论文中文题名: |
利用PWV分析ENSO引发的旱涝影响研究
|
姓名: |
张肖亚
|
学号: |
21210226082
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085700
|
学科名称: |
工学 - 资源与环境
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘工程
|
研究方向: |
GNSS气象学
|
第一导师姓名: |
赵庆志
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
袁荣才
|
论文提交日期: |
2024-06-12
|
论文答辩日期: |
2024-06-03
|
论文外文题名: |
Research on the impact of drought and flood caused by ENSO using PWV analysis
|
论文中文关键词: |
地基GNSS ; 水汽反演 ; 大气可降水量 ; 厄尔尼诺-南方涛动 ; SPCI
|
论文外文关键词: |
Ground-Based GNSS ; Water vapor retrieval ; Precipitation Water Vapor ; El Niño-Southern Oscillation ; SPCI
|
论文中文摘要: |
︿
厄尔尼诺-南方涛动(El Niño-Southern Oscillation, ENSO)是太平洋上一种海洋大气耦合现象,ENSO通过影响水汽(Precipitable water vapor, PWV)输送过程,导致降水异常,进而引发干旱和洪涝等灾害,研究ENSO引发的旱涝影响对于应对气候变化具有重要意义。随着多种水汽探测技术的发展,如无线电探空(Radiosonde, RS)、全球导航卫星系统(Global Navigation Satellite System, GNSS)、无线电掩星和卫星遥感等技术,为利用PWV分析ENSO引发的旱涝影响研究提供了重要的数据支撑。然而,多种水汽探测技术获取PWV的精度存在不一致问题,因此,本文首先以高精度GNSS PWV和RS PWV为参考对多源PWV精度评估,准确掌握不同水汽探测技术获取PWV的精度,为利用PWV分析ENSO引发的旱涝影响研究提供有效数据;然后,使用高精度PWV联合降水数据计算标准化降水转化指数(Standardized Precipitation Conversion Index, SPCI),利用SPCI分析ENSO引发的旱涝影响特征,为ENSO引发的旱涝影响研究提供新思路。本文的主要研究内容如下:
(1)针对不同水汽探测技术获取PWV精度不一致的问题,提出以高精度GNSS PWV和RS PWV作为参考对多源PWV精度评估的方法。其中,针对GNSS PWV反演过程中实测气象参数不足的缺陷,提出利用非实测气象参数反演高精度GNSS PWV的方法。以此为基础,对欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasting, ECMWF)的第五代再分析数据集(ECMWF reanalysis v5, ERA5)、FengYun-3A(FY-3A)、Sentinel-3A和无线电掩星电离层与气候气象星座观测系统PWV的精度进行评估,为后续利用PWV定性定量分析ENSO引发的旱涝影响研究提供数据支撑。
(2)针对仅使用PWV无法定性定量分析ENSO引发的旱涝影响特征的问题,提出联合PWV和降水数据计算SPCI,并用于分析ENSO引发旱涝影响特征的方法。首先,利用传统干旱监测指数标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index, SPEI)与SPCI进行相关性分析,对SPCI在旱涝监测中的可行性进行研究;其次,对SPCI用于研究ENSO引发的旱涝影响的有效性进行检验,采用经验正交函数(Empirical Orthogonal Functions, EOF)方法分析降水、PWV与海洋表面温度之间存在相关性,证明SPCI能够用于ENSO引发的旱涝影响研究;最后,基于SPCI和Niño指数采用相关和互相关分析方法分析ENSO引发旱涝的时空影响特征,为ENSO引发的旱涝影响研究提供新思路。
﹀
|
论文外文摘要: |
︿
The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon in the Pacific, which can cause drought or flood in the Pacific, and it is great significance to study the impact of drought and flood caused by ENSO in response to climate change. By affecting the process of precipitable water vapor (PWV), ENSO leads to abnormal precipitation, which in turn leads to disasters such as drought and flood. With the development of various water vapor detection technologies (such as radiosonde (RS), global navigation satellite system (GNSS), radio occultation, satellite remote sensing, etc.), it provides important data support for the study of the impact of drought and flood caused by ENSO using PWV analysis. However, there are inconsistencies in the accuracy of PWV obtained from various water vapor detection technologies. Therefore, this paper firstly evaluates the accuracy of multi-source PWV using high-precision GNSS PWV and RS PWV, aiming to accurately grasp the precision of PWV obtained from different water vapor detection technologies, so as to provide effective data for the study of the impact of drought and flood caused by ENSO through PWV analysis. Secondly, high-precision PWV is used in conjunction with precipitation data to calculate the Standardized Precipitation Conversion Index (SPCI). The impacts characteristics of drought and flood caused by ENSO are analyzed using SPCI, which provided a new method for studying the impacts of drought and flood caused by ENSO. The main research contents of this paper are as follows:
