论文中文题名: | 矿井主通风机监测和健康状态评估方法与系统研究 |
姓名: | |
学号: | 18205018016 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080202 |
学科名称: | 工学 - 机械工程 - 机械电子工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 智能检测与控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-25 |
论文答辩日期: | 2021-06-02 |
论文外文题名: | Study on Monitoring and Health Assessment Method and System of Mine Main Ventilator |
论文中文关键词: | |
论文外文关键词: | Mine ventilator ; Air volume ; monitoring ; Multivariate state estimation technique ; Health assessment |
论文中文摘要: |
矿井主通风机是煤矿安全生产不可缺少的重要设备,一旦出现异常,会对煤矿生产和井下人员的安全造成巨大威胁,对其进行有效的监测、健康状态评估以及科学维护是矿井通风安全的重要保证。本文以煤矿主通风机为对象,研究其主要参数测量方法和健康状态评估方法,并基于此开发了监测与评估系统,论文研究对提高矿井主通风机监测和健康状态评估水平,保证矿井通风安全生产具有重要的现实意义。 论文主要研究内容和取得结果: (1)确定矿井主通风机运行状态监测参数,对主要参数测试方法进行研究。针对风量目前采用的方法中因安装方式造成测量误差大的问题,建立了常见三种风硐的仿真模型,分析传感器安装所造成的风流分布变化规律,得到传感器安装支架截面处受支架干扰风流分布变化剧烈,超前支架截面200mm后,风速分布趋于均匀,影响减小,超前支架250 mm影响最小。以方形风硐为例进行实验验证,结果表明:在选取的8个工况点,传感器测头安装在支架截面处测量误差均最大,250mm处最小,此处可作为传感器测头安装参考位置。 (2)研究多元状态估计法对矿井主通风机健康状态的评价和应用方法。分析多元状态估计算法原理,将该算法应用到主通风机健康状态评估,以陕西彬长小庄矿业有限公司2#主通风机为例,选取合理的变量,建立矿井主通风机健康状态评估模型。利用风机正常工作时的监测数据对模型的有效性进行验证得到各变量估计值,并与观测值对比,结果表明MSET模型估计精度高,可以满足主通风机健康评估的要求。 开发了矿井主通风机监测与健康状态评估系统。构建了基于PXI总线,以NI PXIe-1062Q & NI PXIe-8106主机为核心,NI PXIe-6259数据采集卡,振动、温湿度、压力、风速、电压和电流传感器组成的硬件平台。以LabVIEW2017为开发平台,采用面向组件和面向过程的程序设计方法,开发了矿井主通风机振动、温度、风压、风量及电机功率监测程序,风机健康状态评估程序,数据存储回放等程序。 搭建实验平台,对矿井主通风机监测系统的振动、温度、风压、风量监测功能和数据存储回放功能进行验证,实验结果表明系统可满足主通风机运行状态实时监测的需求。以陕西彬长小庄矿业有限公司2#主通风机运行数据结合DHVTC振动实验台的振动异常数据对MSET模型健康评估效果和系统健康评估功能进行验证,结果表明:当振动速度值超过2.07mm/s时模型就开始健康预警,表明该方法可以有效地对矿井主通风机的故障信息进行预警并且系统健康评估模块也可以实现对风机健康状态的评估功能。 |
论文外文摘要: |
Mine main ventilator is an indispensable and important equipment in coal mine safety production. Once abnormal, it will pose a great threat to the coal mine production and the safety of underground personnel. Effective monitoring and health status assessment of mine main ventilator is an important guarantee for the safety of mine ventilation and scientific maintenance.This paper takes the mine main ventilator as the object, studies its main parameter test method and health state evaluation method, and develops the monitoring and evaluation system based on this. The research of this paper has important practical significance to improve the mine main ventilator monitoring and health state evaluation level, and to ensure the mine ventilation safety production. Main research contents and results of this paper: (1) Determine the operation state monitoring parameters of the mine main ventilator, and study the main parameter test method.For air volume of the methods used currently in the problem of measuring error caused by the installation method, established the simulation model of three kinds of common wind adit analysis sensor installed wind flow distribution caused by the change rule, get the sensor mounting bracket cross-section wind flow distribution changes drastically, influence of the scaffold forepoling section after 200 mm, the wind speed distribution in uniform, effect is reduced,The influence