论文中文题名: |
可卡因成瘾的脑网络机制研究
|
姓名: |
王欢欢
|
学号: |
22201221058
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
025200
|
学科名称: |
经济学 - 应用统计
|
学生类型: |
硕士
|
学位级别: |
经济学硕士
|
学位年度: |
2025
|
培养单位: |
西安科技大学
|
院系: |
理学院
|
专业: |
应用统计
|
研究方向: |
复杂网络分析
|
第一导师姓名: |
王彪
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2025-06-18
|
论文答辩日期: |
2025-06-08
|
论文外文题名: |
Research on Brain functional Network in Cocaine Addiction
|
论文中文关键词: |
可卡因成瘾 ; 重复经颅磁刺激 ; 分层模块划分 ; 脑功能网络 ; 贝叶斯优化
|
论文外文关键词: |
Cocaine addiction ; Repetitive transcranial magnetic stimulation ; Hierarchical modular partitioning ; Brain functional networks ; Bayesian optimization
|
论文中文摘要: |
︿
可卡因成瘾是一种严重的神经精神疾病,其核心特征是对药物的强烈渴求欲望和难以控制的成瘾行为。目前,对可卡因成瘾的神经机制尚不清楚,对成瘾欲望的评估缺乏有效的客观依据,且无有效的治疗手段。本研究基于可卡因成瘾患者重复经颅磁刺激(rTMS)治疗前后的脑网络特征,研究可卡因成瘾及其治疗的神经机制,并为成瘾欲望提供潜在的神经标志物。
构建了可卡因成瘾患者的静态功能连接网络,采用分层模块划分方法刻画了网络整合和分离特征,分析网络指标与可卡因渴求欲望的统计学关系。发现可卡因成瘾患者表现出较高的整合过程和较低的分离过程;可卡因渴求欲望与右脑视觉皮层更高的整合成分和更低的分离成分在统计学上相关。高阶模态脑网络中可卡因成瘾患者的功能连接低于健康对照组。建立了基于贝叶斯优化算法和脑网络高阶模态的机器学习分类与预测模型,发现右脑的视觉皮层具有最高的特征重要性。
构建了可卡因成瘾患者的动态功能连接网络,分析整合和分离的动态变化及其与成瘾欲望的统计学关系。发现可卡因成瘾患者视觉系统的整合和分离成分的动态变化规律,视觉系统和控制系统具有更高的分离变异性。右脑扣带回皮层的整合成分和变异程度与渴求欲望呈负相关,表明控制系统在调节渴求欲望中具有关键作用。发现默认模式网络在分类模型中具有重要作用,且默认模式网络和控制系统在预测症状时具有相反作用。
研究rTMS治疗可卡因成瘾前后脑网络特征变化,发现rTMS干预能有效改善可卡因成瘾患者的临床症状。建立了治疗效果预测模型,发现右半球视觉皮层及视觉系统网络在渴求程度预测中具有关键作用。发现当成瘾渴求欲望降低时,右侧控制系统外侧后额叶皮层与视觉皮层之间的静态功能连接强度减弱,右侧控制系统外侧后额叶皮层与左外侧后额叶皮层的动态功能整合成分减少。
﹀
|
论文外文摘要: |
︿
Cocaine addiction is a severe neuropsychiatric disorder characterized by intense drug craving and compulsive addictive behaviors. Currently, the neural mechanisms underlying cocaine addiction remain unclear, and there is a lack of effective objective markers for assessing craving, as well as a lack of effective treatment options. This study investigates the neural mechanisms of cocaine addiction and its treatment by examining brain network features before and after repetitive transcranial magnetic stimulation (rTMS) therapy in individuals with cocaine addiction, aiming to identify potential neural biomarkers for craving.
We constructed static functional connectivity networks were constructed for individuals with cocaine addiction. A hierarchical modular partitioning method was used to characterize network integration and segregation, and statistical relationships between network metrics and cocaine craving were analyzed. The results showed that individuals with cocaine addiction characterized by increased integration and decreased segregation processes. Statistically significant correlations were found between cocaine craving and both higher integration and lower segregation components in the right visual cortex. The functional connectivity in higher-order modal brain networks is lower in cocaine-addicted patients compared to healthy controls.A machine learning classification and prediction model was developed using Bayesian optimization algorithms and high-order brain network modalities, revealing that the right visual cortex had the highest feature importance.
