- 无标题文档
查看论文信息

论文中文题名:

 CO2矿化煤矸石混凝土物性特性及安全封存固碳机理研究    

姓名:

 薛子桐    

学号:

 21220089019    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 采空区CO2安全封存    

第一导师姓名:

 秦雷    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on the Physical Properties and Safe Sequestration Carbon Fixation Mechanism of CO2 Mineralized Coal Gangue Concrete    

论文中文关键词:

 CO2矿化利用 ; 煤矸石混凝土 ; CO2安全封存 ; 煤基固废 ; 响应曲面法 ; 采空区    

论文外文关键词:

 CO2 mineralization utilization ; Coal gangue concrete ; CO2 safe sequestration ; Coal-based solid waste ; Response surface methodology ; Mined-out areas    

论文中文摘要:

二氧化碳捕集、利用及封存技术(CCUS)是降低CO2排放、实现碳中和目标的重要技术路线,在近年来得到了迅速发展。在各类CO2利用技术中,研发CO2矿化煤基固废充填材料(CMWB)是实现煤炭工业低碳发展的有效途径之一。CO2矿化养护煤基固废技术可作为采空区充填材料,具有加速材料早期强度形成、防止采空区中有害气体逸散、降低养护能耗、消耗工业固废等优势。此技术不仅可以实现CO2封存利用,还能生产高附加值的建材产品,具有广阔的工业化应用前景。现有研究缺乏对CO2矿化养护煤基固废混凝土,尤其是煤矸石混凝土机械性能、矿化机理及其作为采空区充填材封存CO2安全性的相关论述。本文选取煤矸石这种常见煤基固废作为混凝土的粗骨料,选取普通硅酸盐水泥、粉煤灰作为凝胶材料,对不同CO2矿化养护工艺下的煤矸石混凝土机械性能、矿化机理和其作为充填材料在采空区中封存的CO2安全性进行了相关研究。

本文首先研究了CO2矿化养护工艺(矿化养护时间、粉煤灰掺量、养护温度)对煤矸石混凝土宏观物理性能和微观结构的影响。结果表明:矿化养护时间增加可促进煤矸石混凝土内部整体性,砂浆区及界面过渡区孔隙率减小,导致煤矸石混凝土力学强度增强。适量掺入粉煤灰(粉煤灰掺量0%~30%)可促进煤矸石混凝土内部水化,表现为自身力学性能增强;过量掺入粉煤灰(粉煤灰掺量≥30%),此时粉煤灰颗粒包裹水泥颗粒,导致混凝土内部矿化反应受阻,表现为煤矸石混凝土力学性能下降。适度增加养护温度(20~40℃),CO2在混凝土中扩散速率增加,表现为煤矸石混凝土力学性能增加;养护温度过高(≥40℃)时,CO2在混凝土孔隙水中溶解度降低,混凝土内部矿化反应受阻,表现为煤矸石混凝土力学性能下降。

其次,本文进一步研究了CO2矿化煤矸石混凝土反应机理,并通过FT-IR、XRD、TG-DTG等方法刻画了煤矸石混凝土在不同矿化养护工艺下化学分子结构及官能团、物相组成及含Ca基物质的变化规律,进一步解释了矿化反应机理与混凝土固碳率变化。结果表明:矿化养护时间增加,使得煤矸石混凝土内部CH物质逐渐减少,CaCO3含量逐渐增加。随粉煤灰掺量与养护温度增加,煤矸石混凝土内部CH物质变化率呈先减少后增加的趋势,CaCO3物质变化率呈先增加后减少的趋势。同时,CaCO3物质变化率代表煤矸石混凝土固碳能力演化,故可以得出混凝土固碳率与矿化养护时间呈正相关,与粉煤灰掺量、养护温度呈开口向下的二次增函数关系。

最后,为获得不同养护工艺参数交互影响下的最优养护工况与其作为充填材料在采空区中的CO2封存安全性,本文基于多目标优化的响应曲面法构建了煤矸石混凝土抗压强度和固碳率与矿化养护时间、粉煤灰掺量、养护温度的数值模型,得出了最优工艺参数。基于最优工艺参数,利用COMSOL软件实现煤矸石混凝土采空区充填碳封存技术工程实践验证。结果表明:性能预测模型得出,当矿化养护时间为9d,粉煤灰掺量为13.84%、养护温度为50.58℃时,煤矸石混凝土具有最高的抗压强度和较高的固碳率,分别为30.68MPa和21.39%。数值模拟结果表明,煤矸石混凝土力学强度越高,内部CO2储存量越大。当采空区壁面达到预设最大抗压强度(30.68MPa)时,其对应CO2储存量为1.4×104kg,达到最大储量时其最大安全注气天数为82d。

