- 无标题文档
查看论文信息

论文中文题名:

 煤矸石协效膨胀型阻燃剂 及其阻燃性能研究    

姓名:

 黄皓琪    

学号:

 21211225031    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 资源循环利用    

第一导师姓名:

 邓军平    

第一导师单位:

 西安科技大学    

第二导师姓名:

 刘忠生    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on coal gangue synergistic intumescent flame retardant and its flame retardant properties    

论文中文关键词:

 煤矸石 ; 膨胀型阻燃剂 ; 水平垂直燃烧 ; 阻燃性能 ; 木材    

论文外文关键词:

 Coal gangue ; intumescent flame retardant ; thermogravimetric analysis ; flame retardant performance ; Wood    

论文中文摘要:

目前,随着我国经济的飞速发展和城市化进程的加速推进,城市建设和家庭装修的需求也在不断增加,国内消费者对品质和环保要求的提高使得木质建材家具行业受到更多的关注和青睐,科技和设计的进步推动着木质建材行业的蓬勃发展。但是近年来由木材引发的火灾事故频发,为了提高木材的阻燃性能,选取膨胀型阻燃剂涂敷在木材表面。膨胀型阻燃剂(IFR)在燃烧时会膨胀发泡来进行阻燃,是一种环保的阻燃剂,使用膨胀型阻燃剂对木材进行阻燃可以提高木材燃点,减少了木材燃烧过程中对环境的污染。目前随着社会发展,单纯提高膨胀型阻燃剂性能已经不是唯一的需求,希望能在提高膨胀型阻燃剂性能的同时降低成本。本文以煤矸石为协效剂,研究煤矸石与改性煤矸石对膨胀型阻燃剂性能的影响,以期提高膨胀型阻燃剂性能同时实现绿色发展。本文主要结论如下:

本文由于钼和硼元素在燃烧过程可以协同炭层形成,所以本文分别选取三聚氰胺草酸盐、三聚氰胺钼酸盐及三聚氰胺硼酸盐作为酸源,季戊四醇为炭源,尿素为气源,制备了膨胀型阻燃剂通过锥形量热仪(CONE)、热重分析仪(TGA-DSC)、扫描电子显微镜(FE-SEM)、极限氧指数(LOI)、UL-94水平垂直燃烧仪分别对试样的阻燃性能进行表征,实验结果表明,三聚氰胺硼酸盐为酸源时,阻燃性能最优;当n(三聚氰胺):n(硼酸)为3:1时,总热释放量26.38 kJ/m2,相对于原木的总热释放量45.93 kJ/m2降低了42.56%;热释放速率峰值98.60 kW/m2,相比于原木的172.67 kW/m2降低了42.89%;烟释放总量为1.61 m2,相比于原木的3.18m2降低了49.37%;烟释放速率峰值为0.0065 m2/s,相比于原木的0.028 m2/s降低了76.78%;极限氧指数为34.86%,达到V-0级。

(2) 煤矸石作为协效剂时,对三聚氰胺硼酸盐膨胀型阻燃剂阻燃性能均有一定提升,这归因于加入煤矸石给膨胀型阻燃剂引入的Si元素可以帮助膨胀型阻燃剂形成更加致密的炭层;当加入煤矸石质量分数为8wt%,阻燃剂性能最优。总热释放量13.94 kJ/m2,相较三聚氰胺硼酸盐膨胀型阻燃剂降低46.30%,热释放速率峰值45.69 kW/m2,较基体降低55.76%;烟释放总量1.32 m2,降低18.01%;烟释放速率峰值0.0038 m2/s,降低11.53%,极限氧指数为36.45%,达到V-0级。

