论文中文题名: | 低阶煤煤化过程孔隙演化及对甲烷吸附/解吸的影响 |
姓名: | |
学号: | 19209212051 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085217 |
学科名称: | 工学 - 工程 - 地质工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤层气地质 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-17 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Pore evolution of low-rank coal during the coalification and its effect on adsorption and desorption of methane |
论文中文关键词: | |
论文外文关键词: | Low-rank coal ; Molecular structure ; Coalification ; Vitrain/Durain ; Pore ; Adsorption/Desorption |
论文中文摘要: |
为研究黄陇煤田低阶煤在煤化作用过程中孔隙系统与分子结构的演化规律及对煤层气吸附/解吸的影响,采集黄陇侏罗纪煤田延安组样品作为研究对象,通过低温液氮吸附、扫描电镜、傅里叶红外光谱分析、13C核磁共振分析、X射线光电子能谱分析、X射线衍射分析及煤层气的吸附/解吸实验等技术手段,分析了镜、暗煤在物质组成、孔隙结构、分子结构、吸附能力等方面的差异,揭示了煤化作用对镜、暗煤的孔隙与分子结构演化的控制机理。通过本文的研究获得以下认识: (1)物质组分方面,镜煤水分、挥发分和镜质组含量高于暗煤;灰分、固定碳、惰质组含量则低于暗煤。随煤化作用程度增高,氧元素含量降低,H/C比减小。煤中的矿物以石英和高岭石为主,暗煤的矿物种类多,且含量高于镜煤。 (2)煤中存在植物组织孔、气孔等不同成因类型孔隙。镜煤孔容低于暗煤,比表面积高于暗煤,暗煤的中孔的数量更多,孔径更大,连通性更好,镜煤微孔更为发育。镜煤孔隙分形维数D1值与暗煤接近,D2值大于暗煤,两者孔隙非均质性差异小,镜煤的孔隙表面起伏比暗煤大。镜、暗煤的孔隙演化规律相似,整体可分为3个阶段:第一阶段Ro<0.6%,此时各孔径段的孔隙都较为发育、煤基质结构松散,以上覆岩层的物理压实为主;第二阶段0.6%o<0.65%,压实作用增强,中孔数量快速减少,由于微孔对压实作用的滞后效应和有机质热解生气作用产生气孔使微孔占比增加;第三阶段Ro>0.65%,煤分子结构趋于紧密有序,致使各孔径段的孔隙数量均减少。 (3)分子结构方面,煤中主要元素碳、氧、氮的存在形式为C-C/C-H、C-O、COOH、C=O、吡啶型氮和吡咯型氮。镜、暗煤中C=C、CH3等结构的含量并无明显差异,镜煤的含氧官能团数量少于暗煤。煤化作用过程中,分子结构的支链化程度减小,COOH、C=O数量减少,脂肪侧链、含氧官能团逐渐脱落,芳碳率和芳香度增大,芳香结构数量增多,微晶结构的延展度增大,堆砌度减小,芳香片层直径变大,面网间距的变化不明显,煤分子结构由松散、混乱趋于有序、致密发展。 (4)吸附/解吸方面,相同温压条件下,镜煤由于微孔更加发育,吸附甲烷能力强于暗煤,吸附热更大。解吸滞后现象总是存在,温度升高利于解吸而不利于吸附,但解吸滞后受孔隙结构和吸附热等因素的共同控制。煤化作用程度增加,甲烷的吸附量先增大后减小,这与第一次煤化作用跃变有关。 (5)分子结构、孔隙结构对吸附甲烷能力的影响方面,煤分子结构的支链化度、延展度越高,羟基越少,吸附能力越强。镜煤吸附能力与芳香度和芳碳率呈正相关关系,暗煤则呈负相关。吸附量与羰基和羧基含量的关系以11%为转折点,低于11%时吸附量随碳氧双键含量增加而减小,高于11%时恰好相反。镜、暗煤的甲烷吸附量与总孔容,总比表面积和分形维数D1呈正相关,镜煤甲烷吸附量与D2呈负相关,暗煤甲烷吸附量与D2则呈正相关。 |
论文外文摘要: |
In order to study the characteristics and evolution law of pore system and molecular structure of low-rank coal in Huanglong coalfield during the coalification and the effect on CBM adsorption/desorption. The coal seams of the Yan'an Formation in the Jurassic coalfield of Huanglong were collected as the research object. By using N2 adsorption tests, SEM, FTIR, 13C-NMR, XPS, XRD and adsorption/desorption experiment of CBM to analyze the differences between vitrain and durain in terms of material composition, pore structure, molecular structure and adsorption capacity. Revealing the control principle of coalification on the pore and molecular structure of vitrain and durain. The following conclusions are obtained through the research of this paper: (1) In terms of material components, the content of moisture, volatile matter and vitrinite in vitrain is higher than durain, while the content of ash, fixed carbon and inertinite in vitrain is lower than durain. With the increase of coalification degree, the content of oxygen element decreases and the H/C ratio decreases. The minerals in coal are mainly quartz and kaolinite, and the types and contents of minerals in durain are higher than vitrain. (2) There are different types of