论文中文题名: |
低煤阶镜煤与暗煤的结构及润湿性差异对甲烷吸附解吸的影响机理
|
姓名: |
郑超
|
学号: |
19109071008
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
0818
|
学科名称: |
工学 - 地质资源与地质工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
地质资源与地质工程
|
研究方向: |
煤层气地质
|
第一导师姓名: |
夏玉成
|
第一导师单位: |
马东民
|
论文提交日期: |
2023-06-19
|
论文答辩日期: |
2023-06-07
|
论文外文题名: |
Difference of structure and wettability between vitrain and durain in low-rank coal and its impact mechanism on methane adsorption and desorption
|
论文中文关键词: |
镜煤 ; 暗煤 ; 分子结构 ; 孔隙发育特征 ; 润湿性 ; 吸附解吸
|
论文外文关键词: |
vitrain ; durain ; molecular structure ; pore development characteristics ; wettability ; adsorption and desorption
|
论文中文摘要: |
︿
煤层气作为非常规天然气的重要组成部分,其大规模高效开发可以很好地弥补天然气产能不足,保障国家能源安全。我国低煤阶煤层气资源丰富,其可采资源量占比40 %左右,但是目前煤层气的开采效益和产量较低。制约煤层气高效解吸-产出的因素很多,其中,煤层中不同煤岩组分结构及润湿性差异、煤储层内部气-水微观分布变化与甲烷吸附解吸的作用关系是亟待进一步深入研究的关键问题。本文以鄂尔多斯盆地黄陇侏罗纪煤田低阶煤中镜煤与暗煤为研究对象,采用物理化学测试、分子模拟和理论分析等研究方法,从分析低阶煤中镜煤与暗煤在物质组成、分子结构和孔隙发育特征等方面的差异性入手,通过研究镜煤与暗煤的微观差异对润湿性的影响,进而揭示了镜煤与暗煤的结构及润湿性差异对甲烷吸附解吸的影响机理。
黄陇低煤阶镜煤与暗煤在物质组成、分子结构和孔隙发育特征等方面存在明显差异。镜煤富含镜质组,暗煤富含惰质组,壳质组含量普遍较低。暗煤富氧富碳,芳碳率(fa)和芳香度(I)均大于镜煤;镜煤富氢,脂碳数量和CH2/CH3比值大于暗煤,表明暗煤比镜煤的芳香化程度高,烷基侧链比镜煤短。暗煤芳香片层的延展度(La)、堆砌高度(Lc)和堆砌层数Nave均大于镜煤,而且La/Lc大于1,芳香层面网间距(d002)小于镜煤,说明暗煤微晶结构的横向扩展大于纵向延伸,分子结构更加紧实。镜煤微孔(< 2 nm)发育,暗煤介孔(2 nm~50 nm)相对发育,特别是在孔径0.6~0.85 nm 的极微孔段,镜煤的孔体积和比表面积是暗煤的1.2~1.3倍。镜煤性脆,在内外应力作用下微裂隙发育,渗流能力较强,但大孔的扩散能力较弱;而暗煤中惰质组的微米级原生纤维结构和胞腔孔则相对发育,有效孔隙度大,孔隙连通性好。
润湿性测试结果表明,低阶煤为弱亲水性有机岩,其中暗煤的水润湿性优于镜煤。暗煤的无机矿物和含氧基团数量大于镜煤,其中酚羟基、羧基和羰基等极性基团含量相对较高;而镜煤分子结构中疏水性的脂肪侧链长而多,含氧官能团以醚氧等极性较弱的基团为主,且暗煤分子结构模型对H2O的吸附量大于镜煤。此外镜煤微孔发育、分形维数大,表面相对粗糙;而暗煤孔隙均一、表面相对光滑,有利于煤-水润湿。对润湿性影响最显著的是含氧官能团,如醚氧和羟基含量,其次分别为亚甲基碳含量、氢碳原子比和孔隙表面粗糙度。低阶煤中水分主要为吸附态水和游离态水,且以吸附态水为主;与暗煤相比,镜煤中吸附态水比例高,游离态水比例低。根据表面活性剂改性的煤储层水分分布微观特征,揭示了表面活性剂对润湿性的作用机理,阐明了镜煤与暗煤排水能力的差异。四种表面活性剂中,非离子表面活性剂APG0810对煤吸水能力的影响最大,阳离子表面活性剂CTAC和两性离子表面活性剂BS-12促进了水分的排出。
甲烷吸附/解吸实验结果表明,镜煤的比表面积和极限吸附热大于暗煤,吸附空间和吸附热决定了镜煤对甲烷的吸附量和吸附力大于暗煤。镜煤孔隙表面比暗煤粗糙且裂隙发育、渗流能力较强;而暗煤孔隙连通性好,有利于甲烷分子从暗煤孔隙表面解吸与运移。暗煤比镜煤亲水性好,所以水分对暗煤中甲烷吸附/解吸的影响更大。表面活性剂提升了煤储层自发渗吸能力,促进水分进入储层内部的微孔中,水分子在微孔表面竞争吸附,促进甲烷解吸。阳离子表面活性剂CTAC和两性离子表面活性剂BS-12在煤表面的静电吸附,减少了低阶煤表面的负电荷和亲水位点数量,实现润湿反转,有利于水分外排和游离态甲烷运移。基于孔隙结构特征和甲烷解吸特性,构建了镜煤-暗煤的甲烷解吸模型,揭示了黄陇煤田低煤阶镜煤与暗煤结构及润湿性差异制约下的甲烷解吸运移机理。
﹀
|
论文外文摘要: |
︿
Coalbed methane (CBM) can make up for the shortage of natural gas capacity and guarantee the national energy security, as an important part of unconventional natural gas. CBM are abundant in the low-rank coal, and its resources account for about 40% of the total resources, but the exploitation benefit and output of CBM are lower at present. There are many factors restricting the efficient desorption and production of CBM. Among them, the difference between structure and wettability of the different macroscopically components, the change of gas-water microscopic distribution in coal reservoir and methane adsorption and desorption are the key issues requiring further study. Taking vitrain and durain in Huanglong Jurassic coal field in Ordos Basin as the research object, this paper adopted physicochemical testing, molecular simulation and theoretical analysis to analyzed the differences between vitrain and durain in terms of material composition, molecular structure and pore development characteristics, and studied the influence of microscopic differences between vitrain and durain on wettability. The influence mechanism of structure and wettability difference between vitrain and durain on methane adsorption and desorption was revealed.