(1) Aiming at the issue of inconsistent accuracy in PWV obtained from various water vapor detection technologies, a method is proposed for evaluating the accuracy of multi-source PWV using high-precision GNSS PWV and RS PWV as reference. To address the shortcoming of insufficient measured meteorological parameters in the GNSS PWV inversion process, a method is proposed for retrieving high-precision GNSS PWV using non-measured meteorological parameters. On this basis, the accuracy of PWV from the European Centre for Medium-Range Weather Forecasting's (ECMWF) fifth-generation reanalysis dataset (ECMWF Reanalysis v5, ERA5), FengYun-3A (FY-3A), Sentinel-3A, and radio occultation ionospheric and meteorological constellation observation systems is evaluated. This provides data support for subsequent qualitative and quantitative analysis of the impacts of drought and flood caused by ENSO using PWV.
(2) Aiming at the issue of being unable to qualitatively and quantitatively analyze the impact characteristics of drought and flood caused by ENSO solely using PWV, a method is proposed to calculate SPCI by combining PWV and precipitation data, and use SPCI to analyze the characteristics of drought and flood impacts caused by ENSO. Firstly, the correlation analysis between the Standardized Precipitation Evapotranspiration Index (SPEI) and SPCI to investigate the feasibility of SPCI in drought and flood monitoring. Secondly, the effectiveness of SPCI in studying the impact of drought and flood caused by ENSO is tested, and the employing Empirical Orthogonal Functions (EOF) was used to analyze the correlation between precipitation, PWV, and sea surface temperature, which proved that SPCI can be used in the study the impacts of drought and flood caused by ENSO. Finally, based on SPCI and the Niño index, correlation and cross-correlation analysis methods are adopted to analyze the spatial and temporal impact characteristics of drought and flood caused by ENSO, providing a new method for studying the impact of drought and flood caused by ENSO.
﹀
|
参考文献: |
︿
[1] Stocker T F. The ocean as a component of the climate system[M]. International Geophysics. Academic Press. 2013, 103: 3-30. [2] Cai W, Santoso A, Collins M, et al. Changing El Niño-Southern oscillation in a warming climate[J]. Nature Reviews Earth & Environment, 2021, 2(9): 628-644. [3] Cane M A. The evolution of El Niño, past and future[J]. Earth and Planetary Science Letters, 2005, 230(3-4): 227-240. [4] Hu S, Wu B, Zhou T, et al. Dominant anomalous circulation patterns of Tibetan Plateau summer climate generated by ENSO-forced and ENSO-independent teleconnections[J]. Journal of Climate, 2022, 35(5): 1679-1694. [5] Deivanayagam A, Sarangi R K, Palanisamy M. Evaluating the influence of El Niño-Southern Oscillation (ENSO) patterns on the spatio-temporal variations of drought over southern peninsular Indian region[J]. Journal of the Indian Society of Remote Sensing, 2022: 1-22. [6] 周天军, 陈晓龙, 吴波. 支撑“未来地球”计划的气候变化科学前沿问题[J]. 科学通报, 2019, 64(19): 1967-1974. [7] Hodnebrog Ø, Myhre G, Samset B H, et al. Water vapour adjustments and responses differ between climate drivers[J]. Atmospheric Chemistry and Physics, 2019, 19(20): 12887-12899. [8] 孙礼璐. 基于多源数据的夏季青藏高原大气水汽收支特征研究[D]. 中国科学技术大学, 2022. [9] 陈曦. 基于GNSS的对流层水汽反演方法与应用研究[D]. 广州大学, 2023. [10] 张迪. 澳洲区域 GNSS 水汽时序特征与厄尔尼诺的相关性分析[D]. 