论文中文题名: |
基于变权可拓云的煤矿电网电能质量评价
|
姓名: |
徐鹏飞
|
学号: |
19206204108
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085210
|
学科名称: |
工学 - 工程 - 控制工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
电气与控制工程学院
|
专业: |
控制工程
|
研究方向: |
电能质量控制技术
|
第一导师姓名: |
郭秀才
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
郑茂全
|
论文提交日期: |
2022-06-27
|
论文答辩日期: |
2022-06-07
|
论文外文题名: |
Power Quality Evaluation of Coal Mine Power Grid Based on Variable Weight Extension Cloud
|
论文中文关键词: |
煤矿电网 ; 电能质量 ; 多指标评价 ; 变权 ; 可拓云
|
论文外文关键词: |
Coal mine power grid ; Power quality ; Multi-index evaluation ; Variable weight ; Extension cloud
|
论文中文摘要: |
︿
近年来,随着煤矿智能化、自动化及节能化建设工作的推进,各类大功率、冲击性负载数量逐增,大量非线性的电力电子装置部署于煤矿电网,导致煤矿电网的电能质量问题日益严重。因此深入研究煤矿电网电能质量评价方法,对保障煤矿电网的安全运行以及煤矿安全生产有重要意义。
本文以煤矿电网电能质量评价方法为研究对象,在总结分析电能质量评价方法国内外研究现状的基础上,对煤矿电网电能质量的影响因素进行探究,筛选出8项可合理描述煤矿电网运行特性的电能质量指标。采用电能质量指标权重特性与评价模型特性相融合的评价方法,首先构造惩罚型状态变权对电能质量指标权重进行动态修正,克服组合赋权“一值复用”及优势指标补偿机制引发的评价不准确问题。其次,结合煤矿电网电能质量评价等级划分特点,提出一种基于最小二乘法的熵值参数优化算法改进可拓云评价模型,改善评价等级边界数值归属问题;为降低云滴弥散对电能质量指标等级标准云交界范围的影响,利用对比云图确定适用于煤矿电网电能质量指标评价等级的超熵参数。然后,采用改进的D-S证据理论融合变权权重与指标云关联度,通过判断条件得到最终的电能质量评价结果。最后,通过仿真对构建的煤矿电网电能质量评价模型的可靠性进行了验证。本文以煤矿电能质量在线监测系统为基础,开发了煤矿电网电能质量评价系统,通过主机、数据库和煤矿电网电能质量评价模型的交互,实现了煤矿电网电能质量的评价。
本文通过对煤矿电网电能质量评价方法的研究,构建了一种适用于煤矿电网的电能质量评价模型,可以合理评价煤矿电网各电能质量监测点的电能质量等级,所设计的煤矿电网电能质量评价系统能够对煤矿电网电能质量在线监测系统进行完善和补充,为后续电能质量治理工作提供了依据,具有一定的理论研究和工程应用价值。
﹀
|
论文外文摘要: |
︿
In recent years, with the advancement of intelligent, automatic and energy-saving construction of coal mine, the number of various high-power and impact loads is increasing, and a large number of nonlinear power electronic devices are deployed in coal mine power grid, resulting in the increasingly serious power quality problem of coal mine power grid. Therefore, in-depth study of power quality evaluation methods of coal mine power grid is of great significance to ensure the safe operation of coal mine power grid and coal mine safety production.