There are obvious differences in material composition, molecular structure and pore development characteristics between vitrain and durain in Huanglong coalfield. Vitrinite is rich in vitrain, inertinite is rich in durain, and the content of liptinite is generally low. Durain is rich in oxygen and carbon, aromatic carbon ratio (fa) and aromaticity (I) are higher than vitrain. Vitrain is rich in hydrogen, and the number of lipids and CH2/CH3 ratio are higher than durain, indicating that durain has higher aromatizing degree and shorter alkyl side chain than durain. The extension degree (La), stacking height (Lc) and stacking number (Nave) of aromatic lamellar layer of durain are greater than that of vitrain, La/Lc is greater than 1, and the network spacing (d002) of aromatic lamellar layer is smaller than that of vitrain, indicating that the transverse extension of microcrystalline structure of durain is greater than the longitudinal extension, and the molecular structure is more compact. Micropore of vitrain (< 2 nm) development, mesoporous of durain (2 nm~50 nm) relative development, in particular, the pore volume and specific surface area of vitrain are 1.2~1.3 times higher than that of durain at the extremely micropore size of 0.6~0.85 nm. Vitrain is brittle and micro-cracks develop under internal and external stress, so its seepage capacity is strong, but the diffusion capacity of macropores is weak. On the other hand, the inertinite in durain has a relatively developed protofiber structure and cell pore, with large effective porosity and good pore connectivity.
The wettability test results show that low-rank coal is weak hydrophilic organic rock, and the water wettability of durain is better than that of vitrain. The number of inorganic minerals and oxygen-containing groups in durain is greater than that in vitrain, and the content of polar groups such as phenolic hydroxyl group, carboxyl group and carbonyl group is relatively higher. In the structure of vitrain, the hydrophobic fatty side chain is long and many, and the oxygen-containing functional groups are mainly ether oxygen and other weak polar groups, and the adsorption capacity of durain molecular model for H2O is greater than that of vitrain. Vitrain has a large fractal dimension and relatively rough surface, however, durain has uniform pores and relatively smooth surface, which is conducive to coal-water wetting. The most significant influence on wettability is the content of oxygen-containing functional groups, such as ether oxygen and hydroxyl, followed by the content of methylene carbon, hydrogen-carbon atom ratio and pore surface roughness. The water in low-rank coal is mainly adsorbed water and free water, and the adsorbed water is the main water. Compared with durain, vitrain has a higher proportion of adsorbed water and a lower proportion of free water. According to the micro-characteristics of water distribution in coal reservoir modified by surfactants, the mechanism of action of surfactants on wettability was revealed, and the difference of drainage capacity between vitrain and durain was clarified. Among the four surfactants, nonionic surfactant APG0810 has the greatest effect on coal water absorption capacity, cationic surfactant CTAC and zwitterionic surfactant BS-12 promote water discharge.
The results of methane adsorption/desorption experiments show that the specific surface area and ultimate adsorption heat of vitrain are greater than that of durain, and the adsorption space and adsorption heat determine the adsorption capacity and adsorption power of vitrain to methane is greater than that of durain. The pore surface of vitrain is coarser than that of durain, and the fractures are developed and the seepage capacity is stronger. The good pore connectivity in durain are conducive to the desorption and migration of methane molecules from the pore surface of durain. Durain is more hydrophilic than vitrain, so water has a greater effect on methane adsorption/desorption in durain. Surfactants enhance the