- 无标题文档
查看论文信息

题名:

 松散煤体自燃隐患声波感温探测基础研究    

作者:

 任帅京    

学号:

 17120089014    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2021    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 邓军    

导师单位:

 西安科技大学    

提交日期:

 2021-06-21    

答辩日期:

 2021-06-03    

外文题名:

 Basic Research on Acoustic Wave Temperature Detection for Hidden Danger of Loose Coal Spontaneous Combustion    

关键词:

 松散煤体 ; 煤自燃 ; 声波 ; 传播特性 ; 温度探测    

外文关键词:

 Loose coal ; Coal spontaneous combustion ; Sound wave ; Propagation characteristic ; Temperature detection    

摘要:

煤炭作为我国的基础能源,每年的消耗量非常巨大,为保证生产的正常进行,对于很多煤炭生产或以煤炭为工业原料的企业,都必不可少会储存大量的煤炭。然而煤炭在储存的过程中,由于受储存环境、堆放时间等因素的影响,内部温度会逐渐升高,在满足自燃条件时往往会发生煤自燃现象,煤自燃不仅会造成资源的大量浪费,而且还会对环境造成污染。煤自燃高温区域的判定是防治煤自燃的关键,而现有测温方法均难以准确判定煤自燃高温区域的范围。为此,本文以声波作为探测手段,开展了松散煤体自燃隐患声波感温探测基础研究,深入分析了松散煤体中声波测温的机理,主要工作和成果如下:

本文主要以松散煤体声波测温基础研究为主,首先研究了松散煤体的基础特性。通过对不同地区的各个煤样进行力学特性分析,发现其体积模量的数量级都在109以上,得出煤属于刚性多孔介质的结论。根据声波在刚性多孔介质中的传播特性,确定了声波主要是在松散煤体的空隙中进行传播。结合工业CT扫描实验,研究了松散煤体中空隙的分布特征,得出了不同粒径煤样声波传播路径的变化规律。基于上述研究,进一步分析了煤与空气的热物理特性,发现煤的热物理参数很小,在氧化升温过程中温度变化比较缓慢,通过对比空气的热物理参数,表明了煤自燃高温点附近的空气可以等同于周围煤体的温度,为后续的松散煤体声波测温提供了测试依据。

基于声速法测温技术的基本原理,结合声学基础、热力学、力学等相关学科的知识,进一步推导了自由大气空间中声速与温度的函数关系,得出了声波在气体介质中的传播速度不仅与气体温度有关,同时也与该气体介质的湿度、大气压强以及气体成分有关的结论;根据声波在松散煤体中传播路径的形态特征,将声波在松散煤体中的传播路径假设为理想的圆柱形管,利用声学基础理论,建立了声波在松散煤体中的传播模型;依据松散煤体中空隙的分布特征,引入声波传播路径的曲折度,构建出声学法松散煤体测温模型;基于上述推导过程,进一步对松散煤体声波测温影响因素进行了分析,发现湿度所引起的最大测温误差为8°C左右,而大气压所引起的最大测温误差不超过1°C,因此,湿度所引起的测温误差不可忽略。

声源信号的优劣则会影响声波测温结果的准确性,为此,首先设计构建松散煤体吸声测试以及声波衰减测试实验系统,研究了四种煤样在不同条件下的吸声系数和衰减系数的变化规律,测试结果表明煤样的吸声系数和衰减系数主要与煤颗粒的形状、大小以及堆积状态有关,而与煤样的变质程度关系较小,同时测试结果进一步证明了声波主要是在松散煤体颗粒与颗粒间的空隙中进行传播。基于吸声和衰减分析结果,选择了三种典型声源信号作为研究对象,对比分析三种信号的互相关结果,筛选出以线性扫频信号作为松散煤体的测试信号。通过进一步比较不同频带和长度的线性扫频信号的测试结果,最终确定出四种煤样(长焰煤、不粘煤、焦煤、瘦煤)的最佳声源信号:长度为0.1s,频带分别为400~900 Hz、400~900 Hz、500~1200 Hz、400~900 Hz。

转换因子和声波传播时间是实现松散煤体声波测温的两个关键因素,以优选出来的声源信号作为测试信号,开展了松散煤体声波测温实验,获得了不同温度下声波信号数据,采用小波变换法,建立杂波滤除规则,实现声波信号的有效降噪,从而提取有用声波信息数据;对比不同时延估计方法,辨析不同方法的适用性,确定出最佳时延估计方法,用以计算声波传播时间;根据转换因子随温度的变化规律,建立二者的函数关系式,同时依据测温模型,最终计算出松散煤体声波测温结果。

研究成果可以为地面松散煤体自燃高温点精准探测提供一定的技术支撑,对于松散煤体自燃灾害的早期预防具有重要的实际意义。

外文摘要:

As the basic energy of our country, coal consumption is very huge every year. In order to ensure the normal production, it is necessary for many companies that produce coal or use coal as industrial raw materials to store large amounts of coal. However, due to the influence of storage environment and stacking time, the internal temperature of coal will gradually increase in the process of storage. Coal spontaneous combustion often occurs when the conditions for spontaneous combustion are met Coal spontaneous combustion will not only waste a lot of resources, but also pollute the environment. The determination of high temperature area is the key to prevent coal spontaneous combustion, but the existing temperature measurement methods are difficult to accurately determine the high temperature area of coal spontaneous combustion. Therefore, in this paper, acoustic wave is used as the detection method to carry out the basic research on acoustic wave temperature detection for hidden danger of loose coal spontaneous combustion, and the mechanism of acoustic wave temperature measurement is deeply analyzed. The main work and results are as follows:

This paper mainly focuses on the basic research of acoustic wave temperature measurement of loose coal. Firstly, the basic characteristics of loose coal are studied. By analyzing the mechanical properties of coal samples from different areas, it is found that the bulk modulus is above 109, and the coal is a rigid porous medium. According to the propagation characteristics of acoustic waves in rigid porous media, it is determined that acoustic waves mainly propagate in the voids of loose coal. Combined with industrial CT scanning experiment, the distribution characteristics of voids in loose coal are studied, and the variation law of acoustic propagation path of coal samples with different particle sizes is obtained. Based on the above research, the thermophysical properties of coal and air are further analyzed. It is found that the thermophysical parameters of coal are very small, and the temperature changes slowly during the oxidation and temperature rising. By comparing the thermophysical parameters of the air, it is shown that the air near the high temperature point of coal spontaneous combustion can be equal to the temperature of the surrounding coal, which provides a test basis for the subsequent acoustic wave temperature measurement of the loose coal.