西南交通大学, 2021. [11] Lindstrot R, Stengel M, Schröder M, et al. A global climatology of total columnar water vapour from SSM/I and MERIS[J]. Earth System Science Data, 2014, 6(1): 221-233. [12] McPhaden M J, Zebiak S E, Glantz M H. ENSO as an integrating concept in earth science[J]. science, 2006, 314(5806): 1740-1745. [13] Trenberth K E, Branstator G W, Karoly D, et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14291-14324. [14] Lv A, Fan L, Zhang W. Impact of ENSO events on droughts in China[J]. Atmosphere, 2022, 13(11): 1764. [15] Trenberth K E, Fasullo J, Smith L. Trends and variability in column-integrated atmospheric water vapor[J]. Clim Dyn, 2005, 24(7-8): 741-758. [16] Ma X, Yao Y, Zhang B, et al. FY-3A/MERSI precipitable water vapor reconstruction and calibration using multi-source observation data based on a generalized regression neural network[J]. Atmospheric Research, 2022, 265: 105893. [17] 曹寿凯, 魏加华, 乔禛, 等. 地基GPS的大气可降水量反演精度验证[J]. 南水北调与水利科技(中英文), 2021, 19(3): 8. [18] Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio science, 1987, 22(3): 379-386. [19] Tralli D M, Lichten S M. Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements[J]. Bulletin géodésique, 1990, 64(2): 127-159. [20] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801. [21] Li H, Wang X, Wu S, et al. An improved model for detecting heavy precipitation using GNSS-derived zenith total delay measurements[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5392-5405. [22] 刘立龙. 地基 GNSS 反演大气水汽的理论与方法[M]. 测绘出版社, 2018. [23] 姚宜斌, 胡羽丰, 张豹. 利用多源数据构建全球天顶对流层延迟模型[J]. 科学通报, 2016, 61(24): 2730-2741. [24] Kouba J. Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)[J]. Journal of Geodesy, 2008, 82: 193-205. [25] 夏晓明. 无气象参数的对流层延迟改正模型研究[D]. 东南大学, 2018. [26] Hopfield, H. S. Two-quartic tropospheric refractivity profile for correcting satellite data[J]. Journal of Geophysical Research, 1969, 74(18): 4487-4499. [27] Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[M]. The Use of Artificial Satellites for Geodesy, 2013. [28] Black H, Eisner A. Correcting satellite Doppler data for tropospheric effects[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D2): 2616-2626. [29] Davis J L, Herring T A, Shapiro I I, et al. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length[J]. Radio Science, 2016, 20(6): 1593-1607. [30] Yang F, Meng X, Guo J, et al. The influence of different modelling factors on global temperature and pressure models and their performance in different zenith hydrostatic delay (ZHD) models[J]. Remote Sensing, 2019, 12(1): 35. [31] Li L, Gao Y, Xu S, et al. The new improved ZHD and weighted mean temperature models based on GNSS and radiosonde data using GPT3 and Fourier function[J]. Atmosphere, 2022, 13(10): 1648. [32] Collins P, Langley R, LaMance J. Limiting factors in tropospheric propagation delay error modelling for GPS airborne navigation[J]. Proc Inst Navig 52nd Ann Meet, 1996, 3: 1-10. [33] Zhang H, Yuan Y, Li W, et al. Assessment of three tropospheric delay models (IGGtrop, EGNOS and UNB3m) based on precise point positioning in the Chinese region[J]. Sensors, 2016, 16(1): 122. [34] 李薇, 袁运斌, 欧吉坤, 等. 全球对流层天顶延迟模型IGGtrop的建立与分析[J]. 科学通报, 2012, 57(15): 1317-1325. [35] Penna N, Dodson A, Chen W. Assessment of EGNOS tropospheric correction model[J]. The Journal of Navigation, 2001, 54(1): 37-55. [36] Landskron D, Bhm J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92: 349-360. [37] Lagler K, Schindelegger M, BHm J, et al. GPT2: Empirical slant delay model for radio space geodetic techniques[J]. Geophysical Research Letters, 2013, 40(6): 1069-1073. [38] Böhm J, Mller G, Schindelegger M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441. [39] Zhang W, Zhang H, Liang H, et al. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China[J]. Journal of Geodesy, 2019, 93: 1897-1909. [40] Sun Z, Zhang B, Yao Y. A global model for estimating tropospheric delay and weighted mean temperature developed with atmospheric reanalysis data from 1979 to 2017[J]. Remote Sensing, 2019, 11(16): 1893. [41] Sun P, Zhang K, Wu S, et al. Retrieving precipitable water vapor from real-time precise point positioning using VMF1/VMF3 forecasting products[J]. Remote Sensing, 2021, 13(16): 3245. [42] 李建国, 夏青. 使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J]. 气象学报, 1999, 57(3): 283-292. [43] Ding, Maohua. A neural network model for predicting weighted mean temperature[J]. Journal of Geodesy, 2018, 92(10): 1187-1198. [44] Yao Y B, Zhang B, Yue S Q, et al. Global empirical model for mapping zenith wet delays onto precipitable water[J]. Journal of Geodesy, 2013, 87(5): 439-448. [45] Huang L, Mo Z, Liu L, et al. Evaluation of hourly PWV products derived from ERA5 and MERRA-2 over the Tibetan Plateau using ground-based GNSS observations by two enhanced models[J]. Earth and Space Science, 2021, 8(5): e2020EA001516. [46] Wang J, Zhang L. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements[J]. Journal of Climate, 2008, 21(10): 2218-2238. [47] Wang Z, Zhou X, Liu Y, et al. Precipitable water vapor characterization in the coastal regions of China based on ground-based GPS[J]. Advances in Space Research, 2017, 60(11): 2368-2378. [48] Zhao Q, Yang P, Yao W, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2019, 20(1): 231. [49] Gurbuz G. On variations of the decadal precipitable water vapor (PWV) over Turkey[J]. Advances in Space Research, 2021, 68(1): 292-300. [50] 时芳琳. 中国区大气可降水量卫星遥感评估及其对气溶胶反演的影响分析[D]. 河南理工大学, 2018. [51] Saha S, Moorthi S, Pan H L, et al. The NCEP climate forecast system reanalysis[J]. Bulletin of the American Meteorological Society, 2010, 91(8): 1015-1058. [52] Ssenyunzi R C. Performance of ERA5 data in retrieving Precipitable Water Vapour over East African tropical region[J]. Advances in Space Research, 2020, 65(8): 1877-1893. [53] Zhang S, Liu F, Li H, et al. Global navigation satellite system-based retrieval of precipitable water vapor and its relationship with rainfall and drought in Qinghai, China[J]. Atmosphere, 2023, 14(3): 517. [54] Bordi I, Raziei T, Pereira L S, et al. Ground-based GPS measurements of precipitable water vapor and their usefulness for hydrological applications[J]. Water Resources Management, 2015, 29: 471-486. [55] Jiang W, Yuan P, Chen H, et al. Annual variations of monsoon and drought detected by GPS: A case study in Yunnan, China[J]. Scientific reports, 2017, 7(1): 5874. [56] Ferreira V, Montecino H, Ndehedehe C, et al. Space-based observations of crustal deflections for drought characterization in Brazil[J]. Science of the Total Environment, 2018, 644: 256-273. [57] Wang X, Zhang K, Wu S, et al. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation[J]. Remote Sensing of Environment, 2018, 216: 1-12. [58] 于维, 柯福阳, 曹云昌. 基于MODIS_TVDI/GNSS_PWV的云南省干旱特征时空分析[J]. 