(3) 为提高膨胀型阻燃剂的抑烟性能,分别制备出硫化钼负载型改性煤矸石协效剂及SiO2-TiO2改性煤矸石协效剂。结果表明,改性煤矸石协效阻燃剂阻燃性能均优于未改性煤矸石阻燃剂,这归因于引入的Ti、Mo元素具有比较高的熔点和化学稳定性。当引入硫化钼负载型改性煤矸石协效剂,膨胀型阻燃剂总热释放量13.59 kJ/m2;热释放速率峰值39.87 kW/m2;烟释放总量为1.12 m2,相对于未改性煤矸石膨胀型阻燃剂降低了15.15%;烟释放速率峰值为0.0038 m2/s;极限氧指数为36.61%,达到V-0级。将二氧化钛及二氧化硅包覆到煤矸石表面,SiO2-TiO2改性煤矸石膨胀型阻燃剂总热释放量12.39 kJ/m2,相比煤矸石协效三聚氰胺硼酸盐膨胀型阻燃剂降低11.12%;热释放速率峰值40.01 kW/m2,降低12.43%;烟释放总量为1.13 m2,降低14.39%;烟释放速率峰值为0.0029 m2/s,降低23.68%,极限氧指数为36.56%,达到V-0级。

煤矸石协效膨胀型阻燃剂的研究和应用对于解决煤矸石的高附加值利用具有重要的现实意义。利用煤矸石可以实现环境保护和再生资源利用共赢,符合国家可持续发展战略,为煤矸石的高效利用开辟了一条新的技术途径。本文所研究的煤矸石协效膨胀型阻燃剂,相比于市场上同类阻燃剂提升了阻燃性能,降低了生产成本。

论文外文摘要:

At present, with the rapid development of China's economy and the accelerated progress of urbanisation, urban construction and home improvement needs are also increasing, domestic consumers on the quality and environmental protection requirements of the improvement of wooden building materials and furniture industry has been more attention and favour, the progress of science and technology and design to promote the wood building materials industry's booming development.However, in recent years, there are a lot of fire accidents caused by wood, in order to improve the flame retardant property of wood, we choose intumescent flame retardant to be coated on the surface of wood. Intumescent flame retardant (IFR) is an environmentally friendly flame retardant that expands and foams during combustion. The use of IFR for wood can increase the ignition point of wood and reduce the environmental pollution during the combustion process of wood.At present, with the development of society, simply improve the performance of intumescent flame retardants is not the only demand, hope to improve the performance of intumescent flame retardants while reducing costs. In this paper, we take gangue as the co-efficient, and study the influence of gangue and modified gangue on the performance of intumescent flame retardants, in order to improve the performance of intumescent flame retardants and achieve green development at the same time. The main conclusions of this paper are as follows:

(1) In this paper, since the elements of molybdenum and boron can synergise the formation of carbon layer during the combustion process, melamine oxalate, melamine molybdate and melamine borate were selected as the acid source, pentaerythritol as the charcoal source, and urea as the gas source, respectively, and the intumescent flame retardant was prepared to characterize the flame retardant properties of the specimens by conical calorimetry (CONE), thermogravimetric analyser (TGA-DSC), scanning electron microscope (FE-SEM), limiting Oxygen Index (LOI), UL-94 horizontal and vertical combustion meter were used to characterise the flame retardant properties of the specimens, respectively, and the experimental results showed that the flame retardancy was optimal when melamine borate was the acid source; when n(melamine):n(boric acid) was 3:1, the total heat release was 26.38 kJ/m2, which was 42.56% lower compared with the total heat release of 45.93 kJ/m2 from the logs; the peak heat release rate was 98.60 kW/m2, which was 42.89% lower compared with the 172.67 kW/ m2, a reduction of 42.89%; total smoke release of 1.61 m2, a reduction of 49.37% compared to the log's 3.18 m2; peak smoke release rate of 0.0065 m2/s, a reduction of 76.78% compared to the log's 0.028 m2/s; and a limiting oxygen index of 34.86% to reach the V-0 level.

(2) When gangue is used as a co-efficacy agent, the flame retardancy of melamine borate intumescent flame retardant has been improved to some extent, which is attributed to the fact that the addition of gangue to the intumescent flame retardant introduces the Si element that can help the intumescent flame retardant to form a denser carbon layer;When the mass fraction of gangue added was 8 wt%, the flame retardant performance was optimal. Total heat release 13.94 kJ/m2, compared with melamine borate intumescent flame retardant reduced by 46.30%, the peak heat release rate of 45.69 kW/m2, reduced by 55.76% compared with the substrate; the total smoke release of 1.32 m2, reduced by 18.01%; the peak smoke release rate of 0.0038 m2/s, reduced by 11.53%, the limiting oxygen index of 36.45% , reaching V-0 level.