论文外文摘要:

Carbon Capture, Utilization, and Storage (CCUS) technology is an important pathway for reducing CO2 emissions and achieving carbon neutrality goals, and has rapidly developed in recent years. Among various CO2 utilization technologies, developing CO2 mineralized coal-based solid waste filling materials (CMWB) is one of the effective approaches to achieve low-carbon development in the coal industry. The technology of CO2 mineralization curing of coal-based solid waste can be used as a filling material for mined-out areas, offering advantages such as accelerating the early strength formation of materials, preventing the escape of harmful gases in mined-out areas, reducing curing energy consumption, and utilizing industrial solid waste. This technology not only enables the utilization and storage of CO2 but also produces high-value-added building material products, presenting broad prospects for industrial application. Existing research lacks discussions on the mechanical properties, mineralization mechanisms of CO2 mineralized coal-based solid waste concrete, particularly coal gangue concrete, and its safety in CO2 sequestration as a filling material in mined-out areas. This paper selects coal gangue, a common type of coal-based solid waste, as coarse aggregate for concrete, and uses ordinary Portland cement and fly ash as gel materials to study the mechanical properties, mineralization mechanisms of coal gangue concrete under different CO2 mineralization curing processes, and its safety in CO2 sequestration as a filling material in mined-out areas.

This article first studies the effects of CO2 mineralization curing processes (mineralization curing time, fly ash content, curing temperature) on the macroscopic physical properties and microstructure of coal gangue concrete. The results show that an increase in mineralization curing time promotes the overall integrity of the coal gangue concrete, reducing the porosity in the mortar area and the interfacial transition zone, which leads to enhanced mechanical strength of the coal gangue concrete. A moderate addition of fly ash (fly ash content from 0% to 30%) promotes the hydration within the coal gangue concrete, resulting in enhanced mechanical properties; however, excessive addition of fly ash (fly ash content ≥ 30%) leads to fly ash particles enveloping cement particles, hindering the mineralization reactions inside the concrete and resulting in decreased mechanical properties of the coal gangue concrete. Moderately increasing the curing temperature (20 to 40°C) increases the diffusion rate of CO2 within the concrete, leading to an increase in mechanical properties of the coal gangue concrete; however, excessively high curing temperatures (≥ 40°C) decrease the solubility of CO2 in the pore water of the concrete, obstructing the internal mineralization reactions and leading to decreased mechanical properties of the coal gangue concrete.

Subsequently, this article further investigates the reaction mechanism of CO2 mineralized coal gangue concrete and characterizes the changes in chemical molecular structure, functional groups, phase composition, and Ca-based substances of coal gangue concrete under different mineralization curing processes using FT-IR, XRD, and TG-DTG methods. This further elucidates the correlation between the mineralization reaction mechanism and changes in the concrete's carbon fixation rate. The results show that as the mineralization curing time increases, the amount of CH substances inside the coal gangue concrete gradually decreases while the content of CaCO3 gradually increases. With the increase in fly ash content and curing temperature, the rate of change of CH substances in the coal gangue concrete shows a trend of initially decreasing and then increasing, whereas the rate of change of CaCO3 substances shows a trend of initially increasing and then decreasing. Simultaneously, the rate of change of CaCO3 substances represents the evolution of the carbon fixation capacity of the coal gangue concrete. Therefore, it can be concluded that the carbon fixation rate of the concrete is positively correlated with the mineralization curing time and follows a downward-opening quadratic function relationship with the fly ash content and curing temperature.

Finally, to obtain the optimal curing conditions under the interactive effects of different curing process parameters and to assess the safety of CO2 sequestration as a filling material in closed mined-out areas, this paper constructs a numerical model of the compressive strength and carbon fixation rate of coal gangue concrete in relation to mineralization curing time, fly ash content, and curing temperature, using the response surface method based on multi-objective optimization. The optimal process parameters were determined. Based on these optimal parameters, the COMSOL software was used to implement and validate the engineering practice of carbon sequestration technology for filling mined-out areas with coal gangue concrete. The results show that the performance prediction model indicates that when the mineralization curing time is 9 days, the fly ash content is 13.84%, and the curing temperature is 50.58°C, the coal gangue concrete has the highest compressive strength and a relatively high carbon fixation rate, at 30.68 MPa and 21.39% respectively. Numerical simulation results suggest that the higher the mechanical strength of the coal gangue concrete, the greater the internal CO2 storage. When the walls of the mined-out area reach the preset maximum compressive strength (30.68 MPa), the corresponding CO2 storage is 1.4×104 kg, and the maximum safe injection duration at maximum storage is 82 days.

