论文中文题名: | 区间椭球交集模型及相应的结构不确定性分析 |
姓名: | |
学号: | 22205224151 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 机械结构可靠性 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-18 |
论文答辩日期: | 2025-05-28 |
论文外文题名: | Interval and ellipsoid intersection model and the corresponding structural uncertainty analysis |
论文中文关键词: | |
论文外文关键词: | Non-probabilistic convex model ; interval and ellipsoidal intersection model ; uncertainty propagation analysis ; semi-analytical method ; Non-probabilistic reliability index |
论文中文摘要: |
传统概率方法已被广泛用于处理实际结构中的不确定性问题,然而概率模型需要大量不确定信息用以构建概率密度函数来描述参数的不确定性,这对于复杂工程实际问题而言是十分困难的。反之非概率凸集模型仅需获知不确定性参数的范围或界限,适用于处理工程结构中常见的小样本问题。本文提出一种新型非概率凸集模型-区间椭球交集模型来描述不确定域,并研究相应的结构不确定性分析方法。研究内容主要如下: (1)一种结构不确定性量化的区间椭球交集模型。提出了一种新的不规则凸集模型-区间椭球交集模型,该模型通过对区间模型、椭球模型进行取交运算而构建,用于度量结构不确定域;讨论了区间椭球交集模型的性质,并给出求解模型不确定域体积的蒙特卡洛模拟法;通过切比雪夫不等式对区间椭球交集模型进行膨胀处理,可赋予模型对未来样本的预测能力。采用三个算例验证模型和方法的有效性和可行性。 (2)基于区间椭球交集模型的结构不确定性传播分析。针对弱非线性响应函数,对其进行泰勒一阶展开近似,提出一种半解析法对结构响应区间求解。其基本思想为通过求解一系列椭球表面的极值,并通过检验极值点是否位于区间模型不确定域内,来确定区间椭球交集模型的极值;针对强非线性响应函数,对其进行泰勒二阶展开近似,采用序列二次规划法对结构响应区间求解;通过三个算例验证所提方法有效性。 (3)基于区间椭球交集模型的结构非概率可靠性分析。提出一种区间椭球交集模型结构非概率可靠性指标,将结构功能函数均值与离差的比值作为结构可靠性度量;揭示所提非概率可靠性指标与区间、椭球模型非概率可靠性指标之间的内在关联;通过一个工程案例揭示了所提非概率可靠性指标中的不一致性问题。通过三个算例验证了所提非概率可靠性指标的的有效性和可行性。 |
论文外文摘要: |
The traditional probabilistic methods have been widely applied to deal with the uncertain problems. However, the complete information is required to define a probabilistic distribution by using the probability method, which is generally difficult for complex engineering problems. As the alternative of the probability method, the non-probabilistic convex model only requires the boundaries of structural uncertain parameters and is suitable for dealing with engineering problems with limited samples. However, the available convex models focus mainly on regular mathematical models, and thus may provide the excessive expansion of the uncertainty domain. In view of this, in this paper a new type of convex model, namely an interval and ellipsoidal intersection model, is proposed to bound the uncertainty domain, whereby the corresponding structural uncertainty analysis method is investigated. The main research contents are as follows: (1) An interval and ellipsoid intersection model for structural uncertainty quantification. In this paper a new type of convex model, namely an interval and ellipsoidal intersection model, is proposed to bound the uncertainty domain. Firstly, the interval and ellipsoidal intersection model is proposed to describe the uncertain domain, which can be constructed by taking the intersection of the interval model and the ellipsoidal model. Secondly, the corresponding characteristics of that model are investigated, and Monte Carlo Simulation (MCS) method is given for computing the volume of the uncertainty domain. Thirdly, Chebyshev inequality is used to inflate the interval and ellipsoidal intersection model to accommodate future possible data points. Finally, three numerical examples are used to verify the effectiveness and feasibility of the proposed model and methods. (2) A structural uncertainty propagation based on the