Based on the basic principle of sound velocity temperature measurement technology, and combined with the knowledge of acoustics, thermodynamics, mechanics and other related disciplines, the functional relationship between sound velocity and temperature in free atmospheric space is further deduced. It is concluded that the propagation speed of acoustic wave in gas medium is not only related to the gas temperature, but also related to the humidity, atmospheric pressure and composition of the gas medium. According to the morphological characteristics of acoustic wave propagation path in loose coal, the propagation path is assumed to be an ideal cylindrical tube, and the propagation model of acoustic wave in loose coal is established by using the basic acoustic theory. According to the distribution characteristics of voids in loose coal, the tortuosity of acoustic propagation path is introduced, and the acoustic temperature measurement model of loose coal is constructed. Based on the above derivation process, the factors affecting the acoustic temperature measurement of loose coal are further analyzed. It is found that the maximum temperature measurement error caused by humidity is about 8°C, while that caused by atmospheric pressure is less than 1°C. Therefore, the temperature measurement error caused by humidity can not be ignored.

The quality of sound source signal will affect the accuracy of acoustic wave temperature measurement results. Firstly, the sound absorption and attenuation test system of loose coal is designed and constructed. The changes of sound absorption and attenuation coefficients of four coal samples under different conditions are studied. The test results show that the sound absorption and attenuation coefficients of coal samples are mainly related to the shape, size and stacking state of coal particles, but less to the metamorphic degree of coal samples. At the same time, the test results further prove that the acoustic wave mainly propagates in the gap between the loose coal particles. Based on the results of sound absorption and attenuation analysis, three typical sound source signals are selected as the research objects. By comparing and analyzing the cross-correlation results of the three signals, the linear sweep signal is selected as the test signal of loose coal. By further comparing the test results of linear sweep signals with different frequency bands and lengths, the best sound source signals of the four coal samples (long flame coal, non-caking coal, coking coal, and lean coal) are finally determined: the length is 0.1s, and the frequency bands are 400~900 Hz, 400~900 Hz, 500~1200 Hz, and 400~900 Hz respectively.

Conversion factor and acoustic propagation time are two key factors to realize acoustic wave temperature measurement of loose coal. Taking the best sound source signal as the test signal, the acoustic wave temperature measurement experiment of loose coal is carried out, and the acoustic signal data at different temperatures are obtained. By using wavelet transform and establishing clutter filtering rules, the effective noise reduction of acoustic signal is realized, and the useful acoustic information data is extracted. The best time delay estimation method is determined to calculate the acoustic propagation time by comparing and analyzing the applicability of different methods. According to the change law of conversion factor with temperature, the function relationship between them is established. At the same time, the temperature measurement model is applied to calculate the acoustic wave temperature measurement results of loose coal.

The research results can provide certain technical support for accurate detection of high temperature point of loose coal spontaneous combustion on the ground, and have important practical significance for the early prevention of loose coal spontaneous combustion.

参考文献:

[1] 刘原奇. 我国煤炭消费现状分析及2021年趋势展望[J]. 煤炭经济研究, 2021,41(1): 12-16.

[2] 国务院办公厅. 《能源发展战略行动计划(2014-2020年)》[R].国办发〔2014〕31号, 2014.

[3] 李金克. 我国煤炭战略储备及其沿革[J]. 山东工商学院学报, 2011,25(4): 37-39.

[4] 文虎, 许满贵, 王振平, 等. 地温对煤炭自燃的影响[J]. 西安科技学院学报, 2001,21(1): 1-3.

[5] 彭信山, 景国勋. 基于MATLAB的采空区自燃发火的数值模拟分析[J]. 煤炭技术, 2011,30(4): 103-104.

[6] Dijk P, Zhang J, Jun W, et al. Assessment of the contribution of in-situ combustion of coal to greenhouse gas emission; based on a comparison of Chinese mining information to previous remote sensing estimates[J]. International Journal of Coal Geology, 2011,86(1): 108-119.

[7] Kuenzer C, Stracher G B. Geomorphology of coal seam fires[J]. Geomorphology, 2012,138(1): 209-222.

[8] Liang Y, Liang H, Zhu S. Mercury emission from coal seam fire at Wuda, Inner Mongolia, China[J]. Atmospheric Environment, 2014,83: 176-184.

[9] Finkelman R B. Potential health impacts of burning coal beds and waste banks[J]. International Journal of Coal Geology, 2004,59(1-2): 19-24.

[10] Wu J, Liu X. Risk assessment of underground coal fire development at regional scale[J]. International Journal of Coal Geology, 2011,86(1): 87-94.

[11] 谷红伟. 储煤场温度监测技术研究[D]. 大连: 大连海事大学, 2014.

[12] Green S F. An acoustic technique for rapid temperature distribution measurement[J]. The Journal of the Acoustical Society of America, 1985,77(2): 759-763.

[13] Anosov A A, Subochev P V, Mansfeld A D, et al. Physical and computer-based modeling in internal temperature reconstruction by the method of passive acoustic thermometry[J]. Ultrasonics, 2018,82: 336-344.

[14] 邵富群, 吴建云. 声学法复杂温度场的重组测量[J]. 控制与决策, 1999,(2): 3-5.

[15] 吕程. 红外测温仪设计分析[J]. 计算机光盘软件与应用, 2012,(5): 207-210.

[16] 王忆锋, 史衍丽, 李夏玲. 论红外探测系统作用距离的比较分析[J]. 红外技术, 2012,34(9): 515-520.

[17] 肖旸, 王振平, 马砺, 等. 煤自燃指标气体与特征温度的对应关系研究[J]. 煤炭科学技术, 2008,36(6): 47-51.

[18] 刘洋, 吴双, 赵永刚. 热电偶温度传感器的研究与发展现状[J]. 中国仪器仪表, 2003,(11): 1-3.