(3) In order to improve the smoke suppression performance of intumescent flame retardants, molybdenum sulphide-loaded modified gangue synergists and SiO2-TiO2 gangue synergists were prepared respectively. The results show that the flame retardant properties of the modified gangue synergistic flame retardants are better than those of the unmodified gangue flame retardants, which is attributed to the introduction of Ti and Mo elements with relatively high melting point and chemical stability.When molybdenum sulphide-loaded modified gangue synergist was introduced, the total heat release of the intumescent flame retardant was 13.59 kJ/m2; the peak heat release rate was 39.87 kW/m2; the total smoke release was 1.12 m2, which was reduced by 15.15% relative to that of the unmodified gangue intumescent flame retardant; the peak smoke release rate was 0.0038 m2/s; and the limiting oxygen index was 36.61%, which was up to V-0 grade. SiO2-TiO2 gangue, silica and titanium coating modified gangue intumescent flame retardant total heat release 12.39 kJ/m2,compared with the gangue co-efficient melamine borate intumescent flame retardant reduced by 11.12%; heat release rate peak 40.01 kW/m2, reduced by 12.43%; smoke release total 1.13 m2, reduced by 14.39%; smoke release rate peak 0.0038 m2/s; ultimate oxygen index is 36.61% to V-0 level. The peak release rate is 0.0029 m2/s, reduced by 23.68%, and the limiting oxygen index is 36.56%, reaching V-0 grade.

The research and application of gangue synergistic expansion type flame retardant has important practical significance for solving the high value-added use of coal gangue. The use of coal gangue can achieve a win-win situation for environmental protection and renewable resources, in line with the national sustainable development strategy, and opens up a new technical way for the efficient use of coal gangue. The gangue synergistic expansion type flame retardant researched in this paper improves the flame retardant performance and reduces the production cost compared with similar flame retardants on the market.

参考文献:

[1]姜定,杨成志,田瑶珠等.膨胀型阻燃涂料对木材的阻燃性能[J].高分子材料科学与工程,2016,32(12):49-54.

[2]袁利萍.木材阻燃中的催化成炭与抑烟减毒作用[D].长沙:中南林业科技大学,2018.

[3]国家消防救援局.(2024).国家消防救援局:2023年共接报处置各类警情213万余起.https://www.119.gov.cn/qmxfxw/mtbd/spbd/2024/41284.shtml

[4]吴宇晖,张少迪,任自忠等.植酸-三聚氰胺处理木材阻燃性能研究[J].北京林业大学学报,2020,42(04):155-161.

[5]Ma R ,Wang Z ,Fu Q , et al.Dual-salt assisted synergistic synthesis of Prussian white cathode towards high-capacity and long cycle potassium ion battery[J].Journal of Energy Chemistry,2023,83(08):16-23.

[6]Bin Z ,Ning Y ,Lei W , et al.Synergistic effect of schizandrin A and DNase Ⅰ knockdown on high glucose induced beta cell apoptosis by decreasing intracellular calcium concentration[J].Journal of Traditional Chinese Medicine,2023,43(04):661-666.

[7]Kong L, Guan H, Wang X. In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy[J].ACS Sustain,2018,6: 3349–3357.

[8]Zhang L, Yi D, Hao J,et al. One-step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy[J].Technol.2020,32: 1176–1186.

[9]Li Z, Li X, Zhang Z. Flame retardant coatings prepared using layer by layer assembly: A review[J].Chem,2018,334: 108–122.

[10]Shao N, Xue F, Hou L, et al. Effects of ternary potassium containing intumescent flame retardant coating on the combustion and thermal degradation properties of reconstituted tobacco sheet[J]. Thermochimica acta, 2019, 678: 178310.

