- 无标题文档
查看论文信息

论文中文题名:

 一种串联补偿反激式PFC变换器的研究与设计    

姓名:

 权兵    

学号:

 18206204076    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 电力电子    

第一导师姓名:

 岳改丽    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-20    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research and Design of a Series Compensated Flyback PFC Converter    

论文中文关键词:

 功率因数校正 ; 反激变换器 ; 二倍工频纹波 ; 串联补偿    

论文外文关键词:

 Power Factor Correction ; Flyback Converter ; Ripple at Double Line Frequency ; Series Compensation    

论文中文摘要:

为了消除电网谐波污染、提高功率因数,需要在电子设备的输入端增加功率因数校正(Power Factor Correction,PFC)变换器。由于脉动的瞬态输入功率与恒定输出功率之间的不平衡,PFC变换器的输出电压/电流含有较大的二倍工频纹波,且PFC变换器的动态响应速度较慢,对于突变的负载不能及时调整输出电压/电流。针对以上问题本文设计了一种串联补偿反激式PFC变换器。

论文对串联补偿反激式PFC变换器的工作原理、电路特性和控制策略进行了研究。首先分析了变换器的功率因数校正机理,推导出实现单位功率因数时占空比的变化关系;通过建立变换器的能量传输等效模型,对比分析了本文研究的变换器与单级PFC变换器和两级级联PFC变换器三者的效率,理论分析表明本文研究的变换器效率介于两极和单极变换器效率之间;然后推导出了输出端二倍工频纹波电压峰峰值的表达式,从而得到了变换器实现输出电压低纹波的条件。为了获得更好的纹波补偿效果,采用状态空间平均法建立了Buck RCC小信号模型,由此得出功率级传递函数,并根据开环传递函数进行了补偿网络的设计;最后以双输出反激PFC变换器为基础,通过在其输出端引入Buck纹波补偿电路(Ripple Cancellation Circuit, RCC),设计了反激主电路、Buck补偿电路、开关驱动电路和保护电路等功率电路和基于NCP1652的控制电路。

为验证理论分析及参数设计的正确性,搭建了一台85W的实验样机。实验结果表明,本文研究的串联补偿反激式PFC变换器具有高功率因数的同时,不仅可以实现输出电压低纹波,且具有快速动态响应速度和较高的效率。

论文外文摘要:

In order to eliminate the harmonic pollution of the power grid and improve the power factor, it is necessary to add a power factor correction (PFC) converter at the input end of the electronic device. Due to the imbalance between the pulsating transient input power and the constant output power, the output voltage/current of the PFC converter contains a large double power frequency ripple, and the dynamic response speed of the PFC converter is slow. The load cannot adjust the output voltage/current in time. Aiming at the above problems, this paper designs a series-compensated flyback PFC converter.

The paper studies the working principle, circuit characteristics and control strategy of the series-compensated flyback PFC converter. Firstly, the power factor correction mechanism of the converter is analyzed, and the relationship of the duty cycle change when the unit power factor is realized is deduced. By establishing the equivalent energy transmission model of the converter, the converter and the single-stage PFC converter studied in this paper are compared and analyzed. The theoretical analysis shows that the efficiency of the converter studied in this paper is between the efficiency of two-pole and single-pole converters; and then the peak-to-peak value of the double power frequency ripple voltage at the output is derived. Expression, thereby obtaining the conditions for the converter to achieve low ripple in the output voltage. In order to get a better ripple compensation effect, the Buck RCC small signal model is established by using the state space averaging method, and the power stage transfer function is obtained from this, and the compensation network is designed according to the open loop transfer function; Finally, based on the dual-output flyback PFC converter, through the introduction of Buck ripple compensation circuit (Ripple Cancellation Circuit, RCC) at its output, the flyback main circuit, Buck compensation circuit, switch drive circuit and protection circuit are designed. Circuit and control circuit based on NCP1652.

In order to verify the correctness of the theoretical analysis and parameter design, an 85W experimental prototype was built. The experimental results show that the series-compensated flyback PFC converter studied in this paper has a high power factor, and not only achieving low output voltage ripple, but also has a fast dynamic response speed.

参考文献:

[1]阎铁生. 高功率因数低输出纹波PFC变换器研究[D]. 成都:西南交通大学, 2015.

[2]赵大地. 一种高功率因数两级AC-DC变换器的设计[D]. 南京:东南大学, 2019.