[19] 刘伟, 周心权, 谭文辉, 等. 用分区法优化布置火源探测传感器的研究[J]. 煤炭工程师, 1998,(4): 5-7.

[20] 朱红青, 王海燕, 王斐然, 等. 煤堆测温技术研究进展[J]. 煤炭科学技术, 2014,42(1): 50-54.

[21] 谷红伟, 李瑛, 许文海, 等. 露天煤垛内部高温非接触式红外测量方法[J]. 煤炭学报, 2014,39(S1): 123-129.

[22] 王亭岭, 陈建明, 王修庞. ZigBee无线传感器网络的有线通信与管理[J]. 微计算机信息, 2010,26(5): 86-88.

[23] 沙占友. 智能温度传感器的发展趋势[J]. 电子技术应用, 2002,(5): 6-7.

[24] 王剑锋, 张在宣, 徐海峰, 等. 分布式光纤温度传感器新测温原理的研究[J]. 中国计量学院学报, 2006,17(1): 25-28.

[25] 张箫剑. 基于光纤测温技术的采空区煤温监测研究[D]. 安徽: 安徽理工大学, 2015.

[26] 陈文科, 王志, 高艳雯. 新型地面煤堆温度监测系统的研制[J]. 微计算机信息, 2007,(13): 111-113.

[27] 马恒, 尚大俊, 周腾. 煤堆温度远程监控系统的设计与实现[J]. 辽宁工程技术大学学报(自然科学版), 2009,28(6): 888-890.

[28] 白永强. 分布式光纤测温技术在煤仓温度监测系统的应用[J]. 煤矿现代化, 2013,(5): 85-86.

[29] 伦利, 李萍. 基于光纤传感器的煤堆温度监测及预警[J]. 煤矿机械, 2013,34(3): 236-237.

[30] 吴迪, 周孟然, 胡苓苓, 等. 光纤传感器在煤场温度监测系统中的应用[J]. 煤炭科学技术, 2011,39(1): 80-82.

[31] Green U, Aizenshtat Z, Metzger L, et al. Field and laboratory simulation study of hot spots in stockpiled bituminous coal[J]. Energy & Fuels, 2012,26(12): 7230-7235.

[32] 曹现刚, 杜青青, 董明. 基于WebAccess的储煤仓温度监测系统[J]. 煤炭技术, 2017,36(4): 144-146.

[33] 吴文臻, 宋国栋. 储煤仓新型温度监测系统[C]. 第三届全国煤矿机械安全装备技术发展高层论坛暨新产品技术交流会, 中国湖南张家界, 2012.

[34] Viveiros D, Ribeiro J, Carvalho J P, et al. Fiber optic sensing system for monitoring of coal waste piles in combustion[C]. 23rd International conference on Optical Fibre Sensors, Santander, Spain, 2014.

[35] Viveiros D, Ribeiro J, Ferreira J, et al. Fiber optic sensing system for temperature and gas monitoring in coal waste pile combustion environments[C]. 24th International Conference on Optical Fibre Sensors, Curitiba, Brasil, 2015.

[36] 张屹华, 邓新平, 王爱娟, 等. 粉煤仓内粉煤堆温度监测装置[P]. 中国专利:CN209131848U, 2019-07-19.

[37] Zhang J, Kuenzer C. Thermal surface characteristics of coal fires 1 results of in-situ measurements[J]. Journal of Applied Geophysics, 2007,63(3-4): 117-134.

[38] 宋大勇. 基于红外成像探测的煤层隐蔽火源反演识别技术研究[D]. 西安: 西安科技大学, 2012.

[39] 陈振永, 张吉林, 周军民. 红外探测仪在防灭火中的应用[J]. 中州煤炭, 2004,(4): 59-74.

[40] 王振平, 程卫民, 辛嵩, 等. 煤巷近距离自燃火源位置的红外探测与反演[J]. 煤炭学报, 2003,28(6): 603-607.

[41] 谷红伟, 李瑛, 许文海, 等. 非接触式露天煤垛在线温度监测系统设计[J]. 煤炭科学技术, 2014,42(4): 83-87.

[42] 朱向东, 沈阅, 谷美娜. 红外成像技术在港口煤堆自燃检测中的应用[J]. 港工技术, 2019,56(1): 117-120.

[43] 裘丛杰, 吴永朋. 火电厂煤场自燃监测系统探讨[J]. 发电与空调, 2012,33(1): 21-24.

[44] 李四清, 姚俊. 基于热面成像的煤储存与传输智慧消防技术研究[J]. 消防界(电子版), 2020,6(19): 68-69.

[45] 黄超, 祝婷. 煤场红外温度监测系统[P]. 中国专利:CN210180541U, 2020-03-24.

[46] 王玉婷, 齐朋. 条形封闭煤场安全监测系统的设计与应用[J]. 包钢科技, 2019,45(3): 88-91.

[47] Wang Y, Sheng Y, Gu Q, et al. Infrared thermography monitoring and early warning of the spontaneous combustion of coal gangue pile[J]. International Society for Photogrammetry and Remote Sensing, 2008,37: 203-206.

[48] 王艳春, 尹新伟, 陈婷. 一种圆形封闭煤场无死角红外测温技术的应用[J]. 科技资讯, 2016,14(35): 60-62.

[49] Carpentier O, Defer D, Antczak E, et al. Infrared thermography applied to spontaneous combustion monitoring of coal tips[J]. Applied Thermal Engineering, 2005,25: 2677-2686.

[50] 戴景民. 辐射测温的发展现状与展望[J]. 自动化技术与应用, 2004,23(3): 1-7.

[51] 杨立. 红外热像仪测温计算与误差分析[J]. 红外技术, 1999,21(4): 20-24.

[52] 程卫民, 王振平, 辛嵩, 等. 煤巷煤自燃火源红外探测的影响因素及判别方法[J]. 煤炭科学技术, 2003,31(8): 37-40.

[53] 高一峰. 无线电波透视在煤矿中的应用[J]. 物探与化探, 2007,31(S1): 105-107.

[54] 孟凡成, 李长录. 基于无线传感器网络的煤层自燃火源定位监测[J]. 煤炭科学技术, 2009,37(4): 91-93.

[55] 王伟峰. 煤田火灾无线自组网钻孔温度远程监控系统的开发研究[D]. 西安: 西安科技大学, 2010.

