- 无标题文档
查看论文信息

论文中文题名:

 REBCO高温超导线圈损耗性能的影响规律研究    

姓名:

 陈甜甜    

学号:

 20206227126    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 超导电力技术    

第一导师姓名:

 张玉峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-13    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on the Influence Law of Loss Performance of REBCO High Temperature Superconducting Coil    

论文中文关键词:

 高温超导线圈 ; 电气性能 ; 临界电流 ; 交流损耗 ; 运行工况 ; 线圈结构    

论文外文关键词:

 High temperature superconductor (HTS) coil ; Electrical properties ; Critical current ; AC loss ; Operating conditions ; Coil structure    

论文中文摘要:

高温超导线圈的临界电流和交流损耗是衡量电气性能的主要参量。其中,感生磁场中的磁通线会受到钉扎势的作用,产生电磁能量损耗,即交流损耗。高温超导线圈的交流损耗所产生的热负荷不仅会增加运行成本,还会使高温超导线圈的局部温度升高。当高温超导线圈中同时存在交流背景磁场和交流传输电流时,其电磁特性更加复杂。为明确不同运行工况下高温超导线圈电气性能的影响因素和变化规律,本课题以REBCO(REBa2Cu3Ox,RE=Y,Gd等稀土元素)高温超导线圈为研究对象,对高温超导线圈的临界电流、交流损耗和载流特性进行研究分析。

首先,结合当前的研究现状和实际的工程需求,针对不同运行工况下高温超导线圈电气特性的影响因素展开了详细分析,总结了REBCO高温超导带材的基本结构与特性。基于高温超导带材临界电流特性的自洽模型,得到了一个评估高温超导线圈的临界电流的稳态模型,进而构建了REBCO高温超导线圈临界电流的仿真模型,获得了高温超导线圈的临界电流值。

其次,以圆形高温超导线圈为研究对象,基于H公式,构建了二维轴对称下高温超导线圈的多层数值模型。针对四种最典型的传输电流波形:正弦波、方波、锯齿波和三角波,研究了传输电流波形及幅值对传输损耗的影响。通过改变线圈的三种典型结构参数:线圈匝数、线圈半径和线圈匝间间距,得到了线圈的三种结构参数与传输损耗的依赖性关系。基于高温超导线圈的二维轴对称下多层数值模型,构建了高温超导线圈的三种典型运行工况,通过改变线圈匝数,得到了高温超导线圈被磁场穿透的范围大小以及交流损耗的变化规律。

最后,阐述了高温超导线圈接头处的带材连接方式和绝缘形式以及线圈设计参数,搭建了高温超导线圈的临界电流和交流损耗的实验平台。通过对比临界电流和传输损耗的仿真计算值与实验测试值,验证了高温超导线圈仿真模型的合理性与准确性。总结高温超导线圈的电气性能,为线圈的工程实现及其电气性能的深入研究提供了一定的参考依据。

论文外文摘要:

The critical current and AC loss of high temperature superconducting (HTS) coil are the main parameters to measure the electrical performance. The magnetic flux lines in the induced magnetic field will be affected by the pinning force, resulting in electromagnetic energy loss, that is, AC loss. The thermal load caused by AC loss of HTS coil will not only increase the cost of operation, but also increase the local temperature of HTS coil. The electromagnetic characteristics of HTS coil are more complicated when there are both AC background magnetic field and AC transmission current. The critical current, AC loss and current-carrying characteristics of the REBCO ( REBa2Cu3Ox, RE=Y, Gd, and other rare earth elements) HTS coil are studied in this paper to clarify the influencing factors and changing rules of the electrical performance of the HTS coil under different operating conditions.

Firstly, in combination with the current state of research and actual technical requirements, the factors affecting the electrical characteristics of HTS coils under different operating conditions are analyzed in detail. In addition, the base structure and features of the REBCO HTS tape are summarized. A steady-state model for evaluating the critical current of HTS coil is introduced based on the self-consistent model of the critical current characteristics of HTS tape. Then, a simulation model of the critical current of REBCO HTS coil is constructed to obtain the critical current value of HTS coil.