Based on the summary and analysis of the research status of power quality evaluation methods at home and abroad, this paper explores the influencing factors of power quality of coal mine power grid, and selects 8 power quality indexes that can reasonably describe the operation characteristics of coal mine power grid. Using the evaluation method combining the weight characteristics of power quality index and the characteristics of evaluation model, firstly, the penalty state variable weight is constructed to dynamically modify the weight of power quality index, so as to overcome the inaccurate evaluation caused by the single value reuse of combined weight and the compensation mechanism of advantage index. Secondly, combined with the classification characteristics of power quality evaluation of coal mine power grid, an entropy parameter optimization algorithm based on least square method is proposed to improve the extension cloud evaluation model and the numerical attribution of evaluation level boundary; In order to reduce the influence of cloud droplet dispersion on the cloud boundary range of power quality index grade standard, the super entropy parameter suitable for the evaluation grade of power quality index of coal mine power grid is determined by using the comparative cloud map. Then, the improved D-S evidence theory is used to fuse the variable weight and index cloud correlation degree, and the final power quality evaluation result is obtained by judging the conditions. Finally, the reliability of the power quality evaluation model of coal mine power grid is verified by simulation. Based on the on-line monitoring system of coal mine power quality, this paper develops the power quality evaluation system of coal mine power grid. Through the interaction of host, database and power quality evaluation model of coal mine power grid, the evaluation of power quality of coal mine power grid is realized.
Through the research on the power quality evaluation method of coal mine power grid, this paper constructs a power quality evaluation model suitable for coal mine power grid, which can reasonably evaluate the power quality grade of each power quality monitoring point of coal mine power grid. The designed power quality evaluation system of coal mine power grid can improve and supplement the on-line power quality monitoring system of coal mine power grid, which provides a basis for the follow-up power quality management, it has certain theoretical research and engineering application value.
~In recent years, with the advancement of intelligent, automatic and energy-saving construction of coal mine, the number of various high-power and impact loads is increasing, and a large number of nonlinear power electronic devices are deployed in coal mine power grid, resulting in the increasingly serious power quality problem of coal mine power grid. Therefore, in-depth study of power quality evaluation methods of coal mine power grid is of great significance to ensure the safe operation of coal mine power grid and coal mine safety production.
Based on the summary and analysis of the research status of power quality evaluation methods at home and abroad, this paper explores the influencing factors of power quality of coal mine power grid, and selects 8 power quality indexes that can reasonably describe the operation characteristics of coal mine power grid. Using the evaluation method combining the weight characteristics of power quality index and the characteristics of evaluation model, firstly, the penalty state variable weight is constructed to dynamically modify the weight of power quality index, so as to overcome the inaccurate evaluation caused by the single value reuse of combined weight and the compensation mechanism of advantage index. Secondly, combined with the classification characteristics of power quality evaluation of coal mine power grid, an entropy parameter optimization algorithm based on least square method is proposed to improve the extension cloud evaluation model and the numerical attribution of evaluation level boundary; In order to reduce the influence of cloud droplet dispersion on the cloud boundary range of power quality index grade standard, the super entropy parameter suitable for the evaluation grade of power quality index of coal mine power grid is determined by using the comparative cloud map. Then, the improved D-S evidence theory is used to fuse the variable weight and index cloud correlation degree, and the final power quality evaluation result is obtained by judging the conditions. Finally, the reliability of the power quality evaluation model of coal mine power grid is verified by simulation. Based on the on-line monitoring system of coal mine power quality, this paper develops the power quality evaluation system of coal mine power grid. Through the interaction of host, database and power quality evaluation model of coal mine power grid, the evaluation of power quality of coal mine power grid is realized.
Through the research on the power quality evaluation method of coal mine power grid, this paper constructs a power quality evaluation model suitable for coal mine power grid, which can reasonably evaluate the power quality grade of each power quality monitoring point of coal mine power grid. The designed power quality evaluation system of coal mine power grid can improve and supplement the on-line power quality monitoring system of coal mine power grid, which provides a basis for the follow-up power quality management, it has certain theoretical research and engineering application value.