[11]Jian H, Liang Y, Deng C, et al. Research progress on the improvement of flame retardancy, hydrophobicity, and antibacterial properties of wood surfaces[J]. Polymers, 2023, 15(4): 951.

[12]Hull T R, Law R J, Bergman Å. Environmental drivers for replacement of halogenated flame retardants[J]. Polymer Green Flame Retardants, 2014: 119-179.

[13]Darnerud P O. Toxic effects of brominated flame retardants in man and in wildlife[J]. Environment international, 2003, 29(6): 841-853.

[14]Shaw S. Halogenated flame retardants: do the fire safety benefits justify the risks?[J]. Reviews on environmental health, 2010, 25(4): 261-306.

[15]Lomakin S M, Khvatov A V, Sakharov P A, et al. Study of the mechanism of fire-retardant action of bio flame retartdant based on oxidized compounds of cellulose-containing biomass[J]. Russian Journal of Physical Chemistry B, 2020, 14: 1028-1035.

[16]Xiong Z, Zhang Y, Du X, et al. Green and scalable fabrication of core–shell biobased flame retardants for reducing flammability of polylactic acid[J]. ACS sustainable chemistry & engineering, 2019, 7(9): 8954-8963.

[17]Liu X F, Liu B W, Luo X, et al. A novel phosphorus-containing semi-aromatic polyester toward flame retardancy and enhanced mechanical properties of epoxy resin[J]. Chemical Engineering Journal, 2020, 380: 122471.

[18]He W, Song P, Yu B, et al. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants[J]. Progress in Materials Science, 2020, 114: 100687.

[19]Schartel B. Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development?[J]. Materials, 2010, 3(10): 4710-4745.

[20]Velencoso M M, Battig A, Markwart J C, et al. Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy[J]. Angewandte Chemie International Edition, 2018, 57(33): 10450-10467.

[21]Wang D, Xu X, Qiu Y, et al. Cyclotriphosphazene based materials: Structure, functionalization and applications[J]. Progress in Materials Science, 2024: 101-232.

[22]Puyadena M, Etxeberria I, Ortega G, et al. Polyurethane/acrylic coatings for wood made hydrophobic by melamine addition[J]. Progress in Organic Coatings, 2024, 186: 108054.

[23]Braun U, Schartel B, Fichera M A, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6[J]. Polymer Degradation and Stability, 2007, 92(8): 1528-1545.

[24]Macskásy H, Palyi G. Plastics: their behaviour in fires[M]. Elsevier, 2012.

[25]Price D, Liu Y, Milnes G J, et al. An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam[J]. Fire and materials, 2002, 26(4‐5): 201-206.

[26]Chen M J, Shao Z B, Wang X L, et al. Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen–phosphorus flame retardant[J]. Industrial & engineering chemistry research, 2012, 51(29): 9769-9776.

[27]Alongi J, Colleoni C, Rosace G, et al. Phosphorus-and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects?[J]. Polymer degradation and stability, 2013, 98(2): 579-589.

[28]Sykam K, Försth M, Sas G, et al. Phytic acid: A bio-based flame retardant for cotton and wool fabrics[J]. Industrial Crops and Products, 2021, 164: 113349.

[29]Özer M S, Gaan S. Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance[J]. Progress in Organic Coatings, 2022, 171: 107027.

[30]Lin D, Zeng X, Li H, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206.

[31]Liu J, Qi P, Meng D, et al. Eco-friendly flame retardant and smoke suppression coating containing boron compounds and phytic acids for nylon/cotton blend fabrics[J]. Industrial Crops and Products, 2022, 186: 115239.

[32]Periyasamy A P, Venkataraman M, Kremenakova D, et al. Progress in sol-gel technology for the coatings of fabrics[J]. Materials, 2020, 13(8): 1838.

[33]Rezvani Ghomi E, Khosravi F, Mossayebi Z, et al. The flame retardancy of polyethylene composites: from fundamental concepts to nanocomposites[J]. Molecules, 2020, 25(21): 5157.

