论文中文题名: | 基于安全多方计算的属性隐藏公钥加密构造 |
姓名: | |
学号: | 18208207033 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085211 |
学科名称: | 工学 - 工程 - 计算机技术 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 密码学与信息安全 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-12-14 |
论文答辩日期: | 2021-12-06 |
论文外文题名: | Attribute-hiding Public Key Encryption Construction Based on Secure Multi-party Computing |
论文中文关键词: | |
论文外文关键词: | Privacy-preserving cooperative computation ; Privacy-preserving data transmission ; Secure multi-party computation ; Attribute-hiding ; Fuzzy public-key encryption. |
论文中文摘要: |
随着互联网的不断发展,网络上的数据量也逐渐增长。由于数据中含有敏感的商业机密、军事信息和个人隐私,因此人们在使用数据时,越来越注重隐私保护。数据隐私保护就是在这一需求下提出的,可分为保护隐私的合作计算和保护隐私的数据传输。保护隐私的合作计算是指如何在保护参与者数据隐私的前提下实现计算;保护隐私的数据传输是指在数据传输时如何保证数据不被外部敌手或内部敌手窃取。数据的传输和计算,是数据操作中的两个重要议题,因此本文研究了保护隐私的合作计算,然后在此基础上研究了保护隐私的数据传输。 针对保护隐私的合作计算,本文研究了安全多方计算的一个开放问题:保护隐私的多项式插值。该问题属于安全多方计算的基本问题,可作为保护隐私的预测分析的基本工具。为了解决该问题,本文首先将保护隐私的多项式插值转换为函数值的保密计算,然后设计了安全向量内积协议,最后基于该协议解决了保护隐私的多项式插值,并给出了该协议在保护隐私的预测分析上的一些应用实例。本文的创新点在于:首次提出了保护隐私的多项式插值协议,解决了安全多方计算中的一个开放问题,并将此协议应用到保护隐私的预测分析:保护隐私的疾病诊断和保护隐私的投资分析,具有现实应用意义。 针对保护隐私的数据传输,本文研究了属性隐藏的模糊加密。该加密可以在数据传输过程中不仅保护数据隐私,还能保护属性隐私,具有更高的隐私性,因此具有重要研究意义。特此,本文提出了一种新的基于重叠距的属性隐藏模糊公钥加密方案。为了实现该方案,本文设计了新的编码规则从而嵌入模糊功能,将原问题转换为具有模糊功能的内积加密,同时使用快速解密的方法提高了效率,最后给出了该方案在实际中的应用实例。本文的创新点在于:提出了属性隐藏的模糊公钥加密方案,将数域范围从二进制扩展到十进制,并且可以快速定位解密密钥,效率更高,将方案应用于实际中的模糊搜索加密和属性隐藏的最近子字符串加密,说明本文方案有着广泛应用。 |
论文外文摘要: |
With the sustainable development of the Internet, the amount of data on the network is also increasing dramatically. Since the data contain sensitive commercial secrets, military information and personal privacy, this makes people pay much attention to preserving the private information when processing data. Therefore, as a prominent issue, data privacy protection has been addressed under this situation, which can be divided into privacy- preserving cooperative computation and privacy-preserving data transmission. Privacy-preserving cooperative computation involves how to calculate a common function on the premise of protecting individual private data of multiple parties and privacy-preserving data transmission refers to how to ensure that data cannot be eavesdropped by outside and inside adversaries during data transmission. Data transmission and data computation are two important issues in data processing. Thus this paper first studies privacy-preserving cooperative computation, and further studies the privacy-preserving data transmission based some techniques of privacy-preserving cooperative computation. For the privacy-preserving cooperation computation, we study an open problem within secure multi-party computation: privacy-preserving polynomial interpolation. This problem is a basic issue in secure multi-party computation. It can be often used as a basic tool to solve privacy-preserving predicative analysis. In order to cope with this issue, we first transform privacy-preserving polynomial interpolation to the calculation on privacy-preserving function values, and then propose a secure scalar product protocol. Finally, we use the secure scalar product protocol to solve the privacy-preserving polynomial interpolation and further give some applicable examples on privacy-preserving predicative analysis. Our main contributions: it is first time to present a solution on the open issue, privacy-preserving polynomial interpolation, within secure multi-party computation. We then offer two application examples of our protocol on privacy-preserving predictive analysis: privacy-preserving disease diagnosis and privacy-preserving investment prediction, which has a great practical significance. For the privacy-preserving data transmission, this paper studies attribute-hiding fuzzy encryption. This encryption can not only preserve data privacy, but also preserve attribute privacy during data transmission, which has stronger capability of privacy protection. Therefore, it has important research significance. In this thesis, we propose a new attribute-hiding fuzzy encryption scheme based on the overlap distance. In order to design this scheme, we develop a new encoding to embedding fuzzy facility, and transform the original problem into inner product encryption with fuzzy property. Meanwhile, we use a fast decryption to improve efficiency. Finally, we present some practical application examples of the scheme. Our main contributions is that an attribute hiding fuzzy public key encryption scheme is proposed, which extends the number field from binary to decimal and meanwhile is able to locate accurate decryption key quickly to highlight higher efficiency. The scheme is applied to fuzzy searchable encryption and the attribute-hiding closet substring encryption, which shows that this scheme has wide application. |
参考文献: |
[11] Shundong L, Chunying W, Daoshun W, et al. Secure multiparty computation of solid geometric problems and their applications[J]. Information Sciences, 2014, 282: 401-413. [20] Merkle R C. Publishing a new idea [DB/OL]. Merkle personal website. 2010-12-08. [46] 李顺东, 杨晓莉, 左祥建, 等. 保护私有信息的图形相似判定[J]. 电子学报, 2016, 45(9): 2184-2189. [47] 陈振华, 李顺东, 王道顺, 等. 非加密方法安全计算集合包含关系[J]. 计算机研究与发展, 2017, 54(7): 1549-1556. [48] 杨颜璟, 李顺东, 杜润萌. 最大值最小值的保密计算[J]. 密码学报, 2020,7(4): 583-497. [56] Horn R A, Johnson C R. Matrix analysis[M]. Cambridge university press, 2012. |
中图分类号: | TP391.1 |
开放日期: | 2022-03-09 |