[56] Wang X. Experimental and theoretical studies of kinetics and quality parameters to determine spontaneous combustion propensity of U.S. coals[D]. West Virginia University, 2014.

[57] 肖葵. 基于ZigBee技术的码头等储煤场温度监测系统[J]. 电子测试, 2013,(23): 162-163.

[58] Li S, Ma X, Yang C. Prediction of spontaneous combustion in the coal stockpile based on an improved metabolic grey model[J]. Process Safety and Environmental Protection, 2018,116: 564-577.

[59] Wasilewski S. Monitoring the thermal and gaseous activity of coal waste dumps[J]. Environmental Earth Sciences, 2020,79(20): 474.

[60] Cao Q H, Yan S, Xue G Q, et al. High resolution resistivity detecting and remote internet monitoring of coalfield fire[J]. Chinses Journal of Geophysics-Chinses Edition, 2017,60(1): 424-429.

[61] 蔡可健. 煤堆温度多点无线监测系统设计[J]. 工矿自动化, 2006,(6): 80-83.

[62] 王建军, 张晋亮. 煤仓自燃特征信息无线监测及预控技术[J]. 煤矿现代化, 2016,(1): 33-36.

[63] 文虎, 李珍宝, 马砺, 等. 电场煤仓自燃火灾异类信息无线监测装置研究[J]. 煤炭技术, 2014,33(12): 121-123.

[64] 朱成杰, 欧阳名三, 高俊岭. 基于无线传感网络的煤仓火灾预警与监测系统的研制[C]. 2011 International Conference on Software Engineering and Multimedia Communication, 中国山东青岛, 2011.

[65] Dudzińska A, Cygankiewicz J, Włodarek M. Gaseous emissions from freshly extracted coal in the inert and air atmosphere in terms of natural desorption and early coal oxidation[J]. Fuel, 2021,285: 119066.

[66] Chen X, Bi R, Huang J, et al. Experimental study on early prediction index gas for spontaneous combustion[J]. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2020: 1-15.

[67] Xiao Y, Li Q, Deng J, et al. Experimental study on the corresponding relationship between the index gases and critical temperature for coal spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2017,127(1): 1009-1017.

[68] 谭波, 王海燕, 李政. 基于指标气体的煤自燃危险性决策[C]. 中央高校基本科研业务费项目研究成果学术交流会, 中国北京, 2011.

[69] 刘灿, 董正坤, 冯景. 煤炭自燃火灾的指标气体及检测技术[J]. 陕西煤炭, 2007,(5): 7-9.

[70] 周瑞强. 储煤筒仓信号监测系统设计与研究[J]. 数字技术与应用, 2014,(12): 172-173.

[71] 崔丕桓, 贺元飞, 吴鹏超. 浅谈IGCC电厂筒仓储煤自燃的预防措施[J]. 能源与节能, 2020,(1): 30-31, 114.

[72] 王敏, 张磊鑫, 姜伟. 上海庙西部矿区储煤自燃监测预警及防控技术[J]. 山东煤炭科技, 2019,(12): 78-79, 82.

[73] Niu H, Deng X, Li S, et al. Experiment study of optimization on prediction index gases of coal spontaneous combustion[J]. Journal of Central South University, 2016,23(9): 2321-2328.

[74] Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal of Loss Prevention in the Process Industries, 2019,57: 208-222.

[75] Guo J, Wen H, Zheng X, et al. A method for evaluating the spontaneous combustion of coal by monitoring various gases[J]. Process Safety and Environmental Protection, 2019,126: 223-231.

[76] 许宁. 筒仓储煤自燃预警方法的研究和应用[J]. 煤矿机电, 2014,(6): 109-112.

[77] 韩子彬. 选煤厂煤温监测方法的研究[J]. 陕西煤炭, 2018,37(S1): 70-73.

[78] 丁永生. 计算智能:理论、技术与应用[M]. 上海: 科学出版社, 2004.

[79] 吕美娟. 储煤筒仓内温度场数值模拟与试验研究[D]. 保定: 华北电力大学, 2018.

[80] Ejlali A, Aminossadati S M, Hooman K, et al. A new criterion to design reactive coal stockpiles[J]. International Communications in Heat and Mass Transfer, 2009,36(7): 669-673.

[81] 周春山. 煤自然实验过程中温度场的数值模拟研究[D]. 太原: 太原理工大学, 2007.

[82] 董子文, 吴宪, 齐庆杰, 等. 风障联合压实防治煤堆自燃技术工艺参数优化[J]. 中国安全生产科学技术, 2016,12(3): 15-20.

[83] 李鹏飞. 基于卷积神经网络的煤堆烟雾检测算法研究[D]. 秦皇岛: 燕山大学, 2020.

[84] Peng G, Wang H, Song X, et al. Intelligent management of coal stockpiles using improved grey spontaneous combustion forecasting models[J]. Energy, 2017,132: 269-279.

[85] 吴晓光. 煤自然发火实验台温度场数值模拟研究[D]. 西安: 西安科技大学, 2005.

[86] 陈清华. 松散煤体热物性测试及其温度场分布规律研究[D]. 安徽: 安徽理工大学, 2009.

[87] 李明明. 松散煤体有源温度场实验和数值模拟研究[D]. 西安: 西安科技大学, 2009.

[88] 齐庆杰, 王欢, 董子文, 等. 基于COMSOL软件分析确定煤堆初始自燃区域[J]. 煤炭科学技术, 2016,44(10): 18-23.

[89] 崔铁军, 马云东, 王来贵. 基于PFC3D的煤堆自燃过程模拟与实现[J]. 安全与环境学报, 2016,16(2): 94-98.

[90] 刘星魁, 杨书召. 煤堆自燃升温规律与漏风特征的数值模拟[J]. 河南理工大学学报(自然科学版), 2015,34(5): 610-614.

[91] 杜功焕, 朱哲民, 龚秀芬. 声学基础(第二版)[M]. 南京: 南京大学出版社, 2001.

[92] Miyashita T. Sonic crystals and sonic wave-guides[J]. Measurement Science and Technology, 2005,16: R47-R63.

[93] 杨训仁, 陈宇. 大气声学[M]. 北京: 科学出版社, 2007.

[94] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004.