spontaneous imbibition capacity of coal reservoir, promote water to enter micropores inside the reservoir, water molecules compete for adsorption on the surface of micropores, and promote methane desorption. The electrostatic adsorption of cationic surfactant CTAC and zwitterionic surfactant BS-12 on the coal surface reduces the negative charge and the number of hydrophilic points on the surface of low-rank coal, and achieves wetting inversion, which is conducive to water discharge and free methane migration. Based on pore structure characteristics and methane desorption characteristics, the methane desorption model in the vitrain-durain was established, and the methane desorption-migration mechanism of vitrain and durain under the restriction of structure and wettability differences in Huanglong coalfield was revealed.
﹀
|
参考文献: |
︿
[1] 刘峰, 郭林峰, 赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报, 2022, 47(1): 1-15. [2] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018, 45(4): 575-587. [3] 门相勇, 王陆新, 王越, 等. 新时代我国油气勘探开发战略格局与2035年展望[J]. 中国石油勘探, 2021, 26(3): 1-8. [4] Mohanty Manasi-Manjari, Pal Bhatu-Kumar. Sorption behavior of coal for implication in coal bed methane an overview[J]. International Journal of Mining Science and Technology, 2017, 27(2): 307-314. [5] 徐凤银, 王 勃, 赵 欣,等. 双碳目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18. [6] 徐凤银, 肖芝华, 陈东, 等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术, 2019, 47(10): 205-215. [7] 庚 勐, 陈 浩, 陈艳鹏, 等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术, 2018, 46(6): 64-68. [8] Qin Yong, Moore Tim A., Shen Jian, et al. Resources and geology of coalbed methane in China: a review[J]. International Geology Review, 2018, 60: 777-812. [9] Karacan C. Özgen, Ruiz Felicia A., Cotè Michael, et al. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction[J]. International Journal of Coal Geology, 2011, 86(2): 121-156. [10] 王博洋, 秦勇, 申建, 等. 我国低煤阶煤煤层气地质研究综述[J]. 煤炭科学技术, 2017, 45(1): 170-179. [11] 孙粉锦, 田文广, 陈振宏, 等. 中国低煤阶煤层气多元成藏特征及勘探方向[J]. 天然气工业, 2018, 38(6): 10-18. [12] 王勃, 李景明, 张义, 等. 中国低煤阶煤层气地质特征[J]. 石油勘探与开发, 2009, 36(1): 30-34. [13] 李相方, 蒲云超, 孙长宇, 等. 煤层气与页岩气吸附/解吸的理论再认识[J]. 石油学报, 2014, 35(6): 1113-1129. [14] 彭泽阳, 李相方, 孙政. 考虑气水分布的煤层气解吸模型[J]. 天然气地球科学, 2019, 30(10): 1415-1421. [15] 孙钦平, 赵群, 姜馨淳, 等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报, 2021, 46(1): 65-76. [16] 张遂安, 张典坤, 彭川, 等. 中国煤层气产业发展障碍及其对策[J]. 天然气工业, 2019, 39(4): 118-124. [17] 孙德强, 高文凯, 郑军卫, 等. 制约中国煤层气发展瓶颈问题及政策建议[J]. 中国能源, 2021, 43(1): 33-38. [18] 杨陆武, 崔玉环, 王国玲. 影响中国煤层气产业发展的技术和非技术要素分析[J]. 煤炭学报, 2021, 46(8): 2400-2411. [19] 李登华, 高煖, 刘卓亚, 等. 中美煤层气资源分布特征和开发现状对比及启示[J]. 煤炭科学技术, 2018, 46(1): 252-261. [20] Zheng Chao, Ma Dongmin, Chen Yue, et al. Pore structure of different macroscopically distinguished components within low-rank coals and its methane desorption characteristics[J]. Fuel, 2021, 293: 120465. [21] 郑超, 马东民, 陈跃, 等. 水分对煤层气吸附/解吸微观作用研究进展[J]. 煤炭科学技术, 2023, 51(2): 256-268. [22] 张双全. 煤及煤化学[M]. 北京: 化学工业出版社, 2013. [23] P. Mathews Jonathan, C.t. Van-Duin-Adri, L. Chaffee-Alan. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92: 718-728. [24] Given P H. Structure of bituminous coals: evidence from distribution of hydrogen[J]. Nature, 1959, 184: 980-981. [25] Wender Irving. Catalytic synthesis of chemicals from coal[J]. Science and Engineering, 1976, 14(1): 97-129. [26] Wiser Wendell H.. Conversion of bituminous coal to liquids and gases:chemistry and representative processes[J]. Magnetic Resonance, 1984: 325-350. [27] Shinn John H.. From coal to single-stage and two-stage products: a reactive model of coal structure[J]. Fuel, 1984, 63: 1187-1196. [28] 相建华, 曾凡桂, 梁虎珍, 等. 不同变质程度煤的碳结构特征及其演化机理[J]. 煤炭学报, 2016, 41(6): 1498-1506. [29] 段旭琴, 陈志刚, 祁威, 等. 神府煤惰质组与镜质组的富集和可浮性研究[J]. 选煤技术, 2004, 32(4): 26-29, 92. [30] Li Shike, Zhu Yanming, Wang Yang, et al. The chemical and alignment structural properties of coal: insights from raman, solid-state 13C NMR, XRD, and HRTEM techniques[J]. Acs Omega, 2021, 6: 11266-11279. [31] 李雪萍, 曾强. 光谱分析在煤结构研究中的进展[J]. 