﹀
|
参考文献: |
︿
[1]高宏杰, 赵建文, 郭秀才. 煤矿电网单相漏电故障区段自动定位探索[J]. 工矿自动化, 2021, 47(5): 106-111. [2]孙继平. 煤矿信息化自动化新技术与发展[J]. 煤炭科学技术, 2016, 44(1): 19-23+83. [3]王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术, 2022, 50(1): 1-27. [4]杨志勇. 煤矿供电电能质量分析及治理办法研究[J]. 能源与节能, 2018(2): 95-96. [5]郭松梅. 煤矿电能质量综合治理研究[J]. 工矿自动化, 2016, 42(9): 60-64. [6]LEE BUHM. Study of Overall Electric Power Quality Evaluation and Optimization Methodology[J]. Journal of Korean Institute of Intelligent Systems, 2019, 29(3): 210-215. [7]Lucien Duclos Ndoumbe et al. Power Quality Problems, Signature Method for Voltage Dips and Swells Detection, Classification and Characterization[J]. EJEE, 2021, 23(3): 185-195. [8]常潇, 王金浩, 雷达, 等. 电能质量综合指标评价方法研究[J]. 电力电容器与无功补偿, 2021, 42(5): 150-153. [9]Chawda G S, Shaik A G, Shaik M, et al. Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid with Renewable Energy Penetration[J]. IEEE Access, 2020, 8: 146807-146830. [10]Navneet Kaur and Gagan Deep Yadav. Power Quality Standards, Problems and their Solutions[J]. Journal of Trend in Scientific Research and Development, 2017, 2(1): 783-788. [11]Kelly J, Aldaiturriaga E, Ruiz-Minguela P. Applying International Power Quality Standards for Current Harmonic Distortion to Wave Energy Converters and Verified Device Emulators[J]. Energies, 2019, 12(19): 3654. [12]Van den Broeck G, Stuyts J, Driesen J. A Critical Review of Power Quality Standards and Definitions Applied to DC Microgrids[J]. Applied Energy, 2018, 229: 281-288. [13]STD I. 1159-1995 - IEEE Recommended Practice for Monitoring Electric Power Quality [J]. IEEE Std 1159-1995, 1995. [14]王艺璇. 计及用户满意度的配电网电能质量综合评估方法[D]. 北京: 华北电力大学, 2021. [15]史丽萍, 杜刚. 一种新型煤矿电能质量评估方法[J]. 工矿自动化, 2015, 41(6): 94-97. [16]IEC 61000-2-4: 2002 Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances[S], 2002. [17]IEEE Std 519-1992. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems[S]. 2004. [18]IEEE Std 1159-2009. IEEE Recommended Practice for Monitoring Electric Power Quality[S]. 2009. [19]GB/T 12326-2008, 电能质量 电压波动和闪变[S]. 北京: 中国标准出版社, 2008. [20]GB/T 12325-2008, 电能质量 供电电压偏差[S]. 北京: 中国标准出版社, 2008. [21]GB/T 15543-2008, 电能质量 三相电压不平衡[S]. 北京: 中国标准出版社, 2008. [22]GB/T 14549-1993, 电能质量 公用电网谐波[S]. 北京: 中国标准出版社, 1993. [23]GB/T 24337-2009, 电能质量 公用电网间谐波[S]. 北京: 中国标准出版社, 2009. [24]GB/T 15945-2008, 电能质量 电力系统频率偏差[S]. 北京: 中国标准出版社, 2008. [25]GB/T 18481-2001, 电能质量 暂时过电压和瞬态过电压[S]. 北京: 中国标准出版社, 2001. [26]GB/T 30137-2013, 电能质量 电压暂降与短时中断[S]. 