We constructed dynamic functional connectivity networks to analyze temporal changes in integration and segregation and their statistical associations with craving. It was found that individuals with cocaine addiction exhibited increased dynamic fluctuations in integration and segregation within the visual system, and greater variability in segregation between the visual and control systems. The integration component and variability in the right cingulate cortex were negatively correlated with craving, suggesting that the control system plays a crucial role in regulating craving. The default mode network (DMN) was found to be important in classification models, and the DMN and control system showed opposite effects in symptom prediction.
We examined changes in brain network features before and after rTMS treatment for cocaine addiction. The results showed that rTMS intervention effectively improved clinical symptoms in individuals with cocaine addiction. A treatment outcome prediction model was developed, identifying the right visual cortex and visual network as key regions in craving prediction. When craving decreased, the static functional connectivity strength between the right lateral posterior prefrontal cortex (part of the control system) and the visual cortex was reduced, and the dynamic functional integration component between the right and left lateral posterior prefrontal cortices was also diminished.
﹀
|
参考文献: |
︿
[1] Poo M, Du J, Ip N Y, et al. China brain project: basic neuroscience, brain diseases, and brain-inspired computing[J]. Neuron, 2016, 92(3): 591-596. [2] Angeles-Valdez D, Rasgado-Toledo J, Issa-Garcia V, et al. The Mexican magnetic resonance imaging dataset of patients with cocaine use disorder: SUDMEX CONN[J]. Scientific data, 2022, 9(1): 133. [3] Volkow N D, Michaelides M, Baler R. The neuroscience of drug reward and addiction[J]. Physiological reviews, 2019, 99(4): 2115-2140. [4] Garnett M F, Miniño A M. Drug Overdose Deaths in the United States, 2003–2023[J]. 2024. [5] Potvin S, Stavro K, Rizkallah É, et al. Cocaine and cognition: a systematic quantitative review[J]. Journal of addiction medicine, 2014, 8(5): 368-376. [6] Fryer Jr R G, Heaton P S, Levitt S D, et al. Measuring crack cocaine and its impact[J]. Economic Inquiry, 2013, 51(3): 1651-1681. [7] Frazer K M, Richards Q, Keith D R. The long-term effects of cocaine use on cognitive functioning: A systematic critical review[J]. Behavioural brain research, 2018, 348: 241-262. [8] Verdejo-Garcia A, Garcia-Fernandez G, Dom G. Cognition and addiction[J]. Dialogues in clinical neuroscience, 2019, 21(3): 281-290. [9] Debanne D, Bialowas A, Rama S. What are the mechanisms for analogue and digital signalling in the brain?[J]. Nature Reviews Neuroscience, 2013, 14(1): 63-69. [10] Hahn G, Ponce-Alvarez A, Deco G, et al. Portraits of communication in neuronal networks[J]. Nature Reviews Neuroscience, 2019, 20(2): 117-127. [11] Yeo B T T, Krienen F M, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. Journal of neurophysiology, 2011. [12] Fan Y, Wang R, Yi C, et al. Hierarchical overlapping modular structure in the human cerebral cortex improves individual identification[J]. Iscience, 2023, 26(5). [13] Lin A, Liu K K L, Bartsch R P, et al. Dynamic network interactions among distinct brain rhythms as a hallmark of physiologic state and function[J]. Communications biology, 2020, 3(1): 197. [14] Sporns O. The human connectome: a complex network[J]. Annals of the new York Academy of Sciences, 2011, 1224(1): 109-125. [15] Ekhtiari H, Tavakoli H, Addolorato G, et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead[J]. Neuroscience & Biobehavioral Reviews, 2019, 104: 118-140. [16] Liu X, Zhao X, Liu T, et al. The effects of repetitive transcranial magnetic stimulation on cue-induced craving in male patients with heroin use disorder[J]. EBioMedicine, 2020, 56. [17] Steele V R, Maxwell A M. Treating cocaine and opioid use disorder with transcranial magnetic stimulation: a path forward[J]. Pharmacology Biochemistry and Behavior, 2021, 209: 173240. [18] Fernandez-Castillo N, Cabana-Dominguez J, Corominas R, et al. Molecular genetics of cocaine use disorders in humans[J]. Molecular psychiatry, 2022, 27(1): 624-639. [19] Kampman K M. The treatment of cocaine use disorder[J]. Science advances, 2019, 5(10): eaax1532. [20] Zilverstand A, Huang A S, Alia-Klein N, et al. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review[J]. Neuron, 2018, 98(5): 886-903. [21] Marhe R, Luijten M, Van De Wetering B J M, et al. Individual differences in anterior cingulate activation associated with attentional bias predict cocaine use after treatment[J]. Neuropsychopharmacology, 2013, 38(6): 1085-1093. [22] McHugh M J, Gu H, Yang Y, et al. Executive control network connectivity strength protects against relapse to cocaine use[J]. Addiction biology, 2017, 22(6): 1790-1801. [23] Geng X, Hu Y, Gu H, et al. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome[J]. Brain, 2017, 140(5): 1513-1524. [24] Garavan H, Brennan K L, Hester R, et al. The neurobiology of successful abstinence[J]. Current opinion in neurobiology, 2013, 23(4): 668-674. [25] Yip S W, Scheinost D, Potenza M N, et al. Connectome-based prediction of cocaine abstinence[J]. American Journal of Psychiatry, 2019, 176(2): 156-164. [26] Dichio V, Fallani F D V. Statistical models of complex brain networks: a maximum entropy approach[J]. Reports on progress in physics, 2023, 86(10): 102601. [27] Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks[J]. Nature reviews neuroscience, 2018, 19(1): 17-33. [28] Bansal K, Nakuci J, Muldoon S F. Personalized brain network models for assessing structure–function relationships[J]. Current Opinion in Neurobiology, 2018, 52: 42-47. [29] Friston K J. Functional and effective connectivity: a review[J]. Brain connectivity, 2011, 1(1): 13-36. [30] Chung M K, Huang S G, Songdechakraiwut T, et al. Statistical analysis of dynamic functional brain networks in twins[J]. arXiv preprint arXiv:1911.02731, 2019. [31] De Schipper L J, Hafkemeijer A, Van der Grond J, et al. Altered whole-brain and network-based functional connectivity in Parkinson's disease[J]. Frontiers in neurology, 2018, 9: 419. [32] Kim J, Yoon S, Lee S, et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms[J]. Nature communications, 2020, 11(1): 1898. [33] Zhai T, Salmeron B J, Gu H, et al. Functional connectivity of dorsolateral prefrontal cortex predicts cocaine relapse: Implications for neuromodulation treatment[J]. Brain Communications, 2021, 3(2): fcab120. [34] Duan J, Xia M, Womer F Y, et al. Dynamic changes of functional segregation and integration in vulnerability and resilience to schizophrenia[J]. Human Brain Mapping, 2019, 40(7): 2200-2211. [35] Battiston F, Nicosia V, Chavez M, et al. Multilayer motif analysis of brain networks[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, 27(4). [36] Wang R, Su X, Chang Z, et al. Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(4): 1835-1846. [37] Wang R, Liu M, Cheng X, et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities[J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2022288118. [38] Wang R, Zhen S, Zhou C, et al. Acute stress promotes brain network integration and reduces state transition variability[J]. Proceedings of the National Academy of Sciences, 2022, 119(24): e2204144119. [39] Chang Z, Wang X, Wu Y, et al. Segregation, integration and balance in resting‐state brain functional networks associated with bipolar disorder symptoms[J]. Human Brain Mapping, 2023, 44(2): 599-611. [40] Wang X, Chang Z, Wang R. Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia[J]. Communications Biology, 2023, 6(1): 279. [41] Mikellides G, Michael P, Tantele M. Repetitive transcranial magnetic stimulation: an innovative medical therapy[J]. Psychiatriki, 2021, 32(1): 67-74. [42] Brighina F, Cosentino G, Fierro B. Brain stimulation in migraine[J]. Handbook of clinical neurology, 2013, 116: 585-598. [43] Beynel L, Powers J P, Appelbaum L G. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: a systematic review[J]. Neuroimage, 2020, 211: 116596. [44] Gao F, Wang S, Guo Y, et al. Protective effects of repetitive transcranial magnetic stimulation in a rat model of transient cerebral ischaemia: a microPET study[J]. European journal of nuclear medicine and molecular imaging, 2010, 37: 954-961. [45] Kim S K, Lee G Y, Kim S K, et al. Protective effects of repetitive transcranial magnetic stimulation against streptozotocin-induced Alzheimer’s disease[J]. Molecular Neurobiology, 2024, 61(3): 1687-1703. [46] Wen N, Chen L, Miao X, et al. Effects of high-frequency rTMS on negative symptoms and cognitive function in hospitalized patients with chronic