[95] Partridge C, Smith E R. Acoustic scattering from bodies: Range of validity of the deformed cylinder method[J]. The Journal of the Acoustical Society of America, 1995,97(2): 784-795.

[96] 鄢舒. 多元混合气体声学特性的数值模拟研究[D]. 武汉: 华中科技大学, 2008.

[97] Rose, J L. Ultrasonic waves in solid media[M]. Cambridge university press, 2004.

[98] Queirós R, Corrêa Alegria F, Silva Girão P, et al. Cross-correlation and sine-fitting techniques for high-resolution ultrasonic ranging[J]. IEEE Transactions on Instrumentation and Measurement, 2010,59(12): 3227-3236.

[99] 陈聃. 风场和温度场影响下空气中声波的传播特性研究[D]. 长沙: 国防科学技术大学, 2009.

[100] Molero M, Medina L. Comparison of phase velocity in trabecular bone mimicking-phantoms by time domain numerical (EFIT) and analytical multiple scattering approaches[J]. Ultrasonics, 2012,52: 809-814.

[101] 段睿. 深海环境水声传播及声源定位方法研究[D]. 西安: 西北工业大学, 2016.

[102] 姚骏. 纸浆悬浮液超声衰减理论及其在浓度流量检测中的应用研究[D]. 上海: 上海大学, 2006.

[103] 黄建通, 李黎, 李长征. 浑水中超声波传播特性研究[J]. 人民黄河, 2010,32(8): 43-44.

[104] 田红. 超声波在城市剩余活性污泥中的传输特性的模拟及实验研究[D]. 重庆: 重庆大学, 2010.

[105] Chen C, Yang K, Duan R, et al. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension[J]. Applied Ocean Research, 2017,68: 1-10.

[106] 闫森, 何海铭, 熊健, 等. 煤岩声波传播特性实验研究[J]. 石油化工应用, 2020,39(10): 79-83.

[107] 李祥春, 聂百胜, 杨春丽, 等. 煤岩体声波波速随温度变化规律试验研究[J]. 煤炭科学技术, 2016,44(5): 140-144.

[108] Jia D, Liu M, Cui C. The research of acoustic propagation characteristics in the periodic oil pipes[C]. 2013 2nd International Conference on Measurement, Information and Control, 2013.

[109] 陈旭, 俞缙, 李宏, 等. 不同岩性及含水率的岩石声波传播规律试验研究[J]. 岩土力学, 2013,34(9): 2527-2533.

[110] 张婷婷. 声波在晶体和陶瓷中的声传播特性研究[D]. 南京: 南京大学, 2012.

[111] 张琳. 多孔介质中地震波的频散及衰减机制研究[D]. 青岛: 中国石油大学(华东), 2014.

[112] Biot M. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2): 168-178.

[113] Biot M. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956,28(2): 179-191.

[114] Stoll R D, Bryan G M. Wave attenuation in saturated sediments[J]. The Journal of the Acoustical Society of America, 1970,47(5B): 1440-1447.

[115] Liu X, Cai X, Guo Q, et al. Study of acoustic wave propagation in micro- and nanochannels[J]. Wave Motion, 2018,76: 51-60.

[116] Yang H, Xiao Y, Zhao H, et al. On wave propagation and attenuation properties of underwater acoustic screens consisting of periodically perforated rubber layers with metal plates[J]. Journal of Sound and Vibration, 2018,444: 21-34.

[117] 陈亮, 沈敏. 四边简支含多孔材料双层板隔声特性[J]. 应用声学, 2020: 1-13.

[118] 姜根山, 安连锁, 杨昆. 温度梯度场中声线传播路径数值研究[J]. 中国电机工程学报, 2004,24(10): 212-216.

[119] 安连锁, 冯强, 沈国清, 等. 电站锅炉管阵列内声传播特性及时延值测量[J]. 动力工程学报, 2017,37(1): 13-20.

[120] 郑广赢, 黄益旺. 气泡线性振动对含气泡水饱和多孔介质声传播的影响[J]. 物理学报, 2016,65(23): 144-150.

[121] 郭敏, 尚志远, 石焕文. 多种粮食声吸收的研究[J]. 西北大学学报(自然科学版), 2004,34(1): 34-38.

[122] Hickling R, Wei W, Hagstrum D. Studies of sound transmission in various types of stored grain for acoustic detection of insects[J]. Applied Acoustics, 1997,50(4): 263-278.

[123] Hickling R, Wei W. Sound transmission in stored grain[J]. Applied Acoustics, 1995,45(1): 1-8.

[124] 陈冠男. 声学法仓储粮食温度检测关键技术的研究[D]. 沈阳: 沈阳工业大学, 2012.

[125] 沈国清, 张世平, 安连锁. 声学测温在混响和高噪声条件下的时延估计研究[J]. 动力工程学报, 2014,34(7): 529-533.

[126] 胡主宽. 锅炉炉膛温度场测量技术研究现状与发展趋势探讨[J]. 中国测试, 2015,41(4): 5-9.

[127] 曾庭华, 马斌. 锅炉炉膛温度场测量技术[J]. 广东电力, 1999,(1): 50-52.

[128] 吴莉. 基于声波理论的炉膛温度场重建技术研究[D]. 南京: 东南大学, 2015.

[129] Hedrich A, Pardue D. Sound velocity as a measurement of gas temperature[J]. Temperature Measurement and Control in Science and Industry, 1955,2.

[130] Green S G, Woodham A U. Rapid furnace temperature distribution measurement by sonic prometry[C]. Central Electricity Generating Board, Marchwood Engineering Laboratories, Marchwood, Southampton, England, 1983.

[131] Green S F. Acoustic temperature & velocity measurment in combustion gase[C]. Proceedings Eighth International Heat Transfer Conference, San Francisco, USA., 1986.

[132] Saeki M, Tanaka S. Measurement of time-of-flight for measurement of temperature distribution in boilers[J]. The Society of Instrument and Control Engineers, 2001,37(3): 185-192.

[133] Gan T H, Hutchins D A, Carpenter P W, et al. Simultaneous reconstruction of flow and temperature cross-sections in gases using acoustic tomography[J]. The Journal of the Acoustical Society of America, 2003,114(2): 759-766.