自然资源遥感, 2021, 33(3): 202-210. [59] Foster J, Bevis M, Schroeder T, et al. El Niño, water vapor, and the global positioning system[J]. Geophysical research letters, 2000, 27(17): 2697-2700. [60] Suparta W, Iskandar A, Singh M S J, et al. A study of El Niño-Southern oscillation impacts to the South China Sea region using ground-based GPS receiver[C]//Journal of physics: conference series. IOP Publishing, 2013, 423(1): 012043. [61] McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology, 1993, 17(22): 179-183. [62] Zhao Q, Ma X, Yao W, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24): 10727-10741. [63] van der Schrier G, Barichivich J, Briffa K, et al. A scPDSI-based global data set of dry and wet spells for 1901-2009[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4025-4048. [64] Yan H, Wang S Q, Lu H Q, et al. Development of a remotely sensing seasonal vegetation-based Palmer drought severity index and its application of global drought monitoring over 1982-2011[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(15): 9419-9440. [65] Wu M, Li Y, Hu W, et al. Spatiotemporal variability of standardized precipitation evapotranspiration index in mainland China over 1961-2016[J]. International Journal of Climatology, 2020, 40(11): 4781-4799. [66] Verdon-Kidd D, Kiem A. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall[J]. Hydrology and Earth System Sciences, 2009, 13(4): 467-479. [67] Hernandez E A, Uddameri V. Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas[J]. Environmental Earth Sciences, 2014, 71: 2491-2501. [68] Patel N R, Yadav K. Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India[J]. Natural Hazards, 2015, 77: 663-677. [69] Singh R M, Shukla P. Drought characterization using drought indices and El Nino effects[J]. National Academy Science Letters, 2020, 43: 339-342. [70] Sobral B S, De Oliveira-Junior J F, De Gois G, et al. Drought characterization for the state of Rio de Janeiro based on the annual SPI index: trends, statistical tests and its relation with ENSO[J]. Atmospheric research, 2019, 220: 141-154. [71] Wang S, Xu T, Xu Y, et al. Intercomparison of total precipitable water derived from COSMIC-2 and three different microwave radiometers over the ocean[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10. [72] Meza, Francisco J. Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index[J]. Weather and Climate Extremes, 2013, 1(1): 51-58. [73] Manatsa D, Mushore T, Lenouo A. Improved predictability of droughts over southern Africa using the standardized precipitation evapotranspiration index and ENSO[J]. Theoretical & Applied Climatology, 2015, 127(1-2): 1-16. [74] Oertel M, Meza F J, Gironas J. Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile[J]. Hydrological Processes, 2020, 34(2): 259-274. [75] Li W, He Y. Determination of tropospheric parameters from ERA surface data for space geodetic techniques[J]. Remote Sensing, 2021, 13(19): 3813. [76] Zhu H, Chen K, Hu S, et al. Using the global navigation satellite system and precipitation data to establish the propagation characteristics of meteorological and hydrological drought in Yunnan, China[J]. Water Resources Research, 2023, 59(4): e2022WR033126. [77] Schiettekatte L R, Garrido M S, de Lacy M C. Use of GNSS and ERA5 precipitable water vapor based standardized precipitation conversion index for drought monitoring in the Mediterranean coast: A first case study in Southern Spain[J]. Advances in Space Research, 2023, 72(9): 3946-3959. [78] Zhao Q, Zhang X, Wu K, et al. Comprehensive precipitable water vapor retrieval and application platform based on various water vapor detection techniques[J]. Remote Sensing, 2022, 14(10): 2507. [79] 叶世榕, 张双成, 刘经南. 精密单点定位方法估计对流层延迟精度分析[J]. 武汉大学学报: 信息科学版, 2008, 33(8): 4. [80] Chen J, Zhang Y, Wang J, et al. A simplified and unified model of multi-GNSS precise point positioning[J]. Advances in Space Research, 2015, 55(1): 125-134. [81] Chen Q, Song S, Heise S, et al. Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China[J]. Gps Solutions, 2011, 15(4): 415-425. [82] 唐龙江. 利用精密单点定位法准实时估计BDS天顶对流层延迟[D]. 辽宁工程技术大学, 2017. [83] 朱丹彤. 中国区域多源水汽融合算法及其气候应用研究[D]. 中国矿业大学, 2022. [84] Leick A, Rapoport L, Tatarnikov D. GPS satellite surveying[M]. John Wiley & Sons, 2015. [85] Mooney P A, Mulligan F J, Fealy R. Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperatures over Ireland[J]. John Wiley & Sons, Ltd, 2011, 31(4): 545-557. [86] 王开通. 气象参数对地基GNSS反演水汽的影响探讨[J]. 铁道勘察, 2022, 48(1): 12-15+38. [87] Böhm J, Heinkelmann R, Schuh H. Short note: a global model of pressure and temperature for geodetic applications[J]. Journal of Geodesy, 2007, 81: 679-683. [88] 何琦敏. 地基GNSS水汽反演及其在极端天气中的应用研究[D]. 中国矿业大学, 2021. [89] Bevis M, Businger S, Chiswell S, et al. GPS meteorology: Mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386. [90] Yao Y, Zhang B, Xu C, et al. Analysis of the global T m-T s correlation and establishment of the latitude-related linear model[J]. Chinese science bulletin, 2014, 59: 2340-2347. [91] 姚宜斌, 孙章宇, 许超钤, 等. 顾及非线性高程归算的全球加权平均温度模型[J]. 武汉大学学报: 信息科学版, 2019, 44(1): 106-111. [92] 黄良珂, 彭华, 刘立龙, 等. 顾及垂直递减率函数的中国区域大气加权平均温度模型[J]. 测绘学报, 2020, 49(4): 432-442. [93] 杨柳. 精密单点定位反演大气水汽关键模型研究[D]. 中国矿业大学, 2021. [94] Jiang P, Ye S R, Liu Y Y, et al. Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong[C]//Annales geophysicae. Göttingen, Germany: Copernicus Publications, 2014, 32(8): 911-923. [95] 徐晓华, 李征航. GPS气象学研究的最新进展[J]. 黑龙江工程学院学报, 2002, 3(1): 14-18. [96] Durre I, Vose R S, Wuertz D B. Overview of the integrated global radiosonde archive[J]. Journal of Climate, 2006, 19(1): 53-68. [97] Gong S, Hagan D F T, Wu X, et al. Spatio-temporal analysis of precipitable water vapour over northwest china utilizing MERSI/FY-3A products[J]. International Journal of Remote Sensing, 2018, 39(9-10): 3094-3110. [98] 王新志, 陈发源. FY-4A GIIRS数据与ERA5再分析资料融合的中国区域大气加权平均温度模型[J]. 测绘学报, 2023, 52(6): 904-916. [99] Anthes R A, Bernhardt P A, Chen Y, et al. The COSMIC/FORMOSAT-3 mission: Early results[J]. Bulletin of the American Meteorological Society, 2008, 89(3): 313-334. [100] 郭鹏. 无线电掩星技术与CHAMP掩星资料反演[D]. 中国科学院研究生院(上海天文台), 2006. [101] 官莉, 张雪慧, 王喆. COSMIC大气产品研究[J]. 安徽农业科学, 2008, 16(18): 7869-7871. [102] Essen L, Froome K D. The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24,000 Mc/s[J]. Procphyssocb, 1951, 64(10): 862. [103] Smith E K, Weintraub S. The constants in the equation for atmospheric refractive index at radio frequencies[J]. Proceedings of the IRE, 1953, 50(8): 1035-1037. [104] Thayer, Gordon D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. [105] 董双林, 崔宏光. 饱和水汽压计算公式的分析比较及经验公式的改进[J]. 应用气象学报, 1992, (4): 501-508. [106] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. [107] Hoffmann L, Günther G, Li D, et al. From ERA-Interim to ERA5: The considerable impact of ECMWF's next-generation reanalysis on Lagrangian transport simulations[J]. Atmospheric Chemistry and Physics, 2019, 19(5): 3097-3124. [108] Lees E, Bousquet O, Roy D, et al. Analysis of diurnal to seasonal variability of Integrated Water Vapour in the South Indian Ocean basin using ground-based GNSS and fifth-generation ECMWF reanalysis (ERA5) data[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147(734): 229-248. [109] 胡秀清, 黄意玢, 陆其峰, 等. 利用FY-3A近红外资料反演水汽总量[J]. 