schizophrenia: a double-blind, sham-controlled pilot trial[J]. Frontiers in Psychiatry, 2021, 12: 736094. [47] Walton D, Spencer D C, Nevitt S J, et al. Transcranial magnetic stimulation for the treatment of epilepsy[J]. Cochrane Database of Systematic Reviews, 2021 (4). [48] Jiang S, Zhan C, He P, et al. Neuronavigated repetitive transcranial magnetic stimulation improves depression, anxiety and motor symptoms in Parkinson’s disease[J]. Heliyon, 2023, 9(8). [49] Martinotti G, Pettorruso M, Montemitro C, et al. Repetitive transcranial magnetic stimulation in treatment-seeking subjects with cocaine use disorder: a randomized, double-blind, sham-controlled trial[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 116: 110513. [50] Rossini P M, Barker A T, Berardelli A, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee[J]. Electroencephalography and clinical neurophysiology, 1994, 91(2): 79-92. [51] Trapp N T, Bruss J, Johnson M K, et al. Reliability of targeting methods in TMS for depression: Beam F3 vs. 5.5 cm[J]. Brain stimulation, 2020, 13(3): 578-581. [52] 王荣, 常昭, 王欣蕊. 基于分层模块的脑分离与整合平衡状态判定方法[P]. 中国专利: CN112472063A,2021-03-12. [53] Woisard K, Steinberg J L, Ma L, et al. Executive control network resting state fMRI functional and effective connectivity and delay discounting in cocaine dependent subjects compared to healthy controls[J]. Frontiers in Psychiatry, 2023, 14: 1117817. [54] Konova A B. Value and Risk Processing in Cocaine Addiction: Relationship to Brain Function, Structure, and Connectivity[D]. State University of New York at Stony Brook, 2014. [55] Zhang S, Wang W, Zhornitsky S, et al. Resting state functional connectivity of the lateral and medial hypothalamus in cocaine dependence: an exploratory study[J]. Frontiers in Psychiatry, 2018, 9: 344. [56] Lench Daniel H, DeVries William, Hanlon Colleen A. The effect of task difficulty on motor performance and frontal-striatal connectivity in cocaine users[J]. Drug and Alcohol Dependence, 2017, 173: 178-184. [57] Lichenstein S D, Scheinost D, Potenza M N, et al. Dissociable neural substrates of opioid and cocaine use identified via connectome-based modelling[J]. Molecular psychiatry, 2021, 26(8): 4383-4393. [58] Wang B, Yuan Y, Yang L, et al. Multi-hierarchy Network Configuration Can Predict Brain States and Performance[J]. Journal of Cognitive Neuroscience, 2024, 36(8): 1695-1714. [59] Mete M, Sakoglu U, Spence J S, et al. Successful classification of cocaine dependence using brain imaging: a generalizable machine learning approach[J]. BMC bioinformatics, 2016, 17: 49-61 [60] Jiménez S, Angeles-Valdez D, Villicaña V, et al. Identifying cognitive deficits in cocaine dependence using standard tests and machine learning[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95: 109709. [61] Xu H, Xu C, Guo Y, et al. Abnormal neuroanatomical patterns as potential diagnostic biomarkers for cocaine use disorder[J]. Addiction Biology, 2023, 28(11): e13348. [62] Wiers C E, Zhao J, Manza P, et al. Conscious and unconscious brain responses to food and cocaine cues[J]. Brain Imaging and Behavior, 2021, 15: 311-319. [63] Taebi A, Becker B, Klugah‐Brown B, et al. Shared network‐level functional alterations across substance use disorders: A multi‐level kernel density meta‐analysis of resting‐state functional connectivity studies[J]. Addiction Biology, 2022, 27(4): e13200. [64] Chirokoff V, Pohl K M, Berthoz S, et al. Multi‐level prediction of substance use: Interaction of white matter integrity, resting‐state connectivity and inhibitory control measured repeatedly in every‐day life[J]. Addiction biology, 2024, 29(5): e13400. [65] Suchting R, Vincent J N, Lane S D, et al. Using a data science approach to predict cocaine use frequency from depressive symptoms[J]. Drug and alcohol dependence, 2019, 194: 310-317. [66] Volkow N D, Wang G J, Fowler J S, et al. Addiction: beyond dopamine reward circuitry[J]. Proceedings of the National Academy of Sciences, 2011, 108(37): 15037-15042. [67] Klugah-Brown B, Yao X, Yang H, et al. Altered Dynamics and Characterization of Functional Networks in Cocaine Use Disorder: A Coactivation Pattern Analysis of Resting-State fMRI data[J]. medRxiv, 2024: 2024.06. 