[34]Malucelli G, Carosio F, Alongi J, et al. Materials engineering for surface-confined flame retardancy[J]. Materials Science and Engineering: R: Reports, 2014, 84: 1-20.

[35]Li S, Lin X, Liu Y, et al. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric[J]. Cellulose, 2019, 26: 4213-4223.

[36]Grancaric A M, Colleoni C, Guido E, et al. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric[J]. Progress in Organic Coatings, 2017, 103: 174-181.

[37]Hippi U, Mattila J, Korhonen M, et al. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes[J]. Polymer, 2003, 44(4): 1193-1201.

[38]Yen Y Y, Wang H T, Guo W J. Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites[J]. Polymer Degradation and Stability, 2012, 97(6): 863-869.

[39]Zanetti M, Camino G, Thomann R, et al. Synthesis and thermal behaviour of layered silicate–EVA nanocomposites[J]. Polymer, 2001, 42(10): 4501-4507.

[40]Levchik S V, Levchik G F, Balabanovich A I, et al. Mechanistic study of combustion performance and thermal decomposition behaviour of nylon 6 with added halogen-free fire retardants[J]. Polymer Degradation and Stability, 1996, 54(2-3): 217-222.

[41]Camino G, Costa L, Luda M P. Mechanistic aspects of intumescent fire retardant systems[C]//Makromolekulare Chemie. Macromolecular Symposia. Basel: Hüthig & Wepf Verlag, 1993, 74(1): 71-83.

[42]Le Bras M, Bourbigot S, Revel B. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science, 1999, 34: 5777-5782.

[43]Cullis C F, Hirschler M M, Tao Q M. Studies of the effects of phosphorus-nitrogen-bromine systems on the combustion of some thermoplastic polymers[J]. European polymer journal, 1991, 27(3): 281-289.

[44]Green J. A review of phosphorus-containing flame retardants[J]. Journal of Fire Sciences, 1992, 10(6): 470-487.

[45]Laoutid F, Bonnaud L, Alexandre M, et al. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites[J]. Materials Science and Engineering: R: Reports, 2009, 63(3): 100-125.

[46]黄喆. 膨胀型阻燃剂的制备及其对阻燃聚丙烯燃烧性能的研究[D].湖北大学,2021.

[47]杨越. 我国煤矸石堆存现状及其大宗量综合利用途径[J]. 中国资源综合利用, 2014, 32(6): 18-22.

[48]Wang A G, Zhu Y Y, Xu H Y, et al. Research progress on coal gangue aggregate for concrete[J]. Bull. Chin. Ceram. Soc, 2019, 38(7): 2076-2086.

[49]Sun X G, Li X Q, Qiu J P, et al. Preparation of Thermal Insulation Foam Material for Exterior Wall with Sandstone Coal Gangue[J]. Met. Mine, 2015, 44: 149-153.

[50]Fan J M. Study on sequential extraction experiment of aluminum and silicon from high-alumina coal gangue[J]. Inorg. Chem. Ind, 2019, 51: 65-68.

[51]李灿华, 向晓东, 刘思, 等. 煤矸石环境危害性及其资源化利用[J]. 武钢技术, 2016, 54(2): 58-62.

[52]Sun Y, Xiao K, Wang X, et al. Evaluating the distribution and potential ecological risks of heavy metal in coal gangue[J]. Environmental Science and Pollution Re-search, 2021, 28(15): 18604-18615.

[53]刘汝海, 王起超, 刘景双. 东北地区煤矸石环境危害及对策[J]. 地理科学, 2002, 22(1): 110-113.

[54]Sun Y, Xiao K, Wang X, et al. Evaluating the distribution and potential ecological risks of heavy metal in coal gangue[J]. Environmental Science and Pollution Research, 2021, 28: 18604-18615.

[55]Jing Y, Gao B, Ma Z. Potential ecological risk assessment of soil heavy metals contamination around coal gangue piles of Baodian coal mine area of Shandong, China[C]//2011 International Conference on Electrical and Control Engineering. IEEE, 2011: 3569-3573.