[134] Wrighta W M D, Schindel D W, Hutchins D A, et al. Ultrasonic tomographic imaging of temperature and flow fields in gases using air-coupled capacitance transducers[J]. The Journal of the Acoustical Society of America, 1998,104(6): 3446-3455.

[135] Lou C, Zhou H. Assessment of regularized reconstruction of three-dimensional temperature distributions in large-scale furnaces[J]. Numerical Heat Transfer, Part B: Fundamentals, 2008,53(6): 555-567.

[136] Raya R, Frizera A, Ceres R, et al. Design and evaluation of a fast model-based algorithm for ultrasonic range measurements[J]. Sensors and Actuators A: Physical, 2008,148(1): 335-341.

[137] Young K J, Irelannd S N, Melendez-Cervates M C, et al. On the systematic error associated with the measurement of temperature using acoustic pyrometry in combustion products of unknown mixture[J]. Measurement Science and Technology, 1998,9(1): 1-5.

[138] 冯鸣. 声学高温计——锅炉诊断的新工具[J]. 发电设备, 1990,(4): 33-36.

[139] 黄庆康. 声学炉内温度场实时监测系统[J]. 电站系统工程, 2000,16(4): 221-223.

[140] 田丰, 邵富群, 王福利. 基于声波的工业炉温度场测量技术[J]. 沈阳航空工业学院学报, 2001,18(3): 10-11.

[141] 田丰, 邵富群, 王福利, 等. 基于弯曲路径的复杂温度场重建算法仿真研究[J]. 系统仿真学报, 2003,15(5): 621-623.

[142] 田丰, 孙小平, 邵富群, 等. 基于高斯函数与正则化法的复杂温度场图像重建算法研究[J]. 中国电机工程学报, 2004,24(5): 216-219.

[143] 沈国清, 安连锁, 姜根山. 炉膛烟气温度声学测量方法的研究与进展[J]. 仪器仪表学报, 2003,24(S1): 555-558.

[144] 沈国清. 声学方法重建炉内温度场的算法研究[D]. 保定: 华北电力大学, 2004.

[145] 沈国清, 安连锁, 姜根山, 等. 基于声学CT重建炉膛二维温度场的仿真研究[J]. 中国电机工程学报, 2007,27(2): 11-14.

[146] 李芝兰, 颜华, 陈冠男. 基于修正Landweber迭代的声学温度场重建算法[J]. 沈阳工业大学学报, 2008,30(1): 90-93.

[147] 颜华, 王善辉, 周英钢. 正则化参数自适应选取的声学CT温度场重建[J]. 仪器仪表学报, 2012,33(6): 1301-1307.

[148] 郭淼. 基于声学法的堆积生物质温度测量研究[D]. 北京: 华北电力大学, 2019.

[149] Starke M, Fischer G, Raabe A, et al. Remote sensing of temperature and wind using acoustic travel-time measurements[J]. Meteorologische Zeitschrift, 2013,22(2): 103-109.

[150] 雷宇宁. 基于压缩感知的海水温度场采样和重构方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

[151] 梁亚园. 炉膛温度声波测量技术及应用研究[D]. 北京: 华北电力大学, 2016.

[152] Ma T, Liu Y, Cao C. Neural networks for 3D temperature field reconstruction via acoustic signals[J]. Mechanical Systems and Signal Processing, 2019,126: 392-406.

[153] 左臣蒙. 航空发动机燃烧室温度场的声学测温方法研究[D]. 沈阳: 沈阳航空航天大学, 2018.

[154] 张祝军, 潘宏, 蔡勇, 等. 海底热液温度场声学测量系统的初步研究[J]. 电子测量与仪器学报, 2010,24(11): 1031-1037.

[155] Send U, Worcester P, Cornuelle B, et al. Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002,49(19): 4069-4095.

[156] Duckworth G, Lepage K, Farrell T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results [J]. The Journal of the Acoustical Society of America, 2001,110(2): 747-760.

[157] 樊炜. 海底热液口温度场声学测量技术研究[D]. 浙江: 浙江大学, 2010.

[158] 毛洁, 吴友凤, 樊炜, 等. 声学法深海热液温度场测量及重建算法研究[J]. 仪器仪表学报, 2010,31(10): 2339-2344.

[159] 蔡勇, 潘宏, 周艳, 等. 海底热液口温度场高精度声学测量方法研究[J]. 仪器仪表学报, 2012,33(3): 649-654.

[160] Fan W, Chen Y, Pan H, et al. Experimental study on underwater acoustic imaging of 2-D temperature distribution around hot springs on floor of Lake Qiezishan, China[J]. Experimental Thermal and Fluid Science, 2010,34(8): 1334-1345.

[161] Fan W, Chen C, Chen Y. Calibration of an acoustic system for measuring 2-D temperature distribution around hydrothermal vents[J]. Ultrasonics, 2013,53(4): 897-906.

[162] Moldover M R, Waxman M, Greenspan M. Spherical acoustic resonators for temperature and thermophysical property measurements[J]. High Temperatures-High Pressures, 1978,11(1): 75-86.

[163] Moldover M R, Trusler J P M. Accurate acoustic thermometry I: the triple point of gallium[J]. Metrologia, 1988,25(3): 165-187.

[164] 王明吉. 气体介质温度场声学测量方法与技术研究[D]. 大庆: 东北石油大学, 2012.

[165] 张雨. 二维方形边界温度场声学测量可视化研究[D]. 大庆: 东北石油大学, 2013.

[166] Saito I, Mizutani K, Wakatsuki N, et al. Measurement of vertical temperature distribution using a single pair of loudspeaker and microphone with acoustic reflection[J]. Japanese Journal of Applied Physics, 2009,48: 07GB05.

[167] Barth M, Raabe A. Acoustic tomographic imaging of temperature and flow fields in air[J]. Measurement Science and Technology, 2011,22: 035102.

[168] 安连锁, 张世平, 李庚生, 等. 电站锅炉声学测温中时延估计试验研究[J]. 动力工程学报, 2012,32(3): 197-203.

[169] 李艳秋, 刘石. 融合动态演变信息的声学三维温度场重建[J]. 电子测量与仪器学报, 2017,31(11): 1711-1718.