Secondly, on the basis of the H formulation, a multilayer HTS circular coil numerical model with two-dimensional axial symmetry is constructed. The influence of the transmission current amplitude and waveform on the transmission loss is studied for four typical transmission current waveforms: sinusoidal wave, square wave, sawtooth wave and triangular wave. The dependence of three typical structural parameters of the coil on transmission loss is analyzed in detail by changing the coil radius, the number of coil turns and the inter-turn spacing of coil. Three typical operating conditions of the HTS coil are built on the basis of the two-dimensional axisymmetrical multi-layered numerical model of the HTS coil. By changing the number of coil turns, the range of HTS coil penetrated by magnetic field and the variation law of AC loss are analyzed.

Finally, the tape connection mode, the insulation form and the coil design parameters at the junction of the HTS coil are expounded. The experimental platform for critical current and AC loss of HTS coil is built. The rationality and accuracy of the simulation model of HTS coil are verified by comparing the simulated values of critical current and transmission loss with the experimental values. The electrical properties of HTS coil are summarized, which provides some reference for the engineering realization of coil and the in-depth study of its electrical properties.

参考文献:

[1] Onnes H K. Further experiments with Liquid Helium G. On the electrical resistance of Pure Metals etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears[M]. Koninklijke Nederlandse Akademie Van Wetenschappen Proceedings, 1991, 14(2): 386-7.

[2] 赖凌峰. 高温超导线圈稳定性研究[D]. 北京: 清华大学, 2015.

[3] 张鹏. 轨道交通初级超导型直线感应电机设计与性能分析[D]. 北京: 北京交通大学, 2020.

[4] You S, Miyagi D, Badcock R A, et al. Experimental and numerical study on AC loss reduction in a REBCO coil assembly by applying high saturation field powder-core flux diverters[J]. Cryogenics, 2022, 124: 103466.

[5] Xu X, Huang Z, Huang X, et al. A method to predict AC loss on HTS coils of a 30-kW generator using the TA formulation[J]. Physica C: Superconductivity and its Applications, 2021, 591: 1353973.

[6] Zhou X, Zou S, Chen W, et al. Conceptual Design, AC Loss Calculation, and Optimization of an Airborne Fully High Temperature Superconducting Generator[J]. Physica C: Superconductivity and its Applications, 2023: 1354207.

[7] 张喜泽, 宗曦华, 黄逸佳. 上海公里级超导电缆的设计研究[J]. 低温与超导, 2022, 50(06): 35-41.

[8] 王健, 宋云涛, 郑金星. 结构参数对高温超导CICC电缆交流损耗影响的研究[J]. 核聚变与等离子体物理, 2022, 42(03): 322-326.

[9] Zong X H, Han Y W, Huang C Q. Introduction of 35-kV kilometer-scale high-temperature superconducting cable demonstration project in Shanghai[J]. Superconductivity, 2022, 2: 100008.

[10] Zhang H, Machura P, Kails K, et al. Dynamic loss and magnetization loss of HTS coated conductors, stacks, and coils for high-speed synchronous machines[J]. Superconductor Science and Technology, 2020, 33(8): 084008.

[11] Zhang H, Wen Z, Grilli F, et al. Alternating current loss of superconductors applied to superconducting electrical machines[J]. Energies, 2021, 14(8): 2234.

[12] 宁新福, 程明, 朱新凯, 等. 双定子场调制超导电机超导磁体电磁特性的分析与计算[J]. 中国电机工程学报, 2022, 42(16): 9.

[13] Yazdani-Asrami M, Sadeghi A, Seyyedbarzegar S, et al. Role of Insulation Materials and Cryogenic Coolants on Fault Performance of MW-Scale Fault-Tolerant Current-Limiting Superconducting Transformers[J]. IEEE Transactions on Applied Superconductivity, 2022, 33(1): 1-15.

[14] 巴奉丽, 王艳萍, 万隆, 等. 基于超导脉冲变压器的两级XRAM电路实验[J]. 低温与超导, 2021, 49(10): 6.

[15] Yazdani-Asrami M, Gholamian S A, Mirimani S M, et al. Influence of field-dependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads[J]. Cryogenics, 2021, 113: 103234.

[16] 鞠鹏飞. 直流冲击下的电阻型超导直流限流器磁体单元热稳定性研究[D]. 北京: 北京交通大学, 2021.

[17] 诸嘉慧, 韦德福, 王帅, 等.磁偏置超导故障限流器限流响应模型与并网运行研究[J].电力自动化设备, 2021, 41(11): 167-173.