光谱学与光谱分析, 2022, 42(2): 350-357. [32] Ding Dianshi, Liu Guijian, Fu Biao. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state13C NMR[J]. Fuel, 2019, 245: 174-180. [33] 李 霞, 曾凡桂, 王 威, 等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报, 2015, 40(12): 2900-2908. [34] Jing Zhenhua, Rodrigues Sandra, Strounina Ekaterina, et al. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. International Journal of Coal Geology, 2019, 201: 1-13. [35] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的XRD表征[J]. 燃料化学学报, 2016, 44(7): 777-783. [36] 李霞, 曾凡桂, 王威, 等. 低中煤级煤结构演化的拉曼光谱表征[J]. 煤炭学报, 2016, 41(9): 2298-2304. [37] 张志军, 王露, 李浩. 煤分子结构模型构建及优化研究[J]. 煤炭科学技术, 2021, 49(2): 245-253. [38] Jing Deji, Meng Xiangxi, Ge Shaocheng, et al. Structural model construction and optimal characterization of high-volatile bituminous coal molecules[J]. Acs Omega, 2022, 7: 18350-18360. [39] 王强, 毛宁, 杨妍, 等. 宁夏庆华煤镜质组和惰质组显微组分的分子结构及对比分析[J]. 化工进展, 2020, 39(S2): 142-151. [40] Zhou He, Wu Caifang, Pan Jienan, et al. Research on molecular structure characteristics of vitrinite and inertinite from bituminous coal with FTIR, Micro-Raman, and XRD spectroscopy[J]. Energy & Fuels, 2021, 35: 1322-1335. [41] 李焕同, 朱志蓉, 乔军伟, 等. 陕北侏罗纪富镜煤和富惰煤分子结构的FTIR, XPS和 13C NMR表征[J]. 光谱学与光谱分析, 2022, 42(8): 2624-2630. [42] 张飏. 陕北低阶烟煤显微组分结构特征及分子结构模型[J]. 洁净煤技术, 2017, 23(2): 25-30. [43] 安文博, 王来贵, 刘向峰, 等. 基于FTIR和XRD法分析阜新长焰煤结构特征[J]. 高分子通报, 2018, 31(3): 67-74. [44] 张彬, 曾凡桂, 王德璋, 等. 沁水盆地南部无烟煤大分子结构模型及其含甲烷力学性质[J]. 煤炭学报, 2021, 46(2): 534-543. [45] 李壮楣, 王艳美, 李平, 等. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报, 2018, 69(5): 2208-2216. [46] 傅雪海, 秦勇, 李贵中. 现代构造应力场中煤储层孔裂隙应力分析与渗透率研究[J]. 地球科学, 1999, 20(S1): 623-627. [47] 傅雪海, 秦勇, 薛秀谦, 等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报, 2001, 30(3): 225-228. [48] 傅学海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007. [49] 赵迪斐, 卢琪荣, 郭英海, 等. 煤层气储层孔隙纳米尺度表征的研究进展与展望——精细、量化与机理耦合[J]. 非常规油气, 2020, 7(1): 108-118, 100. [50] Xin Fudong, Xu Hao, Tang Dazhen, et al. Pore structure evolution of low-rank coal in China[J]. International Journal of Coal Geology, 2019, 205: 126-139. [51] Gan H., Nandi S.-P., P. l. walker Jr. Nature of the porosity in American coals[J], 1972, 51: 272-277. [52] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报, 1987, 24(4): 51-56, 97-101. [53] 张慧, 吴静, 袁立颖, 等. 煤中气孔的发育特征与影响因素浅析[J]. 煤田地质与勘探, 2019, 47(1): 78-85, 91. [54] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1): 40-44. [55] 姚素平, 焦堃, 张科, 等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报, 2011, 56(22): 1820-1827. [56] 侯锦秀, 王宝俊, 张玉贵, 等. 不同煤级煤的微孔介孔演化特征及其成因[J]. 煤田地质与勘探, 2017, 45(5): 75-81. [57] Liu Xianfeng, Song Dazhao, He Xueqiu, et al. Quantitative analysis of coal nanopore characteristics using atomicforce microscopy[J]. Powder Technology, 2019, 346: 332-340. [58] 刘世奇, 王鹤, 王冉, 等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报, 2021, 39(1): 212-230. [59] Wang Zhenyang, Cheng Yuanping, Zhang Kaizhong, et al. Characteristics of microscopic pore structure and fractal dimension of bituminous coal by cyclic gas adsorption/desorption: An experimental study[J]. Fuel, 2018, 232: 495-505. [60] Jia Qifeng, Liu Dameng, Cai Yidong, et al. Petrophysics characteristics of coalbed methane reservoir:A comprehensive review[J]. Front. Earth Sci, 2020. [61] 李武广, 吴建发, 宋文豪, 等. 页岩纳米孔隙分级量化评价方法研究[J]. 天然气与石油, 2017, 35(2): 74-80. [62] 煤炭科学院抚顺研究所, 淮南矿业学院. 煤层烃类气体组分与煤岩煤化关系的研究[J], 1985. [63] 吴俊. 中国煤成烃基本理论与实践[M]. 北京: 煤炭工业出版社, 1991. [64] 杨思敬, 杨福蓉, 高照祥. 煤的孔隙系统和突出煤的孔隙特征[C]//第二届国际采矿科学技术讨论会论文集, 徐州: 中国矿业大学出版社, 1991: 770-777. [65] 秦勇, 徐志伟, 张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报, 1995, 20(3): 266-271. [66] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79(2): 269-285. [67] 傅雪海, 秦勇, 张万红, 等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报, 2005, 50(S1): 51-55. [68] 桑树勋, 朱炎铭, 张时音, 等. 煤吸附气体的固气作用机理(Ⅰ)—煤孔隙结构与固气作用[J]. 天然气工业, 2005, 25(1): 13-15, 205. [69] Yao Yanbin, Liu Dameng, Che Yao, et al. Petrophysical characterization of coals by low-field nuclear magneticresonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380. [70] Cai Yidong, Liu Dameng, Pan Zhejun, et al. Petrophysical characterization of Chinese coal cores with heat treatmentby nuclear magnetic resonance[J]. Fuel, 2013, 108: 292-302. [71] 降文萍, 张群, 姜在炳, 等. 