北京: 中国标准出版社, 2013. [27]Chen J, Pan G, Ouyang J, et al. A Power Quality Evaluation Method for Distribution System with Renewable Energy[J]. International Journal of Electronics, 2020, 107(5): 792-807. [28]Elbasuony G S, Aleem S H E A, Ibrahim A M, et al. A Unified Index for Power Quality Evaluation in Distributed Generation Systems[J]. Energy, 2018, 149: 607-622. [29]Han X, Song S, Wang Y, et al. Power Quality Comprehensive Evaluation Method for Wind-Solar-Battery Power System Based on Improved FAHP-GRA[C]//2020 International Conference on Intelligent Computing, Automation and Systems (ICICAS).IEEE, 2020: 149-155. [30]Yun-jun Y, Chao T, Yun-tao X, et al. A Projection Pursuit Model Optimized by Free Search: For the Regional Power Quality Evaluation[J]. The Open Cybernetics &Systemics Journal, 2015, 9(1). [31]赵显昊. 基于盲数模糊集的电能质量综合评估系统的研究[D]. 哈尔滨:哈尔滨理工大学, 2019. [32]Farghal S A, Kandil M S, Elmitwally A. Quantifying Electric Power Quality Via Fuzzy Modelling and Analytic Hierarchy Processing[J]. IEE Proceedings-Generation,Transmission and Distribution, 2002, 149(1): 44-49. [33]程志友, 刘荡荡, 吴吉, 等. 基于集对分析与可变模糊集的电能质量综合评估[J].电网技术, 2020, 44(5): 1950-1956. [34]黄沁悦, 周福林, 刘双玲, 等. 基于区间灰色证据组合模型的电能质量评估方法[J]. 电力系统及其自动化学报, 2018, 30(9): 8-15. [35]Zhang K L, Zhang H G, Xie B P. A Method of Comprehensively Assessing Load Power Quality Basing on Combination Weighting of Moment Estimation and Ambiguous Evaluation[C]//2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2020: 36-42. [36]李玲玲, 刘敬杰, 凌跃胜, 等. 物元理论和证据理论相结合的电能质量综合评估[J]. 电工技术学报, 2015, 30(12): 383-391. [37]韩俊睿. 煤矿供电系统电能质量分析与治理研究[J]. 矿业装备, 2021(6): 16-17. [38]乔冬青. 黑岱沟露天煤矿电能质量制约因素及提升策略研究[J]. 内蒙古煤炭经济, 2017(22): 37-39. [39]杨磊. 董家河煤矿电能质量测试分析与治理研究[D]. 西安: 西安科技大学, 2018. [40]张忠, 黄琳琳, 李国华, 等. 八连城矿区6kV供电网谐波分析及抑制方案的研究[J]. 煤矿机电, 2015(4): 41-44+48. [41]董正杰, 霍亮亮. APF治理电气化铁路影响下煤矿电网电能质量工程应用[J]. 中国电业(技术版), 2012(2): 7-10. [42]张增然. 芦岭煤矿35kV供电系统电能质量测试评估[J]. 煤矿机电, 2011, (6): 69-71. [43]李建忠. 煤矿电网安全分析研究[D]. 徐州: 中国矿业大学, 2021. [44]王开云, 刘平, 徐朝建. 煤矿电网无功功率影响分析及治理最优策略[J]. 煤炭科技, 2013(03): 81-83. [45]Ganesan S, David P W, Balachandran P K, et al. Intelligent Starting Current-Based Fault Identification of an Induction Motor Operating Under Various Power Quality Issues[J]. Energies, 2021, 14(2): 304. [46]姚苗. 煤矿电能质量综合评估方法研究[D]. 西安: 西安科技大学, 2014. [47]孙宏斌. 煤矿供配电系统谐波分析与治理[J]. 矿业装备, 2019(05): 96-97. [48]高赟, 苏晶微. 煤矿电力系统谐波源责任划分方法[J]. 