[18] Song W, Pei X, Xi J, et al. A novel helical superconducting fault current limiter for electric propulsion aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 7(1): 276-286.

[19] Jiang Z, Song H, Song W, et al. Optimizing coil configurations for AC loss reduction in REBCO HTS fast-ramping magnets at cryogenic temperatures[J]. Superconductivity, 2022, 3: 100024.

[20] Chen W, Jin R, Wang S, et al. The effect of flux diverters on the AC loss of REBCO coil coupled with iron core[J]. Cryogenics, 2022, 128: 103573.

[21] Li W, Zhang W, Fang J, et al. Design, manufacture and performance evaluation of HTS electromagnet wound by YBCO tape[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 1-4.

[22] Hao L, Huang Z, Dong F, et al. Study on electrodynamic suspension system with high-temperature superconducting magnets for a high-speed maglev train[J]. IEEE Transactions on Applied Superconductivity, 2018, 29(2): 1-5.

[23] Zhang H, Wen Z, Grilli F, et al. Alternating current loss of superconductors applied to superconducting electrical machines[J]. Energies, 2021, 14(8): 2234.

[24] Zhu K, Guo S, Ren L, et al. AC loss measurement of HTS coil under periodic current[J]. Physica C: Superconductivity and its applications, 2020, 569: 1353562.

[25] Niu M, Yong H, Xia J, et al. The effects of ferromagnetic disks on AC losses in HTS pancake coils with nonmagnetic and magnetic substrates[J]. Journal of Superconductivity and Novel Magnetism, 2019, 32: 499-510.

[26] Wang M, Zhang M, Song M, et al. An effective way to reduce AC loss of second-generation high temperature superconductors[J]. Superconductor Science and Technology, 2018, 32(1): 01LT01.

[27] Zermeño V, Sirois F, Takayasu M, et al. A self-consistent model for estimating the critical current of superconducting devices[J]. Superconductor Science and Technology, 2015, 28(8): 085004.

[28] Hu D, Ainslie M D, Raine M J, et al. Modeling and comparison of in-field critical current density anisotropy in high-temperature superconducting (HTS) coated conductors[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 1-6.

[29] Liu Y, Ou J, Grilli F, et al. Comparison of 2D simulation models to estimate the critical current of a coated superconducting coil[J]. Superconductor Science and Technology, 2018, 32(1): 014001.

[30] Jiang Z, Endo N, Wimbush S C, et al. Exploiting asymmetric wire critical current for the reduction of AC loss in HTS coil windings[J]. Journal of Physics Communications, 2019, 3(9): 095017.

[31] Feng Y J, Chen X Y, Chen Y, et al. Numerical calculation and experimental verification of inductance and critical current characteristics in a solenoidal SMES magnet[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5.

[32] Yazdani-Asrami M, Gholamian S A, Mirimani S M, et al. Influence of field-dependent critical current on harmonic AC loss analysis in HTS coils for superconducting transformers supplying non-linear loads[J]. Cryogenics, 2021, 113: 103234.

[33] Nickel D S, Fietz W H, Weiss K P, et al. Impact of bending on the critical current of HTS crossconductors[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-4.

[34] Pan Y, Guan M. Characterization of multi-field behaviors on fatigue damage due to high cyclic loading in YBCO-coated conductors fabricated by the IBAD-PLD technology[J]. Journal of Low Temperature Physics, 2022, 207(1-2): 97-114.

[35] 张华辉, 慈璐, 刘华军, 等. Bi-2223/Ag高温超导带材临界电流实验研究[J]. 低温与超导, 2016, 44(8): 4.

[36] 韩正男. 高温超导电枢绕组电机关键技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

[37] 陈志越, 韩云武, 黄逸佳. 升流速率对超导带材临界电流测试的影响[J]. 低温与超导, 2018, 46(5): 46-50.

[38] 贾冬雨, 方乐乐, 方进, 等. 直流背场下高温超导带材临界电流及n值的分析[J]. 低温与超导, 2019, 47(12): 37-40, 56.

[39] 黑颖顿, 徐斌斌, 赖凌峰, 等. 高温超导带材临界电流角度依赖性测量分析[J]. 低温与超导, 2019, 47(10): 30-34.