pores in coal, such as plant tissue pores and gas pores. The pore volume of vitrain is lower than durain, and the specific surface area of vitrain is higher than durain. The number of macropores in durain is larger, the pore aperture is larger, and the connectivity is better, and the micropores of vitrain are more developed. The fractal dimension D1 of vitrain is close to durain, and its D2 is larger than durain. The difference in pore distribution heterogeneity between vitrain and durain is small, and the pore surface fluctuation of vitrain is larger. The pore evolution law of vitrain and durain is similar, and the whole process can be divided into three stages: ①Ro<0.6%. The pores of each aperture are relatively developed, the coal matrix is loose, and external force is main physical compaction of the overlying strata. ②0.6o<0.65%. The compaction effect is enhanced, the number of mesopores and macropores is rapidly decreased. The number of micropores increases due to the hysteresis effect of micropores on compaction and the generation of pores by the pyrolysis of organic matter. ③Ro>0.65%. The coal molecular become tight and the compaction make the number of pores continue to decrease. (3) In terms of molecular structure, the main elements carbon, oxygen and nitrogen in coal exist in the form of C-C/C-H, C-O, COOH, C=O, pyridinic nitrogen and pyrrolic nitrogen. There is no significant difference in some chemical structure number such as C=C, CH3 between vitrain and durain. The oxygen-containing functional groups and ash content of vitrain are less than durain. In the process of coalification, the branched degree decreased, the number of COOH and C=O decreases, and the aliphatic chains and oxygen-containing functional groups in the coal molecular structure fall off. The aromatic carbon rate and aromaticity increase, the number of aromatic structure increases, and the coal molecular structure develops from loose and chaotic to orderly and dense. The ductility becomes higher, stacking degree becomes lower. The diameter of the aromatic fragment is bigger, and the distance between adjacent aromatic fragment decreases. In addition, the change of molecular structure is also tortuous and staged, which showed the parameters such as the branched degree, aromatic carbon rate and aromaticity are not completely linearly related to Ro. (4) In terms of adsorption and desorption characteristics, under the same temperature and pressure, vitrain has more developed micropores, and its adsorption capacity for methane is stronger than durain, also its adsorption heat is larger. The pore sealing ability of vitrain is stronger, the desorption rate is lower, and the pore connectivity of durain is better, so the desorption efficiency is higher than vitrain. The phenomenon of desorption hysteresis always exists. The high temperature is favorable for desorption but not for adsorption, but the desorption hysteresis is jointly controlled by factors such as pore structure and