[3]Sanjaya Maniktala著, 王健强等译. 精通开关电源设计[M]. 北京:人民邮电出版社, 2015:383-384.

[4]黄秀玲, 林国庆, 苏锦文. 一种高功率因数低纹波LED驱动电源的研究[J]. 电源学报, 2020, 19(01):69-74.

[5]刘桂花. 无桥PFC拓扑结构及控制策略研究[D]. 哈尔滨:哈尔滨工业大学, 2009.

[6]张晓菲. 150W无电解电容LED驱动电源的设计[D]. 杭州:杭州电子科技大学, 2013.

[7]喻寿益, 杨柳, 陈宁, 桂卫华. Boost型电路双闭环功率因数校正控制策略[J]. 控制工程, 2013, 20(01):18-21.

[8]吴欣瑞. 一种恒流/恒压输出AC-DC控制器设计[D]. 西安:西安电子科技大学, 2019.

[9]徐瑞东, 徐善玉, 闫超前, 李涛. 一种新型单开关直流高增益变换器[J]. 电力电子技术, 2017, 51(11):13-16.

[10]王鹏. 单相单级全桥PFC变换器关键技术研究[D]. 哈尔滨:哈尔滨工业大学, 2016.

[11]王海锋. 电网谐波检测实例及其分析[J]. 低碳世界, 2013(19):50-51.

[12]王雪松. 单相桥式APFC变换器的关键问题及 解决方法研究[D]. 哈尔滨:哈尔滨工业大学, 2020.

[13]陈利. Buck补偿DCM Flyback PFC变换器研究[D]. 成都:西南交通大学, 2015.

[14]姚凯. 高功率因数DCM Boost PFC变换器的研究[D]. 南京:南京航空航天大学, 2010.

[15]王克峰, 郑杜成, 马悦,程红. 基于单级PFC无频闪无电解电容的LED电源驱动设计[J]. 电源学报, 2016,14(03):118-123.

[16]王传辉, 王剑, 孙松松. 单相有源功率因数校正电路的设计与分析[J]. 通信电源技术, 2016,33(2):92-93.

[17]Li S, Tan S C, Lee C K, et al. A Survey, Classification and Critical Review of Light-Emitting Diode Drivers[J]. IEEE Transactions on Power Electronics, 2016, 31(2):1503-1516.

[18]Tsai J C, Chen C L, Chen Y T, et al. Perturbation On-Time (POT) Technique in Power Factor Correction (PFC) Controller for Low Total Harmonic Distortion and High Power Factor[J]. IEEE Transactions on Power Electronics, 2013, 28(1):199-212.

[19]Gritti G, Adragna C. Novel approach to current-mode control in DCM/CCM Boundary Boost PFC[C]//Applied Power Electronics Conference & Exposition. IEEE, 2016:564-571.

[20]Lee S W, Do H L. A Single-Switch AC–DC LED Driver Based on a Boost-Flyback PFC Converter With Lossless Snubber[J]. IEEE Transactions on Power Electronics, 2017, 32(2):1375-1384.

[21]T.-L. Chern, L.-H. Liu, P.-L. Pan, et al. Single-stage flyback converter for constant current output LED driver with power factor correction[C]//IEEE Conference on Industrial Electronics & Applications. IEEE, 2009: 2891-2896.

[22]Fang P, Liu Y F. Single stage primary side controlled offline flyback LED driver with ripple cancellation[C]//Applied Power Electronics Conference & Exposition. IEEE, 2014:3323-3328.

[23]杨飞, 阮新波, 杨洋, 季清, 叶志红. 采用耦合电感的交错并联电流临界连续Boost PFC变换器. 电工技术学报, 2013,28(1):215-224.

[24]Shu Wang, Xinbo Ruan, Kai Yao, Siew-Chong Tan, Yang Yang, Zhihong Ye. A Flicker-Free Electrolytic Capacitor-Less AC-DC LED Driver[J]. IEEE on Power Electronics, 2013, 27(11):4540-4548

[25]Trujillo C, Henao G, Castro J, et al. Design and development of a LED Driver prototype with a Single-Stage PFC and low current harmonic distortion[J]. IEEE Latin America Transactions, 2017, 15(8):1368-1375.

[26]姚占辉, 许建平. 基于输入导纳模型的AC-DC变换器输出电流二倍工频纹波的抑制[J]. 电工技术, 2019(17):1-6.