[40] 张妍, 诸嘉慧, 陈盼盼, 等. 0~3.5_T直流背景磁场下第二代高温超导带材临界电流各向异性测试与分析[J]. 电工电能新技术, 2020, 39(7): 24-29.

[41] 袁茜. 类比特高温超导磁体电磁特性及其励磁技术研究[D]. 北京: 华北电力大学, 2021.

[42] 陈洁. 旋转式磁通泵励磁的高温超导无绝缘磁体研究[D]. 北京: 北京交通大学, 2021.

[43] Xia J, Bai H, Lu J, et al. Electromagnetic modeling of REBCO high field coils by the H-formulation[J]. Superconductor Science and Technology, 2015, 28(12): 125004.

[44] Pardo E. Modeling of screening currents in coated conductor magnets containing up to 40000 turns[J]. Superconductor Science and Technology, 2016, 29(8): 085004.

[45] Gömöry F, Sheng J. Two methods of AC loss calculation in numerical modelling of superconducting coils[J]. Superconductor Science and Technology, 2017, 30(6): 064005.

[46] Yazdani-Asrami M, Gholamian S A, Mirimani S M, et al. Calculation of AC magnetizing loss of ReBCO superconducting tapes subjected to applied distorted magnetic fields[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31: 3875-3888.

[47] De Marzi G, Iannone G, Gambardella U. Magnetic losses of commercial REBCO coated conductors in the low frequency range[J]. Superconductor Science and Technology, 2018, 31(5): 055011.

[48] Shen B, Li C, Geng J, et al. Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields[J]. Superconductor Science and Technology, 2018, 31(7): 075005.

[49] Shen B, Li C, Geng J, et al. Power dissipation in HTS coated conductor coils under the simultaneous action of AC and DC currents and fields[J]. Superconductor Science and Technology, 2018, 31(7): 075005.

[50] Shen B, Grilli F, Coombs T. Overview of H-formulation: A versatile tool for modeling electromagnetics in high-temperature superconductor applications[J]. IEEE access, 2020, 8: 100403-100414.

[51] Machura P, Zhang H, Kails K, et al. Loss characteristics of superconducting pancake, solenoid and spiral coils for wireless power transfer[J]. Superconductor Science and Technology, 2020, 33(7): 074008.

[52] Inanir F, Terzioglu R. AC loss evaluation of a superconducting pancake coil with coated conductors using an extended AV formulation[J]. Physica C: Superconductivity and its Applications, 2021, 587: 1353910.

[53] Kumar A, PraveenKumar S, Agrawal A, et al. Alternating current losses in superconducting circular/stacked coils used in energy storage systems[J]. Journal of Energy Storage, 2022, 45: 103721.

[54] Gömöry F. Probability of Premature Quenching of HTS Coil Due to Local Reduction of Critical Current[J]. IEEE Transactions on Applied Superconductivity, 2022, 32(6): 1-5.

[55] 方乐乐. 高温超导带材的交流损耗特性研究[D]. 北京: 北京交通大学, 2019.

[56] 宋文娟. 高温超导复合导体及超导线圈的交流损耗研究[D]. 北京: 北京交通大学, 2019.

[57] 张鹏. 轨道交通初级超导型直线感应电机设计与性能分析[D]. 北京: 北京交通大学, 2020.

[58] 王骁磊. YBCO超导带材接头的综合性能及其影响因素研究[D]. 北京: 北京交通大学, 2021.

[59] 鲁燕青. 无绝缘高温超导线圈磁场稳定性研究[D]. 北京: 华北电力大学, 2020.

[60] 孟奕然. 准各向同性高温超导股线的交流损耗研究[D]. 北京: 华北电力大学, 2021.

[61] 康强强. 面向超导限流变压器的一种超导导体及其电磁特性研究[D]. 北京: 华北电力大学, 2021.

[62] 王壮. 高温超导YBCO带材, 线圈及磁体的交流损耗特性研究[D]. 武汉: 华中科技大学, 2017.

[63] 张中平. 高温超导磁体的交流损耗快速评估方法研究[D]. 武汉: 华中科技大学, 2019.

[64] 王磊. 大型高温超导线圈交流损耗计算中的多尺度模型方法[D]. 合肥: 中国科学技术大学, 2019.

[65] 刘东辉. 高温超导线圈的热稳定性及力学行为的定量研究[D]. 兰州: 兰州大学, 2019.