构造煤孔隙结构对煤层气产气特征的影响[J]. 天然气地球科学, 2016, 27(1): 173-179. [72] Ходот B.B. 煤与瓦斯地质[J]. 煤与瓦斯地质, 1961: 27-30. [73] Matthias Thommes, Katsumi Kaneko, Alexander V. Neimark, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[R]: Pure Appl. Chem, 2015. [74] 魏建平, 代少华, 温志辉, 等. 不同煤级煤样的孔隙综合表征方法研究[J]. 河南理工大学学报(自然科学版), 2015, 34(3): 305-310. [75] 郭德勇, 郭晓洁, 李德全. 构造变形对烟煤级构造煤微孔-中孔的作用[J]. 煤炭学报, 2019, 44(10): 3135-3144. [76] 郝晋伟, 李阳. 构造煤孔隙结构多尺度分形表征及影响因素研究[J]. 煤炭科学技术, 2020, 48(8): 164-174. [77] 宋昱, 姜波, 李凤丽, 等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学, 2018, 43(5): 1611-1622. [78] Yan Jiwei, Meng Zhaoping, Zhang Kun, et al. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107041. [79] Xu Shipei, Hu Erfeng, Li Xingchun, et al. Quantitative analysis of pore structure and its impacton methane adsorption capacity of coal[J]. Natural Resources Research, 2020, 30(1): 605-620. [80] Liu Xianfeng, Song Dazhao, He Xueqiu, et al. Nanopore structure of deep-burial coals explored by AFM[J]. Fuel, 2019, 246: 9-17. [81] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3): 14-23. [82] 段旭琴, 曲剑午, 王祖讷. 低变质烟煤有机显微煤岩组分的孔结构分析[J]. 中国矿业大学学报, 2009, 38(2): 224-228. [83] 齐艺裴, 李静, 王月红, 等. 低阶煤亚显微组分与煤比表面积之间的关系[J]. 矿业工程研究, 2016, 31(3): 54-56. [84] 张小梅, 王绍清, 陈昊, 等. 基于原子力显微镜观测的煤中显微组分微观形貌与孔隙结构[J]. 煤炭科学技术, 2021: 1-6. [85] Lin Yabing, Qin Yong, Qiao Junwei, et al. Effect of coalification and maceration on pore differential development characteristics of high-volatile bituminous coal[J]. Fuel, 2022, 318: 123634. [86] 秦勇, 徐志伟, 张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报, 1995, 20(3): 266-271. [87] Jing Zhenhua, Gao Shuai, Rodrigues Sandra, et al. Influence of porosity on the reactivity of inertinite and vitrinite toward sodium hypochlorite: Implications for enhancing coal seam gas development[J]. International Journal of Coal Geology, 2021, 237: 103709. [88] 周三栋, 刘大锰, 蔡益栋, 等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质, 2018, 39(2): 373-383. [89] Zhang Miao, Fu Xuehai. Characterization of pore structure and its impact on methane adsorption capacity for semi-anthracite in Shizhuangnan Block, Qinshui Basin[J]. Journal of Natural Gas Science and Engineering, 2018, 60: 49-62. [90] Yang Fu, Ma Dongmin, Duan Zhonghui, et al. Microscopic pore structure characteristics and methane adsorption of vitrain and durain[J]. Geofluids, 2020: 1-18. [91] Li Teng, Wu Caifang, Wang Ziwei. Isothermal characteristics of methane adsorption and changes in the pore structure before and after methane adsorption with high-rank coal[J]. Energy Exploration & Exploitation, 2020, 38(5): 1409-1427. [92] Li Xiangchun, Zhang Fan, Li Zhongbei, et al. Nanopore characteristics of coal and quantitative analysis of closed holes in coal[J]. Acs Omega, 2020, 5(38): 24639-24653. [93] 村田逞诠. 煤的润湿性研究及其应用[M]. 北京: 煤炭工业出版社, 1985. [94] 李沛, 马东民, 张辉, 等. 高、低阶煤润湿性对甲烷吸附/解吸的影响[J]. 煤田地质与勘探, 2016, 44(5): 80-85. [95] 麻红顺, 刘厚宁, 严 康. 不同变质程度煤的润湿性研究[J]. 煤炭技术, 2016, 35(8): 119-121. [96] 何杰. 煤的表面结构与润湿性[J]. 选煤技术, 2000, 28(5): 13-15. [97] 文金浩, 薛娇, 张磊, 等. 基于XRD分析长焰煤润湿性与其灰分的关系[J]. 煤炭科学技术, 2015, 43(11): 83-86, 121. [98] 段旭琴, 杨慧芬, 王祖讷. 低变质烟煤有机显微煤岩组分的润湿性[J]. 煤炭学报, 2009, 34(2): 243-246. [99] Arnold B.-J., Aplan F.-F.. The hydrophobicity of coal macerals[J]. Fuel, 1989, 68: 651-658. [100] He Xin, Zhang Xinxi, Jiao Yang, et al. Complementary analyses of infrared transmission and diffuse reflectionspectra of macerals in low-rank coal and application in triboelectrostatic enrichment of active maceral[J]. Fuel, 2017, 192: 93-101. [101] 舒新前, 王祖讷, 徐精求, 等. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报, 1996, 24(5): 50-57. [102] 李伟明. 低阶烟煤中镜质组的疏水聚团富集方法研究[D]. 徐州: 中国矿业大学, 2019. [103] 陈跃, 马东民, 夏玉成, 等. 低阶煤不同宏观煤岩组分润湿性及影响因素研究[J]. 煤炭科学技术, 2019, 47(9): 97-104. [104] 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2): 448-453. [105] 黄丹, 夏大平, 徐涛, 等. 水分和粒度对煤吸附甲烷性能的实验研究[J]. 