[56]闫宝环, 李凯荣, 时亚坤. 铜川市三里洞煤矸石堆积地风化土壤重金属污染及植物富集特征[J]. 水土保持通报, 2012, 32(3): 47-50.

[57]Da Silva E F, Zhang C, Pinto L S, et al. Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal[J]. Applied Geochemistry, 2004, 19(6): 887-898.

[58]丛昕彧. 煤矸石加气混凝土的性能研究[D]. 哈尔滨:哈尔滨工业大学,2015.

[59]刘翠玲, 范文虎, 王瑞萍. 山西省煤矸石资源化利用现状及发展建议[J]. 节能, 2012(11): 4-7.

[60]宫正. 阜新矿业集团循环经济模式研究[D]. 辽宁: 辽宁工程技术大学, 2009.

[61]左鹏飞. 煤矸石的综合利用方法[J]. 煤炭技术, 2009(01): 186-189.

[62]中华人民共和国国家发展和改革委员会. 中国资源综合利用年度报告(2012)2013: 8.

[63]常纪文, 杜根杰, 杜建磊, 石晓莉. 我国煤矸石综合利用的现状、问题与建议[J].中国环保产业, 2022(08): 4-7.

[64]Wu D, Hou Y, Deng T, et al. Thermal, hydraulic and mechanical performances of cemented coal gangue-fly ash backfill[J]. International Journal of Mineral Processing, 2017, 162: 12-18.

[65]Luo L, Li K, Fu W, et al. Preparation characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2019, 232: 117-250.

[66]Xu H, Song W, Cao W, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Cycles & Waste Management, 2017, 19(3): 1270-1278.

[67]Yan W, Li N, Han B Q. Preparation and characterization of porousceramics prepared by kaolinite gangue and Al(OH)3 with doubleaddition of MgCO3 and CaCO3[J]. International Journal ofMiner-als,Metallurgy and Materials, 2011, 18( 4): 450-455.

[68]Guang C L, Li H L, Wen G L, et al. Enhanced mechanical properties and durability of coal gangue reinforced cement-soil mixture for foundation treatments[J]. Journal of Cleaner Production, 2019, 231: 468-482.

[69]Tao Y, Hou X, Zhou G. Synthe.sis of porous cordierite ceramics with coal gangue[J]. Refractories, 2014, 48(3): 197-200.

[70]霍晨磊, 何亚波, 孟子浩. 煤矸石资源化利用技术综述[J]. 山西焦煤科技, 2011, 1: 47-49.

[71]Zhou S, Dong J, Yu L, et al. Effect of Activated Coal Gangue in North China on the Compressive Strength and Hydration Process of Cement[J]. Journal of Materials in Civil Engineering, 2019,31(4): 1-11.

[72]Luo L, Li K, Fu W, et al. Preparation characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials, 2019, 232: 117-250.

[73]Blagodatskaya E, Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry, 2013, 67: 192-211.

[74]Ananyeva K, Wang W, Smucker A J M, et al. Can intra-aggregate pore structures affect the aggregate's effectiveness in protecting carbon?[J]. Soil Biology and Biochemistry, 2013, 57: 868-875.

[75]Qin H B, Zhu J M, Su H. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China[J]. Chemosphere, 2012, 86(6): 626-633.

[76]Font O, Córdoba P, Leiva C, et al. Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant[J]. Fuel, 2012, 95: 272-281.

[77]Yu J L, Meng F R, Li X C, et al. Power generation from coal gangue in China: Current status and development[J]. Advanced Materials Research, 2012, 550: 443-446.

[78]Luo C, Li S, Ren P, et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study[J]. Environmental Pollution, 2024: 123-439.

[79]Lou B, Shi J. The problem analysis of co-combustion of coal and coal gangue in CFB boiler[J]. Power System Engineering, 2009, 25(05): 21-22.

[80]Haykiri-Acma H, Yaman S, Kucukbayrak S. Co-combustion of low rank coal/waste biomass blends using dry air or oxygen[J]. Applied Thermal Engineering, 2013, 50(1): 251-259.