of advanced support at 250 mm is minimal.Taking square air tunnel as an example, the experimental verification results show that: in the selected eight working points, the measurement error of the sensor probe installed at the bracket section is the largest, and the measurement error at 250mm is the smallest, which can be used as the reference location for the sensor probe installation. (2) The evaluation and application of multivariate state estimation method on the health state of mine main ventilator are studied.The principle of multivariate state estimation algorithm is analyzed, and the algorithm is applied to the health state evaluation of the main ventilator. Taking the No.2 main ventilator of Shaanxi Binchang Xiaozhuang Mining Co., Ltd. as an example, reasonable variables are selected to establish the health state evaluation model of the mine main ventilator.The validity of the model was verified by using the monitoring data of the normal operation of the fan, and the estimated values of various variables were obtained. Compared with the observed values, the results show that the estimation accuracy of the MSET model is high, and it can meet the requirements of the health assessment of the main fan. The monitoring and health condition evaluation system of mine main ventilator has been developed.A hardware platform based on PXI bus is built, which is composed of NI PXIe-1062Q & NI PXIe-8106 host as the core, NI PXIe-6259 data acquisition card, vibration, temperature and humidity, pressure, wind speed, voltage and current sensors.Taking LabVIEW2017 as the development platform, and using component-oriented and process- oriented programming methods, the monitoring program of vibration, temperature, air pressure, air volume and motor power of mine main ventilator, the evaluation program of fan health status, data storage and playback and other programs are developed. An experimental platform was built to verify the vibration, temperature, air pressure, air volume monitoring functions and data storage and playback functions of the mine main ventilator monitoring system. The experimental results show that the system can meet the real-time monitoring requirements of the main ventilator operating state.The health evaluation effect of the MSET model and the health evaluation function of the system were verified by the operation data of the No.2 main ventilator of Shaanxi Binchang Xiaozhuang Mining Co., Ltd combined with the abnormal vibration data of DHVTC vibration test platform. The results show that:When the vibration velocity value exceeds 2.07mm/s, the model starts the health warning, which indicates that this method can effectively warn the fault information of the mine main ventilator and the health evaluation module of the system can also realize the function of evaluating the health state of the fan. |
参考文献: |