[170] Zhang S, Shen G, An L, et al. Online monitoring of the two-dimensional temperature field in a boiler furnace based on acoustic computed tomography[J]. Applied Thermal Engineering, 2015,75(SI): 958-966.

[171] 安连锁, 王然, 沈国清, 等. 基于迭代算法的炉膛三维温度场声学重建[J]. 华北电力大学学报(自然科学版), 2015,42(1): 69-73.

[172] 崔文丽, 韩焱. 声学法重建温度场[J]. 四川兵工学报, 2008,29(6): 167-168.

[173] Chen G, Yan H, Zhou Y, et al. A new method of sound travel-time measurement in stored grain[C]. Advanced Research on Computer Education, Simulation and Modeling - International Conference, Berlin, Heidelberg, 2011.

[174] Yan H, Chen G, Zhou Y, et al. Primary study of temperature distribution measurement in stored grain based on acoustic tomography[J]. Experimental Thermal and Fluid Science, 2012,42: 55-63.

[175] 颜华, 陈冠男, 刘丽钧, 等. 声层析成像仓储粮食温度监测方法[J]. 沈阳工业大学学报, 2013,35(5): 541-547.

[176] 窦辉. 声学法温度场重建仿真及实验研究[D]. 沈阳: 沈阳工业大学, 2011.

[177] 王善辉. 声学层析成像反问题求解及温度场重建算法研究[D]. 沈阳: 沈阳工业大学, 2014.

[178] Hu Y, Guo M, Yan Y, et al. Temperature measurement of stored biomass of different types and bulk densities using acoustic techniques[J]. 2019,257: 115968.

[179] 曹明亮, 康永尚, 邓泽, 等. 煤阶和构造应力强度对煤岩力学性质的影响作用[J]. 煤炭科学技术, 2019,47(12): 45-55.

[180] 刘娜, 康永尚, 李喆, 等. 煤岩孔隙度主控地质因素及其对煤层气开发的影响[J]. 现代地质, 2018,32(5): 963-974.

[181] 秦昉. 水泥混凝土投料搅拌工艺及其影响试验研究[D]. 西安: 长安大学, 2013.

[182] 李富聪. 基于工业CT扫描的ATB-30压实特性分析[D]. 西安: 长安大学, 2015.

[183] 庄园. 寒区隧道保温材料浸水导热特性及合理厚度研究[D]. 西安: 长安大学, 2018.

[184] 杨赫. 混凝土桥面沥青铺装防水粘结层特性研究[D]. 西安: 长安大学, 2018.

[185] 邱丽君. Otsu图像分割方法的研究与应用[D]. 济南: 山东师范大学, 2011.

[186] 韩思奇, 王蕾. 图像分割的阈值法综述[J]. 系统工程与电子技术, 2002,24(6): 91-94, 102.

[187] 王梦蔚, 卢广达, 黄丹. 基于CT扫描试验及数字图像处理的混凝土宏细观建模研究[J]. 混凝土, 2014,(11): 27-30.

[188] 邱丽君, 侯德文, 王依才. 改进的二维Otsu图像分割方法的研究[J]. 计算机工程与应用, 2010,46(33): 195-197.

[189] 高艳, 唐晓英, 张军莉, 等. 基于物体空间序法的CT图像三维重建算法的研究[J]. 北京生物医学工程, 2003,22(3): 180-183.

[190] 赵莉娜. 医学图像分割与三维重建算法的研究[D]. 济南: 山东大学, 2008.

[191] 王凡. 数字岩芯数据处理方法研究与电特性计算[D]. 西安: 长安大学, 2018.

[192] 苏盛, 沈德建, 吕维波. 三维重建技术在全级配混凝土骨料随机分布中的研究与应用[J]. 江西科学, 2007,25(5): 522-525, 531.

[193] Larkin J M, McGaughey A J H. Thermal conductivity accumulation in amorphous silica and amorphous silicon[J]. Physical Review B, 2014,89(14): 144303.

[194] Zhu T, Ertekin E. Phonons, localization, and thermal conductivity of diamond nanothreads and amorphous grapheme[J]. Nano Lett, 2016,16(8): 4763-4772.

[195] Deng J, Ren S J, Xiao Y, et al. Thermal properties of coals with different metamorphic levels in air atmosphere[J]. Applied Thermal Engineering, 2018,143: 542-549.

[196] Birch A F, Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition: part I[J]. American Journal of Science, 1940,238(8): 529-558.

[197] Birch A F, Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition: part II[J]. American Journal of Science, 1940,238(9): 613-635.

[198] Melchior E, Luther H. Measurement of true specific heats of bituminous coals of different rank, and of a high-temperature coke, in the temperature range 30-350 °C[J]. Fuel, 1982,61(11): 1071-1079.

[199] Maloney D J, Sampath R, Zondlo J W. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating[J]. Combustion and Flame, 1999,116(1-2): 94-104.

[200] Abdulagatov I M, Abdulagatova Z Z, Kallaev S N, et al. Thermal-diffusivity and heat-capacity measurements of sandstone at high temperatures using laser flash and DSC methods[J]. International Journal of Thermophysics, 2015,36(4): 658-691.

[201] 沈雪华. 基于声学测温的温度场重建算法研究[D]. 重庆: 重庆大学, 2016.

[202] Kleppe J A, Fadali S, Lapolla M H, et al. High temperature gas measurement in combustors using acoustic pyrometry method[J]. Proceedings of the International Instrumentation Symposium, 2001,47: 441-449.

[203] 何其伟, 於正前, 李言钦, 等. 炉膛速度场声学检测装置[J]. 自动化与仪器仪表, 2003,(3): 42-45.

[204] 宋志强, 樊旭. 声学法锅炉温度场检测技术及应用[J]. 锅炉技术, 2005,36(1): 20-23.

[205] 杜功焕, 朱哲民, 龚秀芬. 声学基础(第三版)[M]. 南京: 南京大学出版社, 2012.

[206] Giacomo P. Equation for the determination of the density of moist air (1981)[J]. Metrologia, 1982,18(1): 33-40.

[207] Rasmussen K. Calculation methods for the physical properties of air used in the calibration of microphones[R]. Technical University of Denmark Report PL-11b, 1997.

[208] Tsilingiris P T. Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C[J]. Energy Conversion and Management, 2008,49(5): 1098-1110.