参考文献:

[1] 张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022,47(12):4167-4181.

[2] 谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2023. 10.13225/j.cnki.jccs.2023.1091.

[3] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024:1-21. 10.13225/j.cnki.jccs.YH23.1690.

[4] 李树刚, 张静非, 林海飞, 等. 采空区碳封存条件下CO2-水界面特性及溶解传质规律研究[J]. 煤炭学报, 2023. 10.13225/j.cnki.jccs.ST23.1206.

[5] You I, Park J J, Lee N, et al. Use of electric arc furnace oxidizing slag (EOS) and electric arc furnace reducing slag (ERS) powders in cement pastes for CO2 sequestrations[J]. Journal of Building Engineering, 2024,84:108631.

[6] 代旭光, 王猛, 冯光俊, 等. 超临界CO2-水-页岩作用矿物溶蚀/沉淀特征及其对页岩吸附性的影响[J]. 煤炭学报, 2023,48(07):2813-2826.

[7] 陈浮, 王思遥, 于昊辰, 等. 碳中和目标下煤炭变革的技术路径[J]. 煤炭学报, 2022,47(04):1452-1461.

[8] 康红普, 谢和平, 任世华, 等. 全球产业链与能源供应链重构背景下我国煤炭行业发展策略研究[J]. 中国工程科学, 2022,24(06):26-37.

[9] 李树刚, 张静非, 林海飞, 等. 双碳战略中煤气共采技术发展路径的思考[J]. 煤炭科学技术, 2024,52(01):138-153.

[10] 钱静, 易高峰, 周琦忠, 等. 三河尖关闭煤矿煤层CO2封存潜力研究[J]. 煤炭科学技术, 2024. (2024网络首发)

[11] 桑树勋, 刘世奇, 朱前林, 等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报, 2023,48(07):2700-2716.

[12] 王国法, 任世华, 庞义辉, 等. 煤炭工业“十三五”发展成效与“双碳”目标实施路径[J]. 煤炭科学技术, 2021,49(09):1-8.

[13] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报, 2021,46(01):1-15.

[14] 张琳琳, 赖枫鹏, 董银涛, 等. 盐水层地质参数对CO2封存效果的评价[J]. 煤炭学报, 2024. 10.13225/j.cnki.jccs.2023.1312.

[15] Fang Z, Liu L, He W, et al. Strength characteristics and carbonation depth evolution of modified magnesium slag based solid waste storage backfill materials[J]. Journal of Environmental Chemical Engineering, 2024,12(2):111975.

[16] Mishra G, Danoglidis P A, Shah S P, et al. Carbon capture and storage potential of biochar-enriched cementitious systems[J]. Cement and Concrete Composites, 2023,140:105078.

[17] Khanal A, Khan M I, Shahriar M F. Comprehensive parametric study of CO2 sequestration in deep saline aquifers[J]. Chemical Engineering Science, 2024,287:119734.

[18] Kan J, Phuwadej P, M F Q, et al. Micro kinetic analysis of the CO2 hydrate formation and dissociation with L-tryptophan in brine via high pressure in situ Raman spectroscopy for CO2 sequestration[J]. Chemical Engineering Journal, 2024,479:147691.

[19] Zajac M, Maruyama I, Iizuka A, et al. Enforced carbonation of cementitious materials[J]. Cement and Concrete Research, 2023,174:107285.

[20] Kady A H E, Amin M T, Khan F, et al. Analysis of CO2 pipeline regulations from a safety perspective for offshore carbon capture, utilization, and storage (CCUS)[J]. Journal of Cleaner Production, 2024,439:140734.

[21] 崔国栋, 胡哲, 宁伏龙, 等. 咸水层毛管力圈闭机制及对非纯CO2封存效率的影响[J]. 煤炭学报, 2023,48(07):2791-2801.

[22] Zhang Y S, Liu Y, Sun X D, et al. Application of microbially induced calcium carbonate precipitation (MICP) technique in concrete crack repair: A review[J]. Construction and Building Materials, 2024,411:134313.

[23] Jin Y, Qiuju C, Li Z, et al. Preparation of calcium carbonate with microstructure and nanostructure from carbide slag for CO2 sequestration by using recyclable ammonium chloride[J]. Particuology, 2024,90:1-9.