[81]Ren X J, Xia J P, Zhang Z S. Experimental study on producing alumina hydroxide with acid hydrolysis from coal gangue[J]. Non-Metallic Mines, 2012, 35: 12-14.

[82]Guo Y, Yan K, Cui L, et al. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33-41.

[83]Bandura L, Franus M, Panek R, et al. Characterization of zeolites and their use as adsorbents of petroleum substances[J]. Przemysl Chemiczny, 2015, 94(3): 323-327.

[84]Mondragon F, Rincon F, Sierra L, et al. New perspectives for coal ash utilization: synthesis of zeolitic materials[J]. Fuel, 1990, 69(2): 263-266.

[85]Inada M, Eguchi Y, Enomoto N, et al. Synthesis of zeolite from coal fly ashes with different silica–alumina composition[J]. Fuel, 2005, 84(2-3): 299-304.

[86]程君.三聚氰胺硼酸盐纤维的合成与阻燃性能[D].大连理工大学,2017.

[87]唐双凌, 赵庆, 黄红英, 等. 三聚氰胺草酸盐与氯化铵作为 UF 固化剂的性能对比[J]. 中国胶粘剂, 2012, 21(4): 9-12.

[88]Östman B A L, Mikkola E. European classes for the reaction to fire performance of wood‐based panels[J]. Fire and Materials, 2010, 34(6): 315-330.

[89]Lin M, Peng W, Gui H. Hydrochemical characteristics and quality assessment of deep groundwater from the coal-bearing aquifer of the Linhuan coal-mining district, Northern Anhui Province, China[J]. Environmental Monitoring and Assessment, 2016, 188: 1-13.

[90]Wang G, Yang J. Thermal degradation study of fire resistive coating containing melamine polyphosphate and dipentaerythritol[J]. Progress in Organic Coatings, 2011, 72(4): 605-611.

[91]Shi Y, Wang G. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating[J]. Applied Surface Science, 2016, 385: 453-463.

[92]Zhou J, Tan Z, Liu Z, et al. Preparation of transparent fluorocarbon/TiO2-SiO2 composite coating with improved self-cleaning performance and anti-aging property[J]. Applied Surface Science, 2017, 396: 161-168.

[93]Mallakpour S, Motirasoul F. Preparation of PVA/α-MnO2-KH550 nanocomposite films and study of their morphology, thermal, mechanical and Pb (II) adsorption properties[J]. Progress in Organic Coatings, 2017, 103: 135-142.

[94]Li H, Hu Z, Zhang S, et al. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants[J]. Progress in Organic Coatings, 2015, 78: 318-324.

[95]Zhang H, Tang L, Zhou L, et al. Comparative study on the optical, surface mechanical and wear resistant properties of transparent coatings filled with pyrogenic and colloidal silica nanoparticles[J]. Composites Science and Technology, 2011, 71(4): 471-479.

[96]Alongi J, Han Z, Bourbigot S. Intumescence: Tradition versus novelty. A comprehensive review[J]. Progress in Polymer Science, 2015, 51: 28-73.

[97]Wang G, Huang Y, Hu X. Synthesis of a novel phosphorus-containing polymer and its application in amino intumescent fire resistant coating[J]. Progress in Organic Coatings, 2013, 76(1): 188-193.

[98]Guodong Wu.Preparation and Characterization of silica thermal insulation coatings[D]. Harbin Institute of Technology,2018.

[99]Atik M, Zarzycki J. Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating[J]. Journal of Materials Science Letters, 1994, 13(17): 1301-1304.

[100]Díaz M, Villa-García M A, Duarte-Silva R, et al. Preparation of organo-modified kaolinite sorbents: The effect of surface functionalization on protein adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 181-190.

[101]Vandersall H L. Intumescent coating system, their development and chemistry[J]. J Fire Flamm, 1971, 2: 97-140.

[102]Gu J, Zhang G, Dong S, et al. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings[J]. Surface and coatings technology, 2007, 201(18): 7835-7841.