工矿自动化, 2018, 44(10): 61-65. [49]Alduraibi A, Yaghoobi J, Zare F. Impacts of Grid Voltage Harmonics Amplitude and Phase Angle Values on Power Converters In Distribution Networks[J]. IEEE Access, 2021, 9: 92017-92029. [50]Arranz-Gimon A, Zorita-Lamadrid A, Morinigo-Sotelo D, et al. A Review of TotalHarmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems[J]. Energies, 2021, 14(20): 6467. [51]范中华. WK-55电铲电压波动原因及抑制措施[J]. 露天采矿技术, 2019, 34(2): 112-114. [52]王玉梅, 耿世瑜. 基于井下综保器的分布式电能质量在线监测系统的研究[J]. 制造业自动化, 2018, 40(9): 1-5. [53]Petrushyn V, Horoshko V, Plotkin J, et al. Power Balance and Power Factors of Distorted Electrical Systems and Variable Speed Asynchronous Electric Drives[J]. Electronics, 2021, 10(14): 1676. [54]李雷, 张昭喜, 李宗, 等. 动态无功补偿装置在煤矿供电系统中的应用[J]. 煤炭技术, 2020, 39(5): 171-173. [55]李金喜, 陈继永. 基于LabVIEW的煤矿电压质量在线监测系统设计[J]. 工矿自动化, 2016, 42(8): 80-84. [56]杨云龙, 王凤清. 配电变压器三相不平衡运行带来的附加损耗、电压偏差及补偿方法[J]. 电网技术, 2004(8): 73-76. [57]袁博. 牵引变电所配电系统高次谐波抑制技术及装置研制[D]. 北京: 北京交通大学, 2019. [58]Satty T L. The Analytic Hierarchy Process [J]. McGraw-Hill, 1980(55): 95-115. [59]Diakoulaki D, Cooper W W, Papayannakis L. Determining Objective Weights in Multiple Criteria Problems: The Critic Method[J]. Computers & Operations Research, 1995,22(7): 763-770. [60]吕志鹏, 吴鸣, 宋振浩, 等. 电能质量CRITIC-TOPSIS综合评价方法[J]. 电机与控制学报, 2020,24(1): 137-144. [61]马春艳, 刘惠康, 龚瑛. 基于改进熵权法的DPV电能质量评估[J]. 高压电器, 2016, 52(5): 192-198+204. [62]Guo X, Xu P, Shao X. Comprehensive Evaluation of Power Quality of Coal Mine Power Grid Based on Equilibrium Empowerment and Improved Grey Relational Projection Method[J]. Energy Reports, 2022, 8: 1680-1688. [63]田水承, 张德桃, 杨兴波, 等. 基于博弈论组合赋权TOPSIS模型对煤矿安全现状的综合评价[J]. 煤矿安全, 2018, 49(6): 242-245+250. [64]甄超, 张健, 季坤, 等. 电能质量治理设备运行状态识别及其治理效果评价[J].电测与仪表, 2020, 57(3): 60-65. [65]赵亮. 随机性电源接入配电网的电能质量评估研究[D]. 沈阳: 沈阳工业大学,2017. [66]李泓泽, 郭森, 唐辉, 等. 基于改进变权物元可拓模型的电能质量综合评价[J]. 电网技术, 2013, 37(3): 653-659. [67]梁唐杰, 谢庆, 柳春芳, 等. 基于全寿命周期理论和可拓云理论的配电网规划综合效益的评估[J]. 电力系统保护与控制, 2017, 45(19): 12-17. [68]李国栋, 王峥, 郝帅, 等. 分布式电源接入对配电网运行指标的影响评估[J]. 电器与能效管理技术, 2021(6): 79-85. [69]李如琦, 苏浩益. 基于可拓云理论的电能质量综合评估模型[J]. 电力系统自动化, 2012, 36(1): 66-70. [70]武强, 李博. 煤层底板突水变权评价中变权区间及调权参数确定方法[J]. 煤炭学报, 2016, 41(9): 2143-2149. [71]蔡万通, 刘文颖, 张宁, 等. 基于惩罚性变权最优综合评价模型的电磁环网解合环方案分析[J]. 电网技术, 2017, 41(7): 2316-2323. [72]刘荡荡. 基于可拓云模型与可变模糊集的电能质量综合评估方法研究[D]. 合肥: 安徽大学, 2020. [73]刘晓东, 邓锦宇. 基于冲突证据修正的DS改进方法[J]. 电子测量与仪器学报, 2017, 31(9): 1499-1506.
﹀
|
中图分类号: |
TP391
|
开放日期: |
2022-06-27
|