

High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling

in Combination with Spark Plasma Sintering[J]. Materials, 2016, 9(5): 391.

[61] Dong L L, Chen W G, Deng N,et al. A novel fabrication of graphene by chemical

reaction with a green reductant[J]. Chemical Engineering Journal, 2016, 306: 754-762.

[62] Thamer S, Al-Tamimi B H, Farid S B H. Preparation of graphene nano-sheets from

graphite flakes via milling-ultrasonication promoted process[J]. Materials Today:

Proceedings, 2020, 20: 579-582.

[63] Chaira D, Sangal S, Mishra B K. Efficient Synthesis and Characterization of

Nanostructured TiC Powder by Reaction Milling[J]. Transactions of the Indian Institute

of Metals, 2011, 64(6): 549-554.

[64] Vasanthakumar K, Karthiselva N S, Chawake N M,et al. Formation of TiCx during

reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J].

Journal of Alloys and Compounds, 2017, 709: 829-841.

[65] Chen Y, Hwang T, Marsh M,et al. Study on mechanism of mechanical activation[J].

Materials Science and Engineering A, 1997, 226(none): 95-98.

[66] Cai W, Feng X, Sui J. Preparation of multi-walled carbon nanotube-reinforced TiNi

matrix composites from elemental powders by spark plasma sintering[J]. Rare Metals,

2012, 31(1): 48-50.

[67] Munir K S, Oldfield D T, Wen C. Role of Process Control Agent in the Synthesis of

Multi ‐ Walled Carbon Nanotubes Reinforced Titanium Metal Matrix Powder

Mixtures[J]. Advanced Engineering Materials, 2016, 18(2): 294-303.

[68] Siokou A, Ravani F, Karakalos S,et al. Surface refinement and electronic properties of

graphene layers grown on copper substrate: An XPS, UPS and EELS study[J]. Applied

Surface Science, 2011, 257(23): 9785-9790.

[69] Kovtun A, Jones D, Dell’elce S,et al. Accurate chemical analysis of oxygenated

graphene-based materials using X-ray photoelectron spectroscopy[J]. Carbon, 2019, 143:

268-275.

[70] Gao X H, Guo Z M, Geng Q F,et al. Structure, optical properties and thermal stability of

TiC-based tandem spectrally selective solar absorber coating[J]. Solar Energy Materials

and Solar Cells, 2016, 157: 543-549.

[71] Huang L J, Geng L, Peng H X,et al. Room temperature tensile fracture characteristics of

in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture[J]. 西安科技大学硕士学位论文

53

Scripta Materialia, 2011, 64(9): 844-847.

[72] Yu Z, Yang W, Zhou C,et al. Effect of ball milling time on graphene nanosheets

reinforced Al6063 composite fabricated by pressure infiltration method[J]. Carbon, 2019,

141: 25-39.

[73] Barros M D, Rats D, Van De Nbulcke L,et al. Influence of internal diffusion barriers on

carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition[J].

Diamond & Related Materials, 1999, 8(6): 1022-1032.

[74] Mu X N, Cai H N, Zhang H M,et al. Uniform dispersion and interface analysis of nickel

coated graphene nanoflakes/ pure titanium matrix composites[J]. Carbon, 2018, 137:

146-155.

[75] Chu K, Wang F, Li Y B,et al. Interface structure and strengthening behavior of

graphene/CuCr composites[J]. Carbon, 2018, 133:

[76] Dong L L, Fu Y Q, Liu Y,et al. Interface engineering of graphene/copper matrix

composites decorated with tungsten carbide for enhanced physico-mechanical

properties[J]. Carbon, 2021, 173: 41-53.

[77] Munir K S, Li Y, Qian M,et al. Identifying and understanding the effect of milling energy

on the synthesis of carbon nanotubes reinforced titanium metal matrix composites[J].

Carbon, 2016, 99: 384-397.

[78] Li S, Sun B, Imai H,et al. Powder metallurgy titanium metal matrix composites

reinforced with carbon nanotubes and graphite[J]. Composites Part A: Applied Science

and Manufacturing, 2013, 48: 57-66.

[79] Zhang X, Song F, Wei Z,et al. Microstructural and mechanical characterization of in-situ

TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J].

Materials Science and Engineering: A, 2017, 705: 153-159.

[80] Huang X, Gao Y, Wang Z,et al. Microstructure, mechanical properties and strengthening

mechanisms of in-situ prepared (Ti5Si3 + TiC0.67)/TC4 composites[J]. Journal of Alloys

and Compounds, 2019, 792: 907-917.

[81] Zhou Y, Dong L, Yang Q,et al. Controlled Interfacial Reactions and Superior Mechanical

Properties of High Energy Ball Milled/Spark Plasma Sintered Ti–6Al–4V–Graphene

Composite[J]. Advanced Engineering Materials, 2021, 2001411.

[82] Long Y, Wang T, Zhang H Y,et al. Enhanced ductility in a bimodal ultrafine-grained Ti–

6Al–4V alloy fabricated by high energy ball milling and spark plasma sintering[J].

Materials Science and Engineering: A, 2014, 608: 82-89.

[83] Mu X N, Cai H N, Zhang H M,et al. Size effect of flake Ti powders on the mechanical 参考文献

54

properties in graphene nanoflakes/Ti fabricated by flake powder metallurgy[J].

Composites Part A: Applied Science and Manufacturing, 2019, 123: 86-96.

[84] Long Y, Zhang H, Wang T,et al. High-strength Ti–6Al–4V with ultrafine-grained

structure fabricated by high energy ball milling and spark plasma sintering[J]. Materials

Science and Engineering: A, 2013, 585: 408-414.

[85] Liu Z Y, Ma K, Fan G H,et al. Enhancement of the strength-ductility relationship for

carbon nanotube/Al–Cu–Mg nanocomposites by material parameter optimisation[J].

Carbon, 2020, 157: 602-613.

中图分类号:

 TB331    

开放日期:

 2021-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式