[66] 唐春州. 高温超导线圈交流损耗实验研究[D]. 天津: 天津大学, 2020.

[67] 王赛, 李震梅, 吴昊, 等. 超导变压器YBCO线圈轴向错位对交流损耗影响[J]. 低温与超导, 2022, 50(2): 36-41.

[68] Shin H S, Dedicatoria M J. Variation of the strain effect on the critical current due to external lamination in REBCO coated conductors[J]. Superconductor Science and Technology, 2012, 25(5): 054013.

[69] Shin H S, Kim K H, Dizon J R C, et al. The strain effect on critical current in YBCO coated conductors with different stabilizing layers[J]. Superconductor Science and Technology, 2005, 18(12): S364.

[70] Shin H S, Dedicatoria M J. Intrinsic strain effect on critical current in Cu-stabilized GdBCO coated conductor tapes with different substrates[J]. Superconductor Science and Technology, 2013, 26(5): 055005.

[71] Li L, Ni Z, Cheng J, et al. Effect of pretension, support condition, and cool down on mechanical disturbance of superconducting coils[J]. IEEE transactions on applied superconductivity, 2012, 22(2): 3800104-3800104.

[72] Wang L, Wang Q, Li L, et al. The effect of winding conditions on the stress distribution in a 10.7 T REBCO insert for the 25.7 T superconducting magnet[J]. IEEE Transactions on Applied Superconductivity, 2017, 28(3): 1-5.

[73] Zhou J., Dai Y., Wang Q., et al. FEM analysis of stress for YBCO high field insert coils [J]. Cryogenics & Superconductivity, 2016, 44(8): 37-41.

[74] Al Amin A, Baig T, Deissler R J, et al. A multiscale and multiphysics model of strain development in a 1.5 T MRI magnet designed with 36 filament composite MgB2 superconducting wire[J]. Superconductor Science and Technology, 2016, 29(5): 055008.

[75] Al Amin A, Sabri L, Poole C, et al. Computational homogenization of the elastic and thermal properties of superconducting composite MgB2 wire[J]. Composite Structures, 2018, 188: 313-329.

[76] Al Amin A. Multiscale Multiphysics Thermo-Mechanical Modeling of an Mgb 2 Based Conduction Cooled Mri Magnet System[M]. Case Western Reserve University, 2018.

[77] 张炜薇. 超导体的热稳定性及其力学响应研究[D]. 兰州: 兰州大学, 2020.

[78] Gygi F, Schlüter M. Self-consistent electronic structure of a vortex line in a type-II superconductor[J]. Physical Review B, 1991, 43(10): 7609.

[79] Farquhar G, Baumli K, Marinho Z, et al. Self-consistent models and values[J]. Advances in Neural Information Processing Systems, 2021, 34: 1111-1125.

[80] Virtanen P, Braggio A, Giazotto F. Superconducting size effect in thin films under electric field: Mean-field self-consistent model[J]. Physical Review B, 2019, 100(22): 224506.

[81] Zhao A, Huang Z, Zhu B, et al. Fast algorithm for evaluating critical current of high-temperature superconducting pancake coil[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31: 307-312.

[82] Reimann T, Muehlbauer S, Schulz M, et al. Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor[J]. Nature communications, 2015, 6(1): 8813.

[83] Kiss T, Okamoto H. Anisotropic current transport properties and their scaling in multifilamentry Bi-2223 Ag-sheathed tapes[J]. IEEE transactions on applied superconductivity, 2001, 11(1): 3900-3903.

[84] Prigozhin L. Analysis of critical-state problems in type-II superconductivity[J]. IEEE Transactions on Applied Superconductivity, 1997, 7(4): 3866-3873.

[85] Grilli F, Brambilla R, Sirois F, et al. Development of a three-dimensional finite-element model for high-temperature superconductors based on the H-formulation[J]. Cryogenics, 2013, 53: 142-147.

[86] Zhang Y, Su T, Guo Q, et al. Dependence of AC transport loss of HTS-coated conductor on current parameters in the frequency range under 1MHz[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34: 2271-2280.

[87] Zhou Q, Guo Q, Su T, et al. Comparative study on loss characteristics of high-temperature superconducting coils under low magnetic field[J]. Journal of Superconductivity and Novel Magnetism, 2021, 34(9): 2301-2311. 

中图分类号:

 TM26    

开放日期:

 2023-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式