18.24309063. [68] Hutchison R M, Womelsdorf T, Allen E A, et al. Dynamic functional connectivity: promise, issues, and interpretations[J]. Neuroimage, 2013, 80: 360-378. [69] Laumann T O, Snyder A Z, Gratton C. Challenges in the measurement and interpretation of dynamic functional connectivity[J]. Imaging Neuroscience, 2024, 2: 1-19. [70] Sakoglu U, Mete M, Esquivel J, et al. Classification of cocaine‐dependent participants with dynamic functional connectivity from functional magnetic resonance imaging data[J]. Journal of neuroscience research, 2019, 97(7): 790-803. [71] Goldstein R Z, Bechara A, Garavan H, et al. The neurocircuitry of impaired insight in drug addiction[J]. Trends in cognitive sciences, 2009, 13(9): 372-380. [72] Liu J, Liang J, Qin W, et al. Dysfunctional connectivity patterns in chronic heroin users: an fMRI study[J]. Neuroscience letters, 2009, 460(1): 72-77. [73] Ricard J A, Labache L, Segal A, et al. A shared spatial topography links the functional connectome correlates of cocaine use disorder and dopamine D2/3 receptor densities[J]. Communications Biology, 2024, 7(1): 1178. [74] Cong Z, Yang L, Zhao Z, et al. Disrupted dynamic brain functional connectivity in male cocaine use disorder: Hyperconnectivity, strongly-connected state tendency, and links to impulsivity and borderline traits[J]. Journal of Psychiatric Research, 2024, 176: 218-231. [75] Maracic C E, Moeller S J. Neural and behavioral correlates of impaired insight and self-awareness in substance use disorder[J]. Current behavioral neuroscience reports, 2021: 1-11. [76] Fedota J R, Stein E A. Resting‐state functional connectivity and nicotine addiction: prospects for biomarker development[J]. Annals of the new York Academy of Sciences, 2015, 1349(1): 64-82. [77] Terraneo A, Leggio L, Saladini M, et al. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: a pilot study[J]. European Neuropsychopharmacology, 2016, 26(1): 37-44. [78] Garza-Villarreal E A, Alcala-Lozano R, Fernandez-Lozano S, et al. Clinical and functional connectivity outcomes of 5-Hz repetitive transcranial magnetic stimulation as an add-on treatment in cocaine use disorder: a double-blind randomized controlled trial[J]. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6(7): 745-757. [79] Webber H E, Hong L E, Quevedo J, et al. Transcranial magnetic stimulation of dorsomedial prefrontal cortex for cocaine use disorder: A pilot study[J]. medRxiv, 2024: 2024.09. 16.24313754. [80] Ghazi N, Garza-Villarreal E A, Soltanian-Zadeh H. Brain Connectomics Markers for Response Prediction to Transcranial Magnetic Stimulation in Cocaine Use Disorder[J]. 2024. [81] Zhao K, Fonzo G A, Xie H, et al. A generalizable functional connectivity signature characterizes brain dysfunction and links to rTMS treatment response in cocaine use disorder[J]. medRxiv, 2023. [82] Bolloni C, Badas P, Corona G, et al. Transcranial magnetic stimulation for the treatment of cocaine addiction: evidence to date[J]. Substance abuse and rehabilitation, 2018: 11-21. [83] Amerio A, Baccino C, Breda G S, et al. Effects of transcranial magnetic stimulation on cocaine addiction: A systematic review of randomized controlled trials[J]. Psychiatry research, 2023, 329: 115491. [84] Angeles-Valdez D, Rasgado-Toledo J, Villicaña V, et al. The Mexican dataset of a repetitive transcranial magnetic stimulation clinical trial on cocaine use disorder patients: SUDMEX TMS[J]. Scientific Data, 2024, 11(1): 408. [85] Madeo G, Terraneo A, Cardullo S, et al. Long-term outcome of repetitive transcranial magnetic stimulation in a large cohort of patients with cocaine-use disorder: an observational study[J]. Frontiers in psychiatry, 2020, 11: 158. [86] Zhao K, Fonzo G A, Xie H, et al. Discriminative functional connectivity signature of cocaine use disorder links to rTMS treatment response[J]. Nature Mental Health, 2024, 2(4): 388-400. [87] Torres-Castano A, Rivero-Santana A, Perestelo-Perez L, et al. Transcranial magnetic stimulation for the treatment of cocaine addiction: A systematic review[J]. Journal of clinical medicine, 2021, 10(23): 5595. [88] Mehta D D, Praecht A, Ward H B, et al. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders[J]. Neuropsychopharmacology, 2024, 49(4): 649-680. [89] Zhao D, Zeng N, Zhang H B, et al. Deep magnetic stimulation targeting the medial prefrontal and anterior cingulate cortices for methamphetamine use disorder: a randomised, double-blind, sham-controlled study[J]. General Psychiatry, 2023, 36(5): e101149.
﹀
|
中图分类号: |
R749.6
|
开放日期: |
2025-06-19
|