[103]Myronyuk O V, Raks V A, Baklan D V, et al. Aspects of the reduction of the coating fire resistance by the use of nanosized additives[J]. Applied Nanoscience, 2020, 10: 4901-4907.

[104]Yew M C, Sulong N H R, Yew M K, et al. Influences of flame-retardant fillers on fire protection and mechanical properties of intumescent coatings[J]. Progress in organic coatings, 2015, 78: 59-66.

[105]Beheshti A, Heris S Z. Experimental investigation and characterization of an efficient nanopowder-based flame retardant coating for atmospheric-metallic substrates[J]. Powder technology, 2015, 269: 22-29.

[106]Atik M, Zarzycki J. Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating[J]. journal of materials science letters, 1994, 13(17): 1301-1304.

[107]Díaz M, Villa-García M A, Duarte-Silva R, et al. Preparation of organo-modified kaolinite sorbents: The effect of surface functionalization on protein adsorption performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 181-190.

[108]陈丽昆, 李勇, 张忠飞. 硅烷偶联剂改性高岭土在复合材料中的应用[D]. 2005.

[109]Shi S C, Wu J Y, Huang T F. Raman, FTIR, and XRD study of MoS2 enhanced hydroxypropyl methylcellulose green lubricant[J]. Optical and Quantum Electronics, 2016, 48: 1-9.

[110]Xu W Z, Li C C, Hu Y X, et al. Synthesis of MoO3 with different morphologies and their effects on flame retardancy and smoke suppression of polyurethane elastomer[J]. Polymers for Advanced Technologies, 2016, 27(7): 964-972.

[111]Overbury S H, Schwartz V, Mullins D R, et al. Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2[J]. Journal of Catalysis, 2006, 241(1): 56-65.

[112]Gu X, Huang X, Wei H, et al. Synthesis of novel epoxy-group modified phosphazene-containing nanotube and its reinforcing effect in epoxy resin[J]. European Polymer Journal, 2011, 47(5): 903-910.

[113]Shi Y, Yu B, Duan L, et al. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene[J]. Journal of Hazardous Materials, 2017, 332: 87-96.

[114]Tomala A, Karpinska A, Werner W S M, et al. Tribological properties of additives for water-based lubricants[J]. Wear, 2010, 269(11-12): 804-810.

[115]Yu X, Prévot M S, Sivula K. Multiflake thin film electronic devices of solution processed 2D MoS2 enabled by sonopolymer assisted exfoliation and surface modification[J]. Chemistry of Materials, 2014, 26(20): 5892-5899.

[116]Ganatra R, Zhang Q. Few-layer MoS2: a promising layered semiconductor[J]. ACS nano, 2014, 8(5): 4074-4099.

[117]Rao C N R, Gopalakrishnan K, Maitra U. Comparative study of potential applications of graphene, MoS2, and other two-dimensional materials in energy devices, sensors, and related areas[J]. ACS applied materials & interfaces, 2015, 7(15): 7809-7832.

[118]Coleman J N, Lotya M, O’Neill A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.

[119]Gao X, Zhao C, Lu H, et al. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions[J]. Electrochimica Acta, 2014, 150: 188-196.

[120]Yuan B, Bao C, Guo Y, et al. Preparation and characterization of flame-retardant aluminum hypophosphite/poly (vinyl alcohol) composite[J]. Industrial & engineering chemistry research, 2012, 51(43): 14065-14075.

[121]Xu W Z, Li C C, Hu Y X, et al. Synthesis of MoO3 with different morphologies and their effects on flame retardancy and smoke suppression of polyurethane elastomer[J]. Polymers for Advanced Technologies, 2016, 27(7): 964-972.

[122]Wang L, Song L, Hu Y, et al. Influence of different metal oxides on the thermal, combustion properties and smoke suppression in ethylene–vinyl acetate[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 8062-8069.

[123]李磊,周俊.高效膨胀型阻燃剂阻燃聚丙烯的阻燃机理[J]. 橡塑技术与装备,2024,50(01):25-30.

中图分类号:

 TQ569    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式