中国煤炭地质, 2013, 25(7): 22-25. [106] Liu Shilin, Fu Xuexiang, Xu Yi, et al. Influence of water on nitrous oxide adsorption and desorption on coals[J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4714-4726. [107] 张占存, 马丕梁. 水分对不同煤种瓦斯吸附特性影响的实验研究[J]. 煤炭学报, 2008, 33(2): 144-147. [108] 李波波, 李建华, 杨康, 等. 考虑水分影响的煤层气吸附及渗透机理[J]. 安全与环境学报, 2021, 21(2): 590-598. [109] 赵东, 冯增朝, 赵阳升. 基于吸附动力学理论分析水分对煤体吸附特性的影响[J]. 煤炭学报, 2014, 39(3): 518-523. [110] 林海飞, 姚飞, 李树刚, 等. 温度及含水量对煤吸附甲烷特性影响的实验研究[J]. 煤矿开采, 2014, 19(3): 9-12. [111] 张遵国, 赵丹, 陈毅. 不同含水率条件下软煤等温吸附特性及膨胀变形特性[J]. 煤炭学报, 2020, 45(11): 3817-3824. [112] 马东民, 李方晴, 刘厚宁, 等. 不同水分煤样吸附甲烷的极限吸附量预测[J]. 煤炭技术, 2014, 33(10): 248-250. [113] Yves Gensterblum, Alexej Merkel, Andreas Busch, et al. High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology, 2013, 118: 45-57. [114] Joubert James-I., Grein Clifford-T., Bienstock Daniel. Effect of moisture on the methane capacity of American coals[J]. Fuel, 1974, 53: 186-191. [115] Joubert James-I., Grein Clifford-T., Bienstock Daniel. Sorption of methane in moist coal[J]. Fuel, 1973, 52: 181-185. [116] Chen Mingyi, Cheng Yuanping, Li Haoran, et al. Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 312-320. [117] 李卓睿. 热作用及水分影响顾桥煤吸附甲烷的规律研究[D]. 徐州:中国矿业大学, 2015. [118] 焦彬. 平衡水条件下煤体瓦斯吸附特性的研究及应用[D]. 徐州:中国矿业大学, 2016. [119] Nie Baisheng, Liu Xianfeng, Yuan Shaofei, et al. Sorption charateristics of methane among various rank coals: impact of moisture[J]. Adsorption, 2016, 22: 315-325. [120] 降文萍, 崔永君, 钟玲文, 等. 煤中水分对煤吸附甲烷影响机理的理论研究[J]. 天然气地球科学, 2007, 18(4): 576-579, 583. [121] 聂百胜, 何学秋, 王恩元, 等. 煤吸附水的微观机理[J]. 中国矿业大学学报, 2004, 33(4): 17-21. [122] 张时音, 桑树勋, 杨志刚. 液态水对煤吸附甲烷影响的机理分析[J]. 中国矿业大学学报, 2009, 38(5): 707-712. [123] 张时音. 煤储层固-液-气相间作用机理研究[D]. 徐州: 中国矿业大学, 2009. [124] 李树刚, 赵鹏翔, 潘宏宇, 等. 不同含水量对煤吸附甲烷的影响[J]. 西安科技大学学报, 2011, 31(4): 379-382, 387. [125] 李夏伟, 刘大锰, 蔡益栋, 等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘, 2018, 25(237): 237-244. [126] 傅雪海, 秦勇, 杨永国, 等. 甲烷在煤层水中溶解度的实验研究[J]. 天然气地球科学, 2004, 15(4): 345-348. [127] 魏迎春, 项歆璇, 王安民, 等. 不同矿化度水对煤储层吸附性能的影响[J]. 煤炭学报, 2019, 44(9): 2833-2839. [128] 李沛. 大佛寺井田煤-水-甲烷作用研究[D]. 西安: 西安科技大学, 2017. [129] 王永功. 煤层注水后水锁效应的研究现状与进展[J]. 能源技术与管理, 2019, 44(5): 22-23, 93. [130] 倪冠华, 李钊, 解宏超. 基于核磁共振测试的煤层水锁效应解除方法[J]. 煤炭学报, 2018, 43(8): 2280-2287. [131] 张国华, 梁 冰, 毕业武. 水锁对含瓦斯煤体的瓦斯解吸的影响[J]. 煤炭学报, 2012, 37(2): 253-258. [132] 刘谦, 黄建滨, 倪冠华, 等. 不同煤级煤液相侵入效应低场核磁共振实验研究[J]. 煤炭学报, 2020, 45(3): 1108-1115. [133] 吴家浩. 含瓦斯煤水锁效应实验研究[D]. 焦作: 河南理工大学, 2015. [134] 田伟兵, 李爱芬, 韩文成. 水分对煤层气吸附解吸的影响[J]. 煤炭学报, 2017, 42(12): 3196-3202. [135] 陈金生, 王兆丰, 樊亚庆. 水分自然侵入促进含瓦斯煤解吸效应实验研究[J]. 中国安全生产科学技术, 2016, 12(4): 76-80. [136] 陈金生, 王兆丰, 岳基伟, 等. 水分润湿过程中煤中瓦斯解吸规律试验[J]. 安全与环境学报, 2017, 17(4): 1309-1313. [137] 柳晓莉, 阚瞳, 刘康. 外水侵入对受载含瓦斯煤解吸的影响[J]. 煤矿安全, 2018, 49(9): 6-9, 13. [138] Li Peng, Du Feng, Wang Fakai, et al. Influence of water injection on the desorption characteristics of coalbed methane[J]. Energy Science & Engineering, 2020, 8(12): 4222-4228. [139] 陈绍杰. 低渗透煤层高压注水驱替瓦斯机理及应用研究[D]. 北京: 北京科技大学, 2019. [140] 樊亚庆. 等压环境下外加水分对煤中瓦斯置换效应研究[D]. 焦作: 河南理工大学, 2017. [141] 路长征. 水驱替煤层瓦斯机理及均匀压裂技术研究[D]. 徐州: 中国矿业大学, 2020. [142] Chen Xiangjun, Cheng Yuanping. Influence of the injected water on gas outburst disastersin coal mine[J]. Nat Hazards, 2015, 76: 1093-1109. [143] Xiao Zhiguo, Wang Zhaofeng. Experimental study on inhibitory effect of gas desorption by injecting water into coal-sample[J]. Procedia Engineering, 2011, 26: 1287-1295. [144] 肖知国, 孟雷庭. 煤层注水抑制瓦斯解吸效应试验研究[J]. 安全与环境学报, 2015, 15(2): 55-59. [145] 肖知国. 煤层注水抑制瓦斯解吸效应实验研究与应用[D]. 焦作: 河南理工大学, 2010. [146] 聂百胜, 柳先锋, 郭建华, 等. 水分对煤体瓦斯解吸扩散的影响[J]. 中国矿业大学学报, 2015, 44(5): 781-787. [147] 张庆浩, 贾天让, 李松林, 等. 含水率对构造煤煤粒瓦斯扩散的影响研究[J]. 中国安全生产科学技术, 2018, 14(8): 117-122. [148] 刘彦伟, 张加琪, 刘明举, 等. 水分对不同变质程度煤粒瓦斯扩散系数的影响[J]. 中国安全生产科学技术, 2015, 11(6): 12-17. [149] 李晓华, 王兆丰, 李青松,等. 水分对新景矿3号煤层瓦斯解吸规律的影响[J]. 煤炭科学技术, 2011, 39(5): 47-50. [150] 王兆丰, 李晓华, 戚灵灵, 等. 水分对阳泉3号煤层瓦斯解吸速度影响的实验研究[J]. 煤矿安全, 2010, 41(7): 1-3. [151] 杨利平. 外界环境自由水对煤样瓦斯解吸规律影响的实验研究[J]. 煤矿开采, 2013, 18(6): 10-11, 22. [152] 胡金涛. 注水抑制瓦斯解吸微观机理及实验研究[D]. 淮南: 安徽理工大学, 2016. [153] 陈向军, 程远平, 王林. 外加水分对煤中瓦斯解吸抑制作用试验研究[J]. 