interval and ellipsoid intersection model. The proposed model is applied to structural uncertainty propagation analysis, and two cases of the nonlinear response function are considered. For the weakly nonlinear response function, its linear approximation can be obtained by using the first-order Taylor series expansion, and then a semi-analytical method is developed to predict its structural response interval. The main idea of semi-analytical method is to determine the extremum of the interval ellipsoid intersection model by computing a series of extrema on the ellipsoid surfaces and verifying whether these extremum points lie within the uncertainty domain defined by the interval model. For the strong nonlinear response function, its nonlinear approximation can be obtained by using the second-order Taylor series expansion, and then the Sequential Quadratic Programming (SQP) method is adopted to predict its structural response interval. Three numerical examples are provided to demonstrate the effectiveness of the proposed methods. (3) A structural non-probabilistic reliability index based on the interval and ellipsoid intersection model. Firstly, based on the interval and ellipsoid intersection model, a novel non-probabilistic reliability index is proposed to measure structural reliability, which is defined as the ratio of the mean of the structural performance function to its radius. Secondly, the inherent connections between the proposed reliability index and those based on the interval and ellipsoid models are revealed. Thirdly, the invariance problem existing the proposed reliability index is discussed through an engineering case. Finally, Three numerical examples are provided to demonstrate the effectiveness of the proposed methods. |
参考文献: |
[1]周济. 智能制造“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284. [2]张义民. 机械可靠性设计的内涵与递进[J]. 机械工程学报, 2010, 46(14): 167-188. [3]国家自然科学基金委员会工程与材料科学部. 机械工程学科发展战略报告(2021-2035)[M]. 北京: 科学出版社, 2022. [4]龙乐豪. 序[J]. 火箭推进, 2024, 50 (05): 3-4. [5]赵国藩, 曹居易, 张宽权. 工程结构可靠度[M]. 北京:水利电力出版社, 1984. [6]李杰著. 随机结构系统[M]. 北京: 科学出版社, 1996. [7]毕仁贵. 考虑相关性的不确定凸集模型与非概率可靠性分析方法[D]. 长沙: 湖南大学, 2015. [8]熊芬芬, 李泽贤, 刘宇等. 基于数值模拟的工程设计中参数不确定性表征方法研究综述[J]. 航空学报, 2023, 44(12): 028611. [9]贾大卫, 吴子燕, 何乡. 基于BP神经网络和Laplace渐进积分法的结构可靠性计算[J]. 固体力学学报, 2021, 42(04): 477-489. [29]王攀, 臧朝平. 改进的平行六面体凸模型识别动力学不确定参数区间的方法[J]. 振动工程学报, 2019, 32(1): 97-106. [30]乔心州, 张锦瑞, 方秀荣等. 一种结构不确定分析的改进多维平行六面体模型[J]. 兵工学报, 2024, 45 (06): 1877-1888. [45]李贵杰, 吕震宙, 葛山增, 等. 用非概率理论分析混合不确定性结构的可靠性[J]. 国防科技大学学报, 2014, 36 (05): 21-25. [46]刘浩, 杨开云, 张德权. 基于聚类椭球模型的不确定性传播分析[J]. 计算力学学报, 2018, 35 (04): 431-436. [48]郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2002, 19(3): 332-335. [52]曹鸿钧, 段宝岩. 基于凸集合模型的非概率可靠性研究[J]. 计算力学学报,2005, 22(5): 546-549. [63]王晓军, 邱志平, 武哲. 结构非概率集合可靠性模型[J]. 力学学报, 2007, 39(5): 641-646. [65]孙海龙, 姚卫星. 结构区间可靠性分析的可能度法[J]. 中国机械工程,2008,19(12): 1483-1488. [66]乔心州, 仇原鹰, 孔宪光. 一种基于椭球凸集的结构非概率可靠性模型[J]. 工程力学, 2009, 26(11): 203-208. [71]姜峰, 李华聪, 符江锋, 等. 基于RBF和主动学习的非概率可靠度求解方法[J]. 航空学报, 2023, 44(02): 213-227. [72]高冉, 周建方. 非概率可靠指标和可靠度定义的比较研究[J]. 应用力学学报, 2020, 37 (02): 873-881. |
中图分类号: | TB114.3 |
开放日期: | 2025-06-18 |