- 无标题文档
查看论文信息

论文中文题名:

 新型水系灭火剂抑制煤自燃实验研究    

姓名:

 潘文俊    

学号:

 18220089017    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 翟小伟    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Experimental research of a new water‑based extinguishing agent on the inhibition of coal spontaneous combution    

论文中文关键词:

 煤自燃 ; 官能团 ; 同步热分析 ; 降温    

论文外文关键词:

 Coal spontaneous combustion ; Microscope characteristics ; Simultaneous thermal analysis ; Cooling    

论文中文摘要:

水溶性细泡沫灭火剂(DTE)为新型环保型水系灭火剂,具有优良的降温、隔氧、环保等性能。本文结合微观和宏观两方面,通过系列实验,考察了DTE抑制烟煤自燃的效果,为煤自燃阻化剂的选择提供新的思路。

本文首先研究了DTE对烟煤微观结构的影响。采用扫描电镜和能谱分析仪,测试了煤经DTE处理后表面微观结构的变化,得出DTE在煤表面形成了紧密的膜,可以隔绝煤与氧气的接触。并采用傅里叶变换红外光谱技术,探索了DTE对煤中活性官能团数量的影响。研究结果表明,煤中添加了DTE后,游离羟基的数量增加,脂肪烃官能团含量减少,升温过程中醚氧键和芳香键的断裂或生成有所抑制。

通过热物性参数测试和同步热分析仪实验,测试了DTE添加量对煤氧化过程中热效应的影响。实验发现:对比原煤样,添加DTE阻化液的煤样的热扩散系数和导热系数降低,比热容增加;在失重过程中没有明显的吸氧增重过程,干裂温度点延后;低温阶段有大量的吸热现象,初始放热温度点滞后150℃以上,净放热量减少;少量的添加量即可较好的抑制煤自燃;DTE添加越多,抑制煤自燃能力越强。

然后在上面研究的基础上,选用三种常用阻化剂在相同条件下进行同步热分析实验,对比发现,DTE煤样的干裂温度延后最明显,且其在煤氧化初期吸热效果明显优于所选阻化剂。通过各处理煤样在受热分解和燃烧阶段的活化能计算,得出氯盐阻化剂在该阶段促进了煤氧复合反应的进行,而DTE在该阶段对煤分子起惰化作用。

最后利用煤自燃降温模拟实验台进行了高温松散煤体内DTE降温实验,得到DTE注入过程中及停止注入后松散煤体内各测点降温规律,得出DTE注入时会产生泡沫,注入口附近以及泡沫渗流区域温度下降明显,容器内上面部分煤体的降温效果高于下部分。

论文外文摘要:

Dissolvable tiny-foam extinguisher(DTE) is environmental, high in thermal stability, and fast in cooling. In view of the good performance of the material, the inhibition effects of DTE on coal spontaneous combustion are investigated through experimental tests. This paper studys the influence of DTE on the microstructure and the heat release of bituminous coal coal during the heating process. This research explores the effect of DTE on the inhibition of coal oxidation combining the micro and macro aspects and provides new ideas for the selection of coal spontaneous combustion inhibitors.

This article first studys the influence of DTE on the microstructure of bituminous coal. Using scanning electron microscope and energy spectrum analyzer to analyze the changes in the surface microstructure of coal after DTE treatment, it is concluded that the dense film formed by DTE on the coal surface can isolate the contact between coal and oxygen, thereby delaying the process of coal-oxygen composite reaction. And Fourier infrared spectroscopy technology is used to explore the effect of DTE on the number of active functional groups in coal molecules. The research results show that DTE reduces the content of aliphatic hydrocarbon functional groups with higher reactivity and prevents the breakage or formation of ether oxygen bonds and aromatic bonds during the heating process.

    The influence of DTE dosage on the thermal effect of coal oxidation process is tested by thermal property parameter test and synchronous thermal analyzer experiment. The experimental results show that DTE can reduce the thermal diffusion coefficient and thermal conductivity and increase the specific heat capacity. Compared with raw coal sample, there is no obvious process of oxygen absorption and weight gain in the process of weightlessness of DTE treated samples, the dry cracking temperature point delays. Besides, a lot of heat absorption phenomenon occurs at low temperature stage, the initial heat release temperature lag more than 150℃, and the net heat release reduced during the heating process of DTE treated samples. A small amount of addition can inhibit coal spontaneous combustion well. The more DTE is added, the stronger the ability of inhibiting coal spontaneous combustion is.

Based on the above research, three chloride salt inhibitors are choosen to conduct synchronous thermal analysis experiments under the same conditions. It is found by comparison that the dry cracking temperature of DTE treated coal sample delays most obviously. Better than chlorine salt inhibitor, DTE has obvious endothermic effect in the initial stage of coal oxidation. Through the calculation of the activation energy of each sample during the thermal decomposition and combustion stage, it is concluded that the chloride salt inhibitors promote the coal-oxygen reaction at this stage, while DTE inerts the coal molecules.

Finally, using the coal spontaneous combustion cooling simulation experiment platform, the DTE cooling experiment in the loose coal is carried out, and the cooling law of each test during the DTE injection process and after the injection point in the loose coal is obtained. The analysis shows that foam generates when DTE is injected, and the temperature near the injection port and the foam seepage area drops significantly, and the cooling effect in the upper part of the coal in the container is higher than that of the lower part.

参考文献:

[1] J. Deng, Y. Xiao, Q.W. Li, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel, 2015,157:261-269.

[2] 邓军, 李贝, 王凯, 等. 我国煤火灾害防治技术研究现状及展望[J]. 煤炭科学技术, 2016,44(10):1-7.

[3] 张辛亥, 李昊, 张立辉. 补连塔煤矿上覆采空区大面积火区综合治理技术研究[J]. 煤炭工程, 2014, 46(2):52-54.

[4] W. Lu, Y.J. Cao, J.C. Tien. Method for prevention and control of spontaneous combustion of coal seam and its application in mining field. International Journal of Mining Science and Technology[J]. 2017, 27(5):839-846.

[5] 王德明. 矿井火灾学[M]. 中国矿业大学出版社, 2008.

[6] 牛会永, 邓军, 周心权, 等. 煤矿火区封闭过程中瓦斯积聚规律研究及危险性分析[J]. 中南大学学报, 2013, 44(9): 3918-3924.

[7] 邓军, 何勇军, 翟小伟等. 基于控制论的八宝煤矿瓦斯爆炸事故分析[J]. 煤矿安全, 2015, 46(11):234-237.

[8] 吴世博. 煤矿用微胶囊材料放灭火性能研究[D]. 西安科技大学, 2018.

[9] 徐精彩. 煤自燃危险区域判定理论[M]. 煤炭工业出版社, 2001:19-24.

[10] 王要令. 防止煤炭自燃阻化剂研究进展[J]. 化工时刊, 2013, 27(01):32-35.

[11] 肖旸, 吕慧菲, 邓军, 等. 煤自燃阻化机理及其应用技术的研究进展[J]. 安全与环境工程, 2017, 24(01):176-182.

[12] 郑兰芳. 抑制煤氧化自燃的盐类阻化剂性能分析[J]. 煤炭科学技术, 2010, 38(05):70-72+96.

[13] 马砺, 任立峰, 艾绍武, 等. 氯盐阻化剂对煤自燃极限参数影响的试验研究[J]. 安全与环境学报, 2015, 15(04):83-88.

[14] S. Liodakis, D. Bakirtzis, E. Lois, et al. The effect of (NH4)2HPO4 and (NH4)2SO4 on the spontaneous ignition properties