[209] Hardy B. ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint temperature, and enhancement factors in the range -100 to +100 °C[C]. The Proceedings of the Third International Symposium on Humidity & Moisture, Teddington, London, England, 1998.

[210] Greenspan L. Functional equations for the enhancement factors for CO2-free moist air[J]. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 1976,80(1): 41-44.

[211] Bohn D A. Environmental effects on the speed of sound[J]. Journal of the Audio Engineering Society, 1988,36(4): 223-231.

[212] Hyland R, Wexler A. Formulations for the thermodynamic properties of the saturated phase of H2O from 173.15 K to 473.15 K[J]. Ashrae Transactions, 1983,89(2): 500-519.

[213] 许肖梅. 声学基础[M]. 北京: 科学出版社, 2003.

[214] 杨乐平, 李海涛, 杨磊. LabVIEW程序设计与应用[M]. 北京: 电子工业出版社, 2005.

[215] 郭敏. 声信号在准多孔介质中的传播及害虫弱声信号特征分析[D]. 西安: 陕西师范大学, 2003.

[216] Shuman D, Weaver D K, Mankin R W. Quantifying larval infestation with an acoustical sensor array and cluster analysis of cross-correlation outputs[J]. Applied Acoustics, 1997,50(4): 279-296.

[217] 张林, 左晓戎, 吴群力, 等. 粮食声传播吸声特性的研究[J]. 中国粮油学报, 2008,23(3): 186-188.

[218] ASTM E1050-98 Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system[S]. West Conshohocken: 2012.

[219] 田昌. 基于超声法测量气固两相流颗粒相浓度研究[D]. 上海: 上海理工大学, 2013.

[220] 刘岩. 基于声学法的混合气体温度、浓度和速度分布同时测量方法研究[D]. 保定: 华北电力大学, 2015.

[221] 张全兴. 超声波非均匀介质传播衰减特性研究[D]. 沈阳: 沈阳工业大学, 2015.

[222] Dain Y, Lueptow R M. Acoustic attenuation in three-component gas mixtures-Theory[J]. The Journal of the Acoustical Society of America, 2001,109(5): 1955-1964.

[223] 薛明华. 超声法测量颗粒两相流粒径及浓度的理论及实验研究[D]. 上海: 上海理工大学, 2008.

[224] 罗振. 炉膛燃烧噪声环境下声波飞行时间测量方法研究[D]. 沈阳: 沈阳航空工业学院, 2006.

[225] 罗振, 田丰, 孙小平. 炉膛声波飞行时间测量中声源信号的选取研究[J]. 计算机仿真, 2007,24(1): 329-332.

[226] 张晓东, 高波, 宋之平. 互相关函数法在声学测温技术中的应用研究[J]. 中国电机工程学报, 2003,23(4): 189-192.

[227] 安连锁, 李庚生, 张世平, 等. 电站锅炉声学测温中扫频信号声源特性研究[J]. 动力工程学报, 2011,31(11): 840-845.

[228] Miki Y. Acoustical properties of porous materials: Modifications of Delany-Bazley models[J]. Journal of the Acoustical Society of Japan (E), 1990,11(1): 19-24.

[229] Othmani C, Taktak M, Zein A, et al. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material[J]. Applied Acoustics, 2016,109: 90-96.

[230] 沈国清, 安连锁, 姜根山, 等. 基于声波理论的锅炉燃烧监测方法及其技术关键[J]. 工程热物理学报, 2006,27(S2): 139-142.

[231] Li P, Chen S, Cai Y, et al. Accurate TOF measurement of ultrasonic signal echo from the liquid level based on a 2-D image processing method[J]. Neurocomputing, 2016,175(Part A): 47-54.

[232] Chong S Y, Lee J R, Chan Y P. Statistical threshold determination method through noise map generation for two dimensional amplitude and time-of-flight mapping of guided waves[J]. Journal of Sound and Vibration, 2013,332(5): 1252-1264.

[233] Barshan B. Fast processing techniques for accurate ultrasonic range measurements[J]. Measurement Science and Technology, 2000,11(1): 45-50.

[234] 李国罡, 石岩, 胡昌振. 被动声探测系统的时间延迟估计技术[J]. 现代引信, 1998,(2): 18-23.

[235] 郭业才. 基于高阶统计量的水下目标动态谱特征增强研究[D]. 西安: 西北工业大学, 2003.

[236] 张中华, 张端金, 郭建军, 等. 基于三阶累积量的多径时延估计[J]. 信息与电子工程, 2009,7(2): 94-98.

[237] 崔婷婷. 电站锅炉烟道温度场及流场声学测量技术研究[D]. 南京: 东南大学, 2018.

[238] 潘泉, 张磊, 孟晋丽, 等. 小波滤波方法及应用[M]. 北京: 清华大学出版社, 2005.

[239] 刘厦. 声学层析成像温度分布重建研究[D]. 北京: 华北电力大学, 2018.

[240] 蒋忠进, 林君, 陈祖斌. 小波包在Chirp信号检测与时延估计中的应用[J]. 电讯技术, 2003,(2): 58-61.

[241] 曾宪伟, 赵卫明, 盛菊琴. 小波包分解树结点与信号子空间频带的对应关系及其应用[J]. 地震学报, 2008,30(1): 90-96.

[242] Minamide A, Mizutani K, Wakatsuki N. Temperature distribution measurement using reflection with acoustic computerized tomography[J]. Japanese Journal of Applied Physics, 2008,47(5S): 3967-3969.

[243] Gabi F, Manuela B, Astrid Z. Acoustic tomography of the atmosphere: Comparison of different reconstruction algorithms[J]. Acta Acustica united with Acustica, 2012,98(4): 534-545.

[244] 韩欣辰. 基于声波法重建温度场系统的设计与研究[D]. 济南: 山东科技大学, 2018.

[245] 王宏禹, 邱天爽. 自适应噪声抵消和时间延迟估计[M]. 大连: 大连理工大学出版社, 1999.

[246] Mraw S C, O'Rourke D F. Water in coal pores: The enthalpy of fusion reflects pore size distribution[J]. Journal of Colloid and Interface Science, 1982,89(1): 268-271.

中图分类号:

 TD752.2    

开放日期:

 2027-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式