采矿与安全工程学报, 2013, 30(2): 296-301. [154] 吴家浩, 王兆丰, 苏伟伟, 等. 自吸水分对煤中瓦斯解吸的综合影响[J]. 煤田地质与勘探, 2017, 45(1): 35-40. [155] 倪冠华. 脉动压裂过程中瓦斯微观动力学特性及液相滞留机制研究[D]. 徐州: 中国矿业大学, 2015. [156] 陈向军, 程远平. 注水对煤层吸附瓦斯解吸影响的试验研究[J]. 煤炭科学技术, 2014, 42(6): 96-99. [157] 秦玉金, 苏伟伟, 田富超, 等. 煤层注水微观效应研究现状及发展方向[J]. 中国矿业大学学报, 2020, 49(3): 428-444. [158] 蔺亚兵, 宋一民, 蒋同昌, 等. 黄陇煤田永陇矿区煤层气成藏条件及主控因素研究[J]. 煤炭科学技术, 2018, 46(3): 168-175. [159] 王传涛. 黄陇煤田镜煤与暗煤CH4解吸机理研究[D]. 西安: 西安科技大学, 2019. [160] 蔺亚兵. 黄陇煤田低阶煤层气控藏要素与高产地质模式[D]. 徐州: 中国矿业大学, 2021. [161] 康志勤, 李翔, 李伟,等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J]. 煤炭学报, 2018, 43(5): 1400-1407. [162] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12): 4074-4086. [163] 周星宇, 曾凡桂, 相建华, 等. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报, 2020, 71(4): 1802-1811. [164] 解兴智, 傅贵. 煤润湿性测量方法的探讨[J]. 煤炭科学技术, 2004, 32(2): 65-68. [165] 刘晓阳, 刘生玉, 夏阳超. 褐煤润湿性及水分复吸的量热法研究[J]. 煤炭转化, 2017, 40(3): 8-14. [166] 张明杰, 龚泽, 谭志宏, 等. 基于重量法的煤吸附甲烷实验及热力学分析[J]. 天然气地球科学, 2021, 32(4): 589-597. [167] 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704-717. [168] 张锐, 夏阳超, 谭金龙, 等. 低阶煤分子碳结构的分析与研究[J]. 中国煤炭, 2018, 44(12): 88-94, 116. [169] Wang Yugao, Wei Xianyong, Wang Shengkang, et al. Structural evaluation of Xiaolongtan lignite by direct characterizationand pyrolytic analysis[J]. Fuel Processing Technology, 2016, 144: 248-254. [170] 张殿凯, 李艳红, 常丽萍, 等. 弥勒褐煤结构特征及其分子模型构建[J]. 燃料化学学报, 2021, 49(6): 727-734. [171] Gregory N. Okolo, Hein W.J.P.Neomagus, Raymond C.Everson, et al. Chemical–structural properties of South African bituminous coals:Insights from wide angle XRD–carbon fraction analysis,ATR–FTIR,solid state13C NMR,and HRTEM techniques[J]. Fuel, 2015, 158: 779-792. [172] 罗陨飞, 李文华, 陈亚飞. 中低变质程度煤显微组分结构的13C-NMR研究[J]. 燃料化学学报, 2005, 33(5): 540-543. [173] 王永刚, 周剑林, 陈艳巨,等. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报, 2013, 41(12): 1422-1426. [174] Song Huijuan, Liu Guangrui, Zhang Jinzhi, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460. [175] Ibarra Jose-V., Munoz Edgar, Moliner Rafael. FTIR study of the evolution of coal structure during the coalification process[J]. Org. Geochem, 1996, 24(6): 725-735. [176] 李成武, 王金贵, 董立辉, 等. 阶梯式循环冲击下煤中氢键红外光谱变化规律[J]. 光谱学与光谱分析, 2014, 34(11): 2961-2967. [177] 余坤坤, 张小东, 张硕, 等. 不同煤岩成分的焦煤萃取后FTIR特征研究[J]. 光谱学与光谱分析, 2018, 38(10): 3077-3083. [178] 常海洲, 王传格, 曾凡桂, 等. 不同还原程度煤显微组分组表面结构XPS对比分析[J]. 燃料化学学报, 2006, 34(4): 389-394. [179] Sonibare Oluwadayo-O., Haeger Tobias, Foley Stephen-F.. Structural characterization of Nigerian coals by X-ray diffraction,Raman and FTIR spectroscopy[J]. Energy, 2010, 35: 5347-5353. [180] 李霞, 曾凡桂, 王威,等. 低中煤级煤结构演化的XRD表征[J]. 燃料化学学报, 2016, 44(7): 777-783. [181] 苏现波, 司青, 王乾. 煤变质演化过程中的XRD响应[J]. 河南理工大学学报(自然科学版), 2016, 35(4): 487-492. [182] 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(4): 1188-1196. [183] 屈晶, 申建, 韩磊, 等. 基于CT图像的高阶煤不同宏观煤岩组分裂隙差异发育规律[J]. 天然气工业, 2022, 42(6): 76-86. [184] 张哲泠, 杨正红. 微介孔材料物理吸附准确性分析的理论与实践[J]. 催化学报, 2013, 34(10): 1797-1810. [185] 姚艳斌, 刘大锰, 蔡益栋, 等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学:地球科学, 2010, 40(11): 1598-1607. [186] Yao Yanbin, Liu Dameng. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158. [187] 吴蒙, 秦勇, 王晓青, 等. 中国致密砂岩储层流体可动性及其影响因素[J]. 吉林大学学报(地球科学版), 2021, 51(1): 35-51. [188] 范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4): 1628-1638. [189] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022, 47(2): 828-848. [190] 张慧, 吴静, 袁立颖, 等. 煤中气孔的发育特征与影响因素浅析[J]. 煤田地质与勘探, 2019, 47(1): 78-85. [191] 贾腾飞, 王猛, 高星月, 等. 低阶煤储层孔隙结构特征及分形模型评价[J]. 天然气地球科学, 2021, 32(3): 423-436. [192] Zhang Baoquan, Li Shaofen. Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry[J]. Ind. Eng. Chem. Res., 1995, 34: 1383-1386. [193] 张坤尹, 严敏, 李树刚, 等. 煤体表面粗糙度对非阳离子表面活性剂润湿性影响的实验研究[J]. 煤矿安全, 2021, 52(11): 8-15. [194] Extrand C.-W.. A thermodynamic model for wetting free energies from contact angles[J]. Langmuir, 2003, 19: 646-649. [195] 李沛. 页岩润湿性及其对甲烷吸附的控制机理—以南华北盆地山西-太原组页岩为例[D]. 北京:中国地质大学(北京), 2021. [196] 刘硕, 葛少成, 王俊峰, 等. 基于量子化学分析表面活性剂对不同煤种润湿机理的影响[J]. 中国安全生产科学技术, 2021, 17(11): 105-111. [197] 周刚, 徐翠翠, 邱晗. 基于核磁-能谱实验的中变质烟煤煤尘低润湿性分析[J]. 