[27]Onal Y, Sozer Y . Bridgeless SEPIC PFC converter for low total harmonic distortion and high power factor[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2016:87-92.

[28]李山, 汪鹏, 郭强, 等. 整流器电流谐波抑制及功率因数校正仿真[J]. 计算机仿真, 2017, 34(10):87-92.

[29]Baek J I, Kim J K, Lee J B , et al. A New Standby Structure Integrated with Boost PFC Converter for Server Power Supply[J]. IEEE Transactions on Power Electronics, 2019:5283-5293.

[30]Cortez D F, Barbi I. A Family of High-Voltage Gain Single-Phase Hybrid Switched-Capacitor PFC Rectifiers[J]. IEEE Transactions on Power Electronics, 2015, 30(8):4189-4198.

[31]李家成, 沈艳霞. 无电解电容LED驱动电源[J]. 照明工程学报, 2015, 26(5):88-95.

[32]侯典立, 张庆范, 张龙, 等. 含有PFC的LED驱动线路的改进设计[J]. 电源学报, 2011(02): 34-38.

[33]张家豪. 大功率LED照明的高效驱动电路设计与实现[D]. 成都:电子科技大学, 2018.

[34]阎铁生, 许建平, 曹太强等. 基于二次型Buck PFC变换器的无频闪无变压器LED驱动电源[J]. 电工技术学报, 2015, 30(12):512-519.

[35]徐德鸿, 陈治明, 李永东等. 现代电力电子学[M]. 北京:机械工业出版社,2012:278.

[36]J. Baek, J. Kim, J. Lee, et al. A New Standby Structure Integrated With Boost PFC Converter for Server Power Supply[J]. IEEE Transactions on Power Electronics, 2019:5283-5293.

[37]万辉, 张捍东, 黄丹. 有源功率因数校正控制技术现状与发展[J]. 电工电气, 2013(03):1-6.

[38]Onal Y, Sozer Y. Bridgeless SEPIC PFC converter for low total harmonic distortion and high power factor[C]//2016 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2016:2693-2699.

[39]毛兴武, 祝大卫. 功率因数校正原理与控制IC及其应用设计[M]. 北京:中国电力出版社, 2007.

[40]赵泽伟. 无电解电容200V高压输出驱动电源研究[D]. 广州:华南理工大学, 2012.

[41]Abraham I.Pressman, Keith Billings, Taylor Morey 著, 王志强等译.开关电源设计(第三版)[M]. 北京:电子工业出版社, 2010:431.

[42]D. F. Cortez, I. Barbi .A Family of High-Voltage Gain Single-Phase Hybrid Switched-Capacitor PFC Rectifiers[J]. IEEE Transactions on Power Electronics, 2015:4189-4198.

[43]孙杰杰. 基于PSR控制的单级PFC高精度LED驱动的研究与设计[D]. 成都:电子科技大学, 2015.

[44]姜婷婷. 开关电源技术综述[J]. 科学与财富, 2015(22):427-428.

[45]刘树林, 刘健著. 开关变换器分析与设计[M]. 北京:机械工业出版社, 2010.

[46]李晓晖, 赵杰, 苏亚东, 张玉峰, 郑凯. 单级PFC反激式开关电源设计[J]. 机电信息,2018(24):102-104.

[47]沈霞, 王洪诚, 蒋林,等. 基于反激变换器的高功率因数LED驱动电源设计[J]. 电力自动化设备, 2011, 31(006):140-143.

[48]阎铁生, 许建平, 张斐, 周国华. 反激PFC变换器输出电压纹波分析[J]. 电力自动化设备, 2013, 33(09):41-46.

[49]曹剑. 高功率因数正-反激组合变换器研究[D]. 西安:西安科技大学, 2019.

[50]张卫平. 开关变换器的建模与控制[M]. 北京:中国电力出版社, 2006.

[51]Chuanwen Ji, K.Mark Smith Jr.Keyue, M.Smedley, et a.l Cross Regulation in Flyback Converters: Analytic Model and Solution[J]. IEEE Transactions on Power Electronics, 2001, 16(2):231-239.

[52]赵修科. 实用电源技术手册磁性元器件分册[M]. 沈阳: 辽宁科学技术出版社, 2002.

[53]刘树林, 曹晓生, 马一博. RCD钳位反激变换器的回馈能耗分析及设计考虑[J]. 中国电机工程学报, 2010, 030(033):9-15.

中图分类号:

 TM461    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式