应用气象学报, 2011, 22(1): 46-56. [110] Zheng W, Shao J, Wang M, et al. A thin cloud removal method from remote sensing image for water body identification[J]. Chinese Geographical Science, 2013, 23: 460-469. [111] Donlon C, Berruti B, Buongiorno A, et al. The global monitoring for environment and security (GMES) sentinel-3 mission[J]. Remote Sensing of Environment, 2012, 120: 37-57. [112] Lamquin N, Bourg L, Donlon C. OLCI A/B tandem phase analysis, part 1: Level 1 homogenisation and harmonisation[J]. Remote Sensing, 2020, 12(11): 1804. [113] Mertikas S, Partsinevelos P, Tripolitsiotis A, et al. Validation of Sentinel-3 OLCI integrated water vapor products using regional GNSS measurements in crete, Greece[J]. Remote Sensing, 2020, 12(16): 2606. [114] Xu J, Liu Z. Water vapour products from ERA5, MERSI-II/FY-3D, OLCI/Sentinel-3A, OLCI/Sentinel-3B, MODIS/Aqua and MODIS/Terra in Australia: A comparison against in situ GPS water vapour data[J]. Quarterly Journal of the Royal Meteorological Society, 2023, 149(753): 1435-1458. [115] Hilburn K A, Wentz F J. Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA)[J]. Journal of Applied Meteorology & Climatology, 2008, 47(3): 778-794. [116] Wentz F J. SSM/I Version-7 calibration report[J]. Remote Sensing Systems Tech Rep, 2013, 11012(46): 43. [117] Draper D W, Newell D A, Wentz F J, et al. The global precipitation measurement (GPM) microwave imager (GMI): Instrument overview and rarly on-orbit performance[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015, 8(7): 3452-3462. [118] 王帅民. 基于GNSS和再分析资料的ZTD/PWV精度评定与模型构建方法研究[J]. 测绘学报, 2023, 52(6): 1037. [119] Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D05109. [120] Allen R, Smith M, Perrier A, et al. An update for the definition of reference evapotranspiration[J]. ICID bulletin, 1994, 43(2): 1-34. [121] Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical review, 1948, 38(1): 55-94. [122] Singh V, Guo H, Yu F. Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Pome[J]. Stochastic Hydrology and Hydraulics, 1993, 7: 163-177. [123] Ahmad M, Sinclair C, Werritty A. Log-logistic flood frequency analysis[J]. Journal of Hydrology, 1988, 98(3-4): 205-224. [124] 刘斌, 郭际明, 史俊波, 等. 利用EGM2008模型与地形改正进行GPS高程拟合[J]. 武汉大学学报: 信息科学版, 2016, 41(4): 554-558. [125] 刘洁, 姚洪涛. 基于双线性插值的鱼眼镜头校正算法[J]. 信息通信, 2017, (1): 39-42. [126] Zhou H, Zhou W, Liu Y, et al. Identifying spatial extent of meteorological droughts: an examination over a humid region[J]. Journal of Hydrology, 2020, 591: 125505. [127] Touma D, Anna M.Swain, Daniel L.Diffenbaugh, Noah S. Characterizing the spatial scales of extreme daily precipitation in the United States[J]. Journal of Climate, 2018, 31(19): 8023-8037. [128] Zhou H, Zhou W, Liu Y, et al. Climatological spatial scales of meteorological droughts in China and associated climate variability[J]. Journal of Hydrology, 2023, 617: 129056. [129] Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine, 1901, 2(11): 559-572. [130] Hippert-Ferrer A, Yan Y, Bolon P. EM-EOF: Gap-filling in incomplete SAR displacement time series[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(7): 5794-5811. [131] Lorenz E N. Empirical orthogonal functions and statistical weather prediction[M]. Massachusetts Institute of Technology, Department of Meteorology Cambridge, 1956. [132] Uwamahoro J C, Habarulema J B, Buresova D. Highlights about the performances of storm-time TEC modelling techniques for low/equatorial and mid-latitude locations[J]. Advances in Space Research, 2019, 63(10): 3102-3118. [133] Kim S E, Seo I W, Choi S Y. Assessment of water quality variation of a monitoring network using exploratory factor analysis and empirical orthogonal function[J]. Environmental Modelling & Software, 2017, 94: 21-35. [134] Tadeyo E, Chen D, Ayugi B, et al. Characterization of spatio-temporal trends and periodicity of precipitation over Malawi during 1979-2015[J]. Atmosphere, 2020, 11(9): 891. [135] Guyon O, Males J. Adaptive optics predictive control with empirical orthogonal functions (EOFs)[J]. arXiv preprint arXiv: 170700570, 2017. [136] 于腾丽. GNSS ZTD时空变化分析及在ENSO事件监测中的应用[D]. 