[24] Tam V W, Butera A, Le K N. Mechanical properties of CO2 concrete utilising practical carbonation variables[J]. Journal of Cleaner Production, 2021,294:126307.

[25] Li L, Chen T, Gao X. Synergistic effect of CO2-mineralized steel slag and carbonation curing on cement paste[J]. Cement and Concrete Composites, 2024,145:105357.

[26] 马富国. 煤矿安全与采矿技术应用问题思考[J]. 科学技术创新, 2020(16):166-167.

[27] 刘峰, 郭林峰, 张建明, 等. 煤炭工业数字智能绿色三化协同模式与新质生产力建设路径[J]. 煤炭学报, 2024,49(01):1-15.

[28] 季盼杰. 浙江省CO2海上封存源汇匹配模型与经济性评价[D]. 浙江大学, 2023.

[29] 王赵君. 煤矸石基微生物矿化充填材料制备及性能试验研究[D]. 中国矿业大学, 2022.

[30] 肖杰. CO2碳化联合活性MgO-粉煤灰/矿渣协同固化淤泥力学特性与微观机制[D]. 武汉大学, 2019.

[31] 杨刚. 粉煤灰矿化封存CO2协同重金属固化[D]. 华北电力大学(北京), 2021.

[32] 王欣, 李少华, 刘瑜, 等. CO2地质封存中储层岩石润湿性测量研究进展[J]. 上海理工大学学报, 2023,45(03):205-219.

[33] 张志升, 吴向阳, 吴倩, 等. CO2驱油封存泄漏风险管理系统及应用研究[J]. 油气藏评价与开发, 2024,14(01):91-101.

[34] Akhtar N, Ahmad T, Husain D, et al. Ecological footprint and economic assessment of conventional and geopolymer concrete for sustainable construction[J]. Journal of Cleaner Production, 2022,380:134910.

[35] Yang L, Zhu Z, Zhang D, et al. Influence mechanism of Nano-SiO2 on geopolymer recycled concrete: Change mechanism of the microstructure and the anti-carbonation mechanism[J]. Cement and Concrete Composites, 2024,146:105364.

[36] 魏天祥. 杭来湾煤矿CO2矿化固废充填材料研制及保水开采应用研究[D]. 中国矿业大学, 2023.

[37] 朱磊, 刘成勇, 古文哲, 等. 双碳目标下“煤基固废-CO2”协同充填封存技术构想[J]. 矿业安全与环保, 2023,50(06):16-21.

[38] 贾善坡, 牟心昊, 温曹轩, 等. 咸水层CO2封存注入阶段盖层泄漏风险的数值模拟[J]. 黑龙江科技大学学报, 2024,34(01):85-91.

[39] Lorenzo R, Viola B, Paolo G, et al. Carbon dioxide mineralization in recycled concrete aggregates can contribute immediately to carbon-neutrality[J]. Resources, Conservation & Recycling, 2022,184,17-30.

[40] Moussadik A, Fadili H E, Saadi M, et al. Lightweight aerated concrete based on activated powders of coal gangue and fly ash[J]. Construction and Building Materials, 2024,417:135333.

[41] Han Y, Zhou M, Wang J, et al. Optimization of coal-based solid waste ceramsite foam concrete mix proportions and performance study[J]. Construction and Building Materials, 2024,416:135226.

[42] Pan Y, Lang L, Yonglu S, et al. Mechanical properties, pore characteristics and microstructure of modified magnesium slag cemented coal-based solid waste backfill materials: Affected by fly ash addition and curing temperature[J]. Process Safety and Environmental Protection, 2023,176:1007-1020.

[43] 奚弦, 桑树勋, 刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J]. 煤炭学报, 2023. 10.13225/j.cnki.jccs.2023.1075.

[44] Ho H, Iizuka A, Shibata E. Chemical recycling and use of various types of concrete waste: A review[J]. Journal of Cleaner Production, 2021,284:124785.

[45] Xing W, Tam V W Y, Le K N, et al. Effects of mix design and functional unit on life cycle assessment of recycled aggregate concrete: Evidence from CO2 concrete[J]. Construction and Building Materials, 2022,348:128712.

[46] 丁洋, 汤远卓, 李树刚, 等. 老采空区CO2封存井位部署方案数值模拟研究[J]. 煤炭科学技术, 2023:1-14. (2023网络首发)

[47] 李翔宇, 李旭, 樊盼盼, 等. 利用脱碳气化渣矿化封存CO2制备碳酸钙的影响研究[J]. 燃料化学学报(中英文), 2024:1-10. (2024网络首发)

[48] 孙一夫, 李凤军, 何文, 等. 二氧化碳矿化养护加气混凝土试验研究[J]. 洁净煤技术, 2021,27(02):237-245.