adsorption heat et al. As the coalification degree increases, the adsorption capacity of methane first increases and then decreases, which is related to the first coalification jump. (5) In terms of the influence of molecular structure on the adsorption capacity of methane, the higher the branched degree and ductility of the coal molecular structure, the less hydroxy groups, and the high adsorption capacity. The adsorption capacity of vitrain was positively correlated with aromaticity and aromatic carbon rate, while that of durain was negatively correlated. The adsorption capacity of vitrain and durain both increased with the increase of ductility. The relationship between the adsorption capacity and the carbonyl and carboxyl group content takes 11% as the turning point. When the carbon-oxygen double bond content is lower than 11%, the adsorption capacity decreases with the increase of the carbon-oxygen double bond content, and it is opposite when the carbon-oxygen double bond content is higher than 11%. The methane adsorption capacity of vitrain and durain was positively correlated with total pore volume, total specific surface area and fractal dimension D1. The methane adsorption capacity of vitrain was negatively correlated with D2, while the methane adsorption capacity of durain was positively correlated with D2. |
参考文献: |
[1] B.b. Hodot. 中国工业出版社[M]. 北京: 中国工业出版社, 1966. [2] Gan H, Nandi S P, Jr P. Nature of the Porosity in American coals[J]. Fuel, 1972, 51(4): 272-277. [3] 秦勇,徐志伟,张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报, 1995, 20(3): 266-271. [4] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987, 12(4): 51-56, 97-101. [5] 张素新,肖红艳. 煤储层中微孔隙和微裂隙的扫描电镜研究[J]. 电子显微学报, 2000, 19(4): 531-532. [6] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44. [8] 赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报, 2017, 42(6): 1517-1526. [9] 刘玉龙,汤达祯,许浩,等. 基于核磁共振不同煤岩类型储渗空间精细描述[J]. 高校地质学报, 2016, 22(3): 543-548. [10] 姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学, 2010, 40(11): 1598-1607. [11] 李伟,要惠芳,刘鸿福,等. 基于显微CT的不同煤体结构煤三维孔隙精细表征[J]. 煤炭学报, 2014, 39(6): 1127-1132. [12] 唐淑玲,汤达祯,陶树,等. 基于X-CT技术的沁水盆地南部煤储层精细描述[J]. 煤炭科学技术, 2016, 44(12): 167-172. [13] 宋党育,何凯凯,吉小峰,等. 基于CT扫描的煤中孔裂隙精细表征[J]. 天然气工业, 2018, 38(3): 41-49. [15] 张松航,汤达祯,唐书恒,等. 鄂尔多斯盆地东缘煤储层微孔隙结构特征及其影响因素[J]. 地质学报, 2008, 82(10): 1341-1349. [16] 李子文,郝志勇,庞源,等. 煤的分形维数及其对瓦斯吸附的影响[J]. 煤炭学报, 2015, 40(4): 863-869. [17] 宋昱,姜波,李凤丽,等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学, 2018, 43(5): 1611-1622. [18] 王小垚,曾联波,周三栋,等. 低阶煤储层微观孔隙结构的分形模型评价[J]. 天然气地球科学, 2018, 29(2): 277-288. [19] 叶桢妮,侯恩科,段中会,等. 不同煤体结构煤的孔隙-裂隙分形特征及其对渗透性的影响[J]. 煤田地质与勘探, 2019, 47(5): 70-78. [20] 刘大锰,姚艳斌,蔡益栋,等. 华北石炭-二叠系煤的孔渗特征及主控因素[J]. 现代地质, 2010, 24(6): 1198-1203. [21] 汪雷,汤达祯,许浩,等. 基于液氮吸附实验探讨煤变质作用对煤微孔的影响[J]. 煤炭科学技术, 2014, 42(S1): 256-260. [29] 刘曰武,苏中良,方虹斌,等. 煤层气的解吸/吸附机理研究综述[J]. 油气井测试, 2010, 19(6): 37-44, 83. [30] 苏现波,陈润,林晓英,等. 吸附势理论在煤层气吸附/解吸中的应用[J]. 地质学报, 2008, 82(10): 1382-1389. [31] 蒋必辞,汪凯斌,陈刚,等. 基于Weibull方程的煤层气动态解吸过程划分[J]. 