天津城建大学, 2022. [137] Hannachi A, Jolliffe I T, Stephenson D B. Empirical orthogonal functions and related techniques in atmospheric science: A review[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2007, 27(9): 1119-1152. [138] He C, Wu S, Wang X, et al. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding[J]. Atmospheric Measurement Techniques, 2017, 10(6): 2045-2060. [139] Li H, Wang X, Wu S, et al. Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV[J]. Remote Sensing, 2020, 12(24): 4101. [140] Yuan Y, Zhang K, Rohm W, et al. Real-time retrieval of precipitable water vapor from GPS precise point positioning[J]. Journal of geophysical research: atmospheres, 2014, 119(16): 10044-10057. [141] Zhao Q, Yao Y, Yao W. Studies of precipitable water vapour characteristics on a global scale[J]. International Journal of Remote Sensing, 2019, 40(1): 72-88. [142] 肖渝, 孙若辰, 王倩, 等. 不同降水驱动的SWAT模型参数不确定性研究[J]. 河海大学学报(自然科学版), 2024, 52(2): 43-52. [143] Beck H E, Wood E F, Pan M, et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment[J]. American Meteorological Society, 2019, 100(3): 473-500. [144] Martens B, Miralles D G, Lievens H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture[J]. Geoscientific Model Development, 2017, 10(5): 1903-1925. [145] Schellekens J, Dutra E, Martínez-de La Torre A, et al. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset[J]. Earth System Science Data, 2016, 9(2): 389-413. [146] Ren H L, Jin F F. Niño indices for two types of ENSO[J]. Geophysical Research Letters, 2011, 38(4): 1-5. [147] Wang H, He J, Wei M, et al. Synthesis analysis of one severe convection precipitation event in Jiangsu using ground-based GPS technology[J]. Atmosphere, 2015, 6(7): 908-927. [148] Chen B, Dai W, Liu Z, et al. Assessments of GMI-derived precipitable water vapor products over the south and east China seas using radiosonde and GNSS[J]. Advances in Meteorology, 2018, 2018: 1-12. [149] Vicente-Serrano S M, López-Moreno J I, Gimeno L, et al. A multiscalar global evaluation of the impact of ENSO on droughts[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D20): 1-23. [150] Vicente-Serrano S M, Aguilar E, Martínez R, et al. The complex influence of ENSO on droughts in Ecuador[J]. Climate Dynamics, 2017, 48: 405-427. [151] Gutzler D K. Modulation of ENSO-based long-lead outlooks of southwestern US winter precipitation by the Pacific decadal oscillation[J]. Weather and Forecasting, 2002, 17(6): 1163-1172. [152] Combes V, Di Lorenzo E. Intrinsic and forced interannual variability of the Gulf of Alaska mesoscale circulation[J]. Progress in Oceanography, 2007, 75(2): 266-286. [153] Yang P, Fok H S, Ma Z. Mapping long-term spatial impact of ENSO on hydroclimatic variables in China[J]. Advances in Space Research, 2023, 72(6): 2195-2216. [154] Tong J, Qiang Z, Deming Z, et al. Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470-2003)[J]. Quaternary International, 2006, 144(1): 29-37. [155] Zhang Q, Xu C Y, Jiang T, et al. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China[J]. Journal of Hydrology, 2007, 333(2-4): 265-274.
﹀
|
中图分类号: |
P228.4
|
开放日期: |
2024-06-13
|