[49] 高强, 赵建忠, 侯斌, 等. 不同压力下冻土区水合物法封存CO2的实验研究[J]. 石油与天然气化工, 2024:1-11. (2024网络首发)

[50] 刘操, 赵春辉, 钟福平, 等. 深部煤层CO2地质封存量化评估及案例研究[J]. 煤炭科学技术, 2023:1-12. (2023网络首发)

[51] Young J F, Berger R L, Breese J. Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2[J]. Journal of the American Ceramic Society, 1974,57(9) ,30-36.

[52] Wang T, Huang H, Hu X, et al. Accelerated mineral carbonation curing of cement paste for CO2 sequestration and enhanced properties of blended calcium silicate[J]. Chemical Engineering Journal, 2017,323:320-329.

[53] Frank Winnefeld A L A G. CO2 storage in cement and concrete by mineral carbonation[J]. Green and Sustainable Chemistry, 2022. 176:7-20

[54] 李林坤, 刘琦, 黄天勇, 等. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022,36(19):82-90.

[55] 彭建新, 邵旭东, 张建仁. 气候变化、CO2排放及其对碳化腐蚀的钢筋混凝土开裂和时变可靠度的影响[J]. 土木工程学报, 2010,43(06):74-81.

[56] Liwu Mo F Z M D. Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates[J]. Cement & Concrete Composites, 2017. 34(01):85-91.

[57] Zhang R, Panesar D K. Sulfate resistance of carbonated ternary mortar blends: Portland cement, reactive MgO and supplementary cementitious materials[J]. Journal of Cleaner Production, 2019,238:117933.

[58] 黄浩, 王涛, 方梦祥. 二氧化碳矿化养护混凝土技术及新型材料研究进展[J]. 化工进展, 2019,38(10):4363-4373.

[59] 史才军, 王吉云, 涂贞军, 等. CO2养护混凝土技术研究进展[J]. 材料导报, 2017,31(05):134-138.

[60] Yixin, Shao, Mirza, et al. CO2 sequestration using calcium-silicate concrete.[J]. Canadian Journal of Civil Engineering, 2006,33(6):776-784.

[61] Zhang D, Cai X, Shao Y. Carbonation Curing of Precast Fly Ash Concrete[J]. Journal of Materials in Civil Engineering, 2016,28(11):4016127.

[62] Morandeau A, Thiéry M, Dangla P. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cement and Concrete Research, 2015,67:226-236.

[63] Baojian Zhan C S P Q. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Construction and Building Materials, 2014 ,35(4):401

[64] Kou Shi-Cong Z B P C. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cement & Concrete Composites, 2014, 33(07):1134-1142.

[65] Du Z, Unluer C. Modification of magnesium hydroxide for improved performance in CO2 sequestration[J]. Cement and Concrete Research, 2024,177:107418.

[66] Liu J, Liu J, Cheng L, et al. Sustainable upcycling of artificial lightweight cold-bonded aggregates (ALCBAs) designed by biochar and concrete slurry waste (CSW) into porous carbons materials for CO2 sequestration[J]. Construction and Building Materials, 2024,412:134736.

[67] Mouadh A, Hussein H, H. O E. The impact of secondary silicate mineral precipitation kinetics on CO2 mineral storage[J]. International Journal of Greenhouse Gas Control, 2024,131:104020.

[68] Ning L, Liwu M, Cise U. Emerging CO2 utilization technologies for construction materials: A review[J]. Journal of CO2 Utilization, 2022,65,50-63.

[69] Yu X, Yunzhi T, Changlin Z, et al. Utilisation of silica-rich waste in eco phosphogypsum-based cementitious materials: Strength, microstructure, thermodynamics and CO2 sequestration[J]. Construction and Building Materials, 2024,411:134469.

[70] 任连伟, 李波, 邹友峰, 等. 废弃蒸压砌块与煤矸石在煤矿采空区地基加固中的试验研究[J]. 煤炭科学技术, 2023,51(11):51-62.

[71] 刘杰. 充填采矿法的应用现状及发展[J]. 当代化工研究, 2020(07):8-9.

[72] Zhanshan S, Hanwei Z, Bing L, et al. Simulation test study on filling flow law of gangue slurry in goaf[J]. Scientific Reports, 2023,13(1):19117.