[1]国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2020. [2]董继友. 我国煤炭行业新旧动能转换的思考及应对措施[J]. 中国集体经济,2019, (32): 26-27. [4]国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[R]. 北京:国家统计局, 2021. [5]张成东. 煤矿通风系统安全问题及稳定性研究[J]. 能源与节能,2017, (9): 68-69. [6]严俭祝,左树勋,赵向东,等. 新技术在矿井主要通风机装置检测中的应用[J]. 煤矿机械,2002, (7): 72-74. [8]李建光. 煤矿主要通风机性能测试数据偏差问题分析[J]. 煤炭工程,2020, 52(08): 23-27. [9]刘义,姜阔胜,谢有浩,等. 基于虚拟仪器的矿用通风机柔性性能测试系统研制[J]. 煤矿机械,2020, 41(02): 29-31. [10]郭臖. 矿井通风机性能测定分析[J]. 机电工程技术,2019, 48(09): 274-276. [11]余德杰,桑聪,刘彦青,等. 煤矿主要通风机风量测试误差对比分析[J]. 煤炭科学技术,2018, 46(12): 164-168. [12]吴宪. 矿用局部通风机现场风量测试方法研究与应用[D]. 淮南:安徽理工大学,2019. [13]宫兴,刘一婷,刘沪红,等. 基于LabVIEW的通风机性能测试系统的设计[J]. 煤矿机械,2018, 39(06): 145-147. [14]刘毅. 河南煤矿在用主通风机性能曲线测试方案实践[J]. 煤炭工程,2017, 49(01): 103-105+109. [15]彭云,赵伏军,王宏宇. 风筒风量监测仪设计[J]. 工矿自动化,2012, 38(03): 92-94. [16]马欢. 矿井通风机风量测试方法研究与仿真分析[D]. 西安:西安科技大学,2017. [17]李曼,马欢. 矿井主通风机风量测试方法的模拟研究[J]. 煤炭科学技术,2017, 45(2): 151-155. [18]霍曼. 大断面拱形巷道风量测量及补偿方法的研究[D]. 西安:西安科技大学,2018. [19]李曼,霍曼. 矿井通风风量测量及误差补偿的仿真研究[J]. 中国安全科学学报,2018, 28(5): 153-158. [21]侯秀杰. 局部通风机智能控制系统研究[D]. 徐州:中国矿业大学,2016. [23]秦玉兵.分析矿井通风机性能测试方法与系统的研究[J]. 建筑工程技术与设计,2016, (12): 2631+2626. [25]何新,杨东,何涌,等. 火电厂厂级监控信息系统的设计和研究[J]. 电力设备,2014, 5(10): 4-7. [26]陈雪峰. 智能运维与健康管理[M]. 北京:机械工业出版社,2018. [27]周林,赵杰. 装备故障预测与健康管理技术[M]. 北京:国防工业出版社,2015. [28]雷亚国,贾峰,孔德同. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018, 54(05): 94-104. [36]潘罗平,安学利,周叶. 基于大数据的多维度水电机组健康评估与诊断[J]. 水利学报,2018, 49(09): 1178-1186. [37]赵峰,李渊琴,高锋阳,等. 动车组辅助供电系统健康状态评估[J]. 铁道科学与工程学报,2019, 16(03): 581-589. [38]万恒正. 基于SCADA数据关系的大型直驱式风电机组健康状态识别与预警[D]. 湘潭:湖南科技大学,2018. [39]张帆,刘德顺,戴巨川,等. 一种基于 SCADA 参数关系的风电机组运行状态识别方法[J]. 机械工程学报,2019, 55(04): 1-9. [40]沈江飞,潘天成,毛晓明,等. 核电厂重大设备健康状态的模糊综合评价方法[J]. 核动力工程,2018, 39(06): 104-110. [41]邓超,王远航,吴军,等. 机电装备性能退化建模与健康状态评估方法[J]. 计算机集成制造系统,2018, 24(09): 2279-2287. [42]夏爽. 基于维纳过程的机电装备性能退化建模与健康状态评估[D]. 武汉:华中科技大学,2016. [43]赵东明,程焱明,曹明. 基于卷积神经网络的柴油发电机健康评估[J]. 计算机科学,2018, 45(S2): 152-154. [44]张邦成,步倩影,周志杰,等. 基于置信规则库专家系统的司控器开关量健康状态评估[J]. 控制与决策,2019, 34(04): 805-810. [45]翟永杰,葛建宏. 故障预测与健康管理技术在风电检修中的应用前景分析[C]. 2010中国博士后低碳经济与洁净能源科技与发展学术论坛,2010: 103-107. [47]陈明. MATLAB 神经网络原理与实例精解[M]. 北京:清华大学出版社,2013. [51]陈科,顾森茂,郑红梅,等. 滚动轴承实时智能故障诊断算法研究[J]. 电子测量与仪器学报,2018,32(01):66-72. [52]李昊东. 基于深度学习理论的滚动轴承智能故障诊断算法研究[D]. 沈阳:沈阳建筑大学,2020. [54]周卫庆,黄葆华,仇晓智,等. 基于MSET和模糊识别的凝汽器故障诊断[J]. 热能动力工程,2018, (10): 107-112. [56]孙建平,朱雯,翟永杰,等. 基于MSET方法的风电机组齿轮箱预警仿真研究[J]. 系统仿真学报,2013, 25(12): 3009-3014. [57]张艳霞,翟永杰,赵海龙. 基于多变量状态估计的风电机组齿轮箱温度监测方法[J]. 仪器仪表用户,2015, 22(6): 58-61. [58]杨婷婷,张蓓,吕游,等. 基于MSET的电站风机故障预警技术研究[J]. 热能电力工程,2017, 32(09): 63-68+124. [59]闫萧. 基于工况辨识的风电机组故障预警方法研究[D]. 保定:华北电力大学,2017. [60]刘涛,刘吉臻,吕游,等. 基于多元状态估计和偏离度的电厂风机故障预警[J]. 动力工程学报,2016, 36(6): 454-460. [61]宋莹,张钟镭. 基于多元状态估计和超椭球分析的汽轮机运行状态监测[J]. 动力工程学报,2020, 40(02): 138-144. [62]彭坚. 临近空间高超声速飞行器电源系统故障预测与健康管理关键技术研究[D]. 长沙:国防科学技术大学,2014. [64]司颉. 矿井主通风机在线监测与故障诊断系统研究[D]. 西安:西安科技大学,2012. [65]李曼,司颉,张锋军. 矿井主通风机在线监测与故障诊断系统[J]. 仪表技术与传感器,2013 (1): 62-63+110. [66]杨一晴,马宏伟,樊红卫,等. 矿井主通风机振动在线监测与故障诊断系统[J]. 煤矿机械,2019, 40(12): 161-163 [67]姜雪,谭文涛,马士龙,等. 基于B/S架构的矿井主通风机健康管理系统[J]. 煤炭技术,2018, 37(11):246-247. [68]张博,张瀚文,张妙恬,等. 基于DSP的主扇风机振动数据采集模块设计[J]. 科技视界,2014, (17): 5-6. |
中图分类号: | TD411/TP277 |
开放日期: | 2021-06-25 |