煤矿安全, 2018, 49(1): 44-48. [32] 张遂安,叶建平,唐书恒,等. 煤对甲烷气体吸附—解吸机理的可逆性实验研究[J]. 天然气工业, 2005(1): 44-46, 208-209. [33] 马东民,马薇,蔺亚兵. 煤层气解吸滞后特征分析[J]. 煤炭学报, 2012, 37(11): 1885-1889. [34] 亓宪寅,杨典森,陈卫忠. 煤层气解吸滞后定量分析模型[J]. 煤炭学报, 2016, 41(S2): 475-481. [35] 王公达,Ren T X,齐庆新,等. 吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报, 2016, 41(1): 49-56. [38] 崔馨,严煌,赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(04): 704-717. [39] 相建华,曾凡桂,梁虎珍,等.兖州煤大分子结构模型构建及其分子模拟[J]. 燃料化学学报, 2011, 39(07): 481-488. [41] 严继民, 张培元.吸附与凝聚[M]. 北京: 科学出版社, 1979. [43] 周三栋,刘大锰,蔡益栋,等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(02): 373-383. [44] 王飞,邢好运,李万春,等. 中低阶煤的孔隙结构演化特征[J]. 西安科技大学学报, 2020, 40(03): 384-392. [45] 王博洋,秦勇,申建,等. 我国低煤阶煤煤层气地质研究综述[J]. 煤炭科学技术, 2017, 45(01): 170-179. [46] 刘大锰,李振涛,蔡益栋. 煤储层孔-裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术, 2015, 43(02): 10-15. [47] 傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007. [48] 高向东. 临兴深部煤储层孔渗成因演化机制及压裂可改造性研究[D]. 中国矿业大学(北京), 2019. [50] 郝盼云,孟艳军,曾凡桂,等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析, 2020, 40(03): 787-792. [51] 宋昱,朱炎铭,李伍. 东胜长焰煤热解含氧官能团结构演化的13C-NMR和FT-IR分析[J]. 燃料化学学报, 2015, 43(05): 519-529. [52] 李子文. 低阶煤的微观结构特征及其对瓦斯吸附解吸的控制机理研究[D]. 中国矿业大学, 2015. [53] 王振洋. 构造煤微观结构演化及对瓦斯吸附解吸动力学特性的影响[D]. 中国矿业大学, 2020. [54] 郭德勇,郭晓洁,刘庆军,等. 烟煤级构造煤分子结构演化及动力变质作用研究[J]. 中国矿业大学学报, 2019, 48(05): 1036-1044. [55] 郭德勇,叶建伟,王启宝,等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究[J].煤炭学报, 2016, 41(12): 3040-3046. [57] 张璐,王传格,曾凡桂,等. 不同变质程度煤的FTIR和HRTEM及TG分析[J]. 煤炭转化, 2020, 43(05): 10-17. [59] 李霞,曾凡桂,王威,等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报, 2015, 40(12): 2900-2908. [60] 唐佳阳. 黄陵矿区煤分子结构定量表征及其模型构建[D]. 西安科技大学, 2021. [61] 麻志浩,阳虹,张玉贵,等.不同煤级煤13C-NMR结构特性及演化特征[J]. 煤炭转化, 2015, 38(04): 1-4+11. [62] 陆安慧,李文翠,郑经堂. 分子筛型PAN-ACF制备及表面结构的XPS研究[J]. 物理化学学报, 2001(03): 216-221. [63] 贺琼琼,苗真勇,万克记,等. X射线光电子能谱对褐煤中碳氧形态的研究[J]. 煤炭技术, 2016, 35(01): 298-300. [64] 张兰君,李增华,李金虎,等. 煤表面含碳官能团低温氧化规律XPS技术研究[J]. 煤炭技术, 2016, 35(06): 226-228. [65] 魏帅,严国超,张志强,等. 晋城无烟煤的分子结构特征分析[J].煤炭学报, 2018, 43(02): 555-562. [66] 苏现波,司青,王乾. 煤变质演化过程中的XRD响应[J]. 河南理工大学学报(自然科学版), 2016, 35(04): 487-492. [68] 王楠. 不同构造变形程度下高煤级煤分子结构演化特征[D]. 西安科技大学, 2021. [69] 李鹏鹏. 杜儿坪2号煤结构模型构建及其分子模拟[D]. 太原理工大学, 2014. [70] 张莉. 五牧场11号煤结构模型构建及其超分子特征[D]. 太原理工大学, 2013. [72] 马东民,张遂安,蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(03): 477-480. [73] 苏现波,张丽萍,林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业, 2005(01): 19-21+205-206. [74] 白建平,张典坤,杨建强,等. 寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(09): 1812-1819. [75] 薛培,张丽霞,梁全胜,等. 基于逸度与压力计算页岩吸附甲烷的等量吸附热差异分析-以延长探区延长组页岩为例[J]. 岩性油气藏, 2021, 33(02): 171-179. [76] 李晓文,马旭,朱鹏飞,等. 煤体理化结构特征及其对瓦斯吸附热力学的影响[J]. 煤矿安全, 2021, 52(03): 1-8. [77] 程敢,李玉龙,张梦妮,等. CO2/N2/O2及H2O分子在褐煤中的吸附行为模拟[J]. 煤炭学报: 2021, 1-12. [78] 柳先锋,宋大钊,何学秋,等. 微结构对软硬煤瓦斯吸附特性的影响[J]. 中国矿业大学学报, 2018, 47(01): 155-161. [79] 王宝俊,章丽娜,凌丽霞,等. 煤分子结构对煤层气吸附与扩散行为的影响[J]. 化工学报, 2016, 67(06): 2548-2557. [80] 张彬,曾凡桂,王德璋,等. 沁水盆地南部无烟煤大分子结构模型及其含甲烷力学性质[J]. 煤炭学报, 2021, 46(02): 534-543. |
中图分类号: | P618.13 |
开放日期: | 2023-06-17 |