[73] 张琳琳, 赖枫鹏, 董银涛, 等. 盐水层地质参数对CO2封存效果的评价[J]. 煤炭学报, 2024:1-17.

[74] 刘操, 闫江伟, 赵春辉, 等. 煤中超临界CO2解吸滞后机理及其对地质封存启示[J]. 煤炭学报, 2023:1-16. 10.13225/j.cnki.jccs.2023.0738.

[75] 乔龙腾. 基于煤矸石的采空区充填膏体材料研究[D]. 煤炭科学研究总院, 2023.

[76] 李云武. 膏体泵送充填技术在金川二矿区的试验研究及应用[J]. 有色金属(矿山部分), 2004(05):9-11.

[77] 王洪江, 吴爱祥, 肖卫国, 等. 粗粒级膏体充填的技术进展及存在的问题[J]. 金属矿山, 2009(11):1-5.

[78] 陈长杰, 蔡嗣经. 金川二矿区膏体充填系统试运行有关问题的探讨[J]. 矿业研究与开发, 2001(03):21-23.

[79] 杨志强, 王永前, 高谦, 等. 金川镍矿尾砂膏体充填系统工艺技术改造与应用研究[J]. 有色金属科学与工程, 2014,5(02):1-9.

[80] 岳陶, 冯锐敏, 李秀山. 膏体充填采煤技术及其应用前景[J]. 煤矿开采, 2012,17(06):72-74.

[81] 马会华, 邓宁. 矿山矸石膏体充填技术在鹤煤二矿的应用研究[J]. 中州煤炭, 2011(02):23-24.

[82] 李开源. CO2在煤矿采空区矸石充填材料中的扩散与吸附特性研究[D]. 中国矿业大学, 2021.

[83] Haifeng W, Yin L, Hao L, et al. Effects of carbonization on gangue–cemented paste backfill properties[J]. International Journal of Green Energy, 2021,18(3):282-296.

[84] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022,47(01):45-60.

[85] 苏现波, 赵伟仲, 王乾, 等. 煤矿采动影响体微生物采残煤与CO2-粉煤灰协同充填关键技术[J]. 煤炭学报, 2024. (2024网络首发)

[86] 曹小朋, 熊英, 冯其红, 等. 低渗透-致密油藏CO2驱油与封存协同评价方法[J]. 油气地质与采收率, 2023,30(02):44-52.

[87] 冉武平, 张永太, 艾贤臣, 等. 工业固体废弃物矿化封存CO2研究综述[J]. 科学技术与工程, 2023,23(16):6718-6727.

[88] 杨现禹, 解经宇, 叶晓平, 等. 低渗油藏CO2地质封存矿物颗粒运移及注入堵塞机理[J]. 煤炭学报, 2023,48(07):2827-2835.

[89] 吕俊复, 蒋苓, 柯希玮, 等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术, 2023,51(01):514-522.

[90] Zhou C, Liu G, Fang T, et al. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel, 2014,135:1-8.

[91] Guo Y, Yan K, Cui L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016,302:33-41.

[92] Zhao J, Wang D, Liao S. Effect of mechanical grinding on physical and chemical characteristics of circulating fluidized bed fly ash from coal gangue power plant[J]. Construction and Building Materials, 2015,101:851-860.

[93] Zhang X, Li C, Zheng S, et al. A review of the synthesis and application of zeolites from coal-based solid wastes[J]. International Journal of Minerals Metallurgy and Materials, 2022,29(01):1-21.

[94] 张战波, 刘辉, 侯世林, 等. 特细砂煤矸石混凝土力学性能试验研究[J]. 煤炭科学技术, 2022,50(09):57-66.

[95] 班馨语. 冻融及硫酸盐侵蚀耦合作用下自燃煤矸石集料地聚物混凝土耐久性研究[D]. 辽宁工程技术大学, 2022.

[96] 邱继生, 朱梦宇, 周云仙, 等. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023,37(02):75-81.

[97] 关虓, 陈霁溪, 朱梦宇, 等. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023,37(04):95-101.

[98] 周梅, 白金婷, 郭凌志, 等. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023,37(20):123-131.

[99] 桂苗苗. 响应曲面法优化加气混凝土砂浆配方研究[J]. 材料导报, 2010,24(S1):249-251.

[100] 罗旷. 二氧化碳矿化养护固废加气混凝土性能优化研究[D]. 浙江大学, 2023.

中图分类号:

 TD327、TD849.5、X701    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式