化工进展, 2016, 35(11): 3441-3446. [198] 邱鸿鑫. 表面活性剂对褐煤表面疏水改性的分子模拟研究[D]. 徐州: 中国矿业大学, 2021. [199] Petukhov V. N., Girevaya Kh. Ya., Kubak D. A., et al. Interaction of the coal surface with water[J]. Coke and Chemistry, 2013, 56(8): 292–298. [200] 严敏, 岳敏, 林海飞, 等. 中低阶煤官能团对煤润湿性影响实验研究[J]. 煤炭科学技术, 2021: 1-11. [201] 李哲. 不同煤阶煤大分子建模及竞争吸附模拟[D]. 北京: 中国地质大学(北京), 2021. [202] 朱锴. 表面活性剂降低瓦斯涌出的实验研究[D]. 北京: 中国地质大学(北京), 2010. [203] 王成勇, 邢耀文, 夏阳超, 等. 离子型表面活性剂对低阶煤润湿性的调控机制[J]. 煤炭学报, 2022, 47(8): 3101-3107. [204] 杨枫. 清洁压裂液强化煤层瓦斯解吸渗流特性研究[D]. 重庆: 重庆大学, 2017. [205] Ni Guanhua, Li Zhao, Hongchao Xie. The mechanism and relief method of the coal seam water blocking effect (WBE) based on the surfactants[J]. Powder Technology, 2018, 323: 60-68. [206] You Qing, Wang Chenyu, Ding Qinfang, et al. Impact of surfactant in fracturing fluid on the adsorption—desorption processes of coalbed methane[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 35-41. [207] 李树刚, 闫冬洁, 严敏, 等. 烷基糖苷活性剂对煤体结构改性及甲烷解吸特性的影响[J]. 煤炭学报, 2022, 47(1): 286-296. [208] 李树刚, 郭豆豆, 白杨, 等. 不同质量分数SDBS对煤体润湿性影响的分子模拟[J]. 中国安全科学学报, 2020, 30(3): 21-27. [209] 胡友林, 乌效鸣. 煤层气储层水锁损害机理及防水锁剂的研究[J]. 煤炭学报, 2014, 39(6): 1107-1111. [210] 王振宇, 郭红强, 姚健, 等. 表面活性剂对特低渗油藏渗吸驱油的影响[J]. 非常规油气, 2022, 9(1): 77-83. [211] 李帅, 丁云宏, 刘广峰, 等. 致密储层体积改造润湿反转提高采收率的研究[J]. 深圳大学学报(理工版), 2017, 34(1): 98-104. [212] 孙晓晓, 姚艳斌, 陈基瑜, 等. 基于低场核磁共振的煤润湿性分析[J]. 现代地质, 2015, 29(1): 190-197. [213] 邹卓. 不同变质程度煤岩吸附特性及其热力学变化规律研究[D]. 北京: 中国地质大学(北京), 2020. [214] 马东民, 张遂安, 蔺亚兵. 煤的等温吸附-解吸实验及其精确拟合[J]. 煤炭学报, 2011, 36(3): 477-480. [215] Washington J. Braida, Joseph J. Pignatello, Lu Yuefeng, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science & Technology, 2003, 37: 409-417. [216] 王公达, Ren Tingxiang, 齐庆新, 等. 吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报, 2016, 41(1): 49-56. [217] 何鑫鑫. 煤中甲烷吸附-解吸滞后微观影响因素及其定量评价方法研究[D]. 徐州: 中国矿业大学, 2021. [218] 白建平, 张典坤, 杨建强, 等. 寺河3号煤甲烷吸附解吸热力学特征[J]. 煤炭学报, 2014, 39(9): 1812-1819. [219] 田伟, 刘慧卿, 王庆, 等. 高压下CH4在页岩中吸附时等量吸附热的计算新方法[J]. 当代化工, 2022, 51(8): 1916-1922, 1926. [220] 高正, 马东民, 陈跃, 等. 含水率对不同宏观煤岩类型甲烷吸附/解吸特征的影响[J]. 煤炭科学技术, 2020, 48(8): 97-105. [221] 周来, 冯启言, 秦勇. CO2和CH4在煤基质表面竞争吸附的热力学分析[J]. 煤炭学报, 2011, 36(8): 1307-1311. [222] A.l. Myers. Thermodynamics of adsorptionin porous materials[J]. Aiche Journal, 2002, 48(1): 145-160. [223] 李波波, 高政, 李建华, 等. 不同温度与压力下瓦斯的吸附-热力学特性研究[J]. 安全与环境学报, 2021, 21(6): 2479-2488. [224] 薛培, 祁攀文, 杨添麒, 等. 基于绝对吸附量的页岩吸附CH4和CO2的热力学特征[J]. 山东科技大学学报(自然科学版), 2019, 38(5): 21-30. [225] 王思琪, 张瑞林, 周银波. 温度对中等变质程度焦煤中甲烷吸附解吸特征的影响研究[J]. 矿业安全与环保, 2022, 49(6): 57-61, 78. [226] 李龙建, 张雷, 郭建英, 等. 用高压气体吸脱附-微量热联用法对CO2和CH4在煤上吸附热力学的研究[J]. 煤炭转化, 2020, 43(3): 1-7. [227] 卢守青, 撒占友, 张永亮, 等. 高阶原生煤和构造煤等量吸附热分析[J]. 煤矿安全, 2019, 50(4): 169-172. [228] 李树刚, 白杨, 林海飞, 等. CH4, CO2和N2多组分气体在煤分子中吸附热力学特性的分子模拟[J]. 煤炭学报, 2018, 43(9): 2476-2483. [229] 武腾飞, 都喜东, 郝宇, 等. 无烟煤基质表面CO2和CH4的吸附热力学分析[J]. 煤矿安全, 2020, 51(7): 189-194, 199. [230] 李海鉴. 煤吸附瓦斯的热效应研究[D]. 徐州: 中国矿业大学, 2019. [231] Zhou Fubao, Liu Shiqi, Pang Yeqing, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy&fuels, 2015, 29(3): 1550~1557. [232] Wang Ziwei, Liu Shimin, Qin Yong. Coal wettability in coalbed methane production: A critical review[J]. Fuel, 2021, 303: 121277. [233] Li Na, Zhang Guicai, Ge Jijiang, et al. Adsorption behavior of betaine-type surfactant on quartz sand[J]. Energy Fuels, 2011: 4430-4437. [234] Kumar Amit, Mandal Ajay. Critical investigation of zwitterionic surfactant for enhanced oil recovery from both sandstone and carbonate reservoirs: adsorption, wettability alteration and imbibition studies[J]. Chemical Engineering Science, 2019, 209: 115222. [235] Jin Hu, Zhang Yansong, Dong Hongtao, et al. Molecular dynamics simulations and experimental study of the effects of an ionic surfactant on the wettability of low-rank coal[J]. Fuel, 2022, 320: 123951. [236] 李相方, 冯东, 张涛,等. 毛细管力在非常规油气藏开发中的作用及应用[J]. 石油学报, 2020, 41(12): 1719-1733. [237] 石钰, 阳梦, 薛俊华, 等. 表面活性剂-纳米颗粒复合体系对煤体润湿性影响研究[J]. 采矿与安全工程学报, 2022, 39(3): 615-623. [238] 侯宝峰. 表面活性剂改变岩石表面润湿性及其提高采收率研究[D]. 青岛: 中国石油大学(华东), 2016.
﹀
|
中图分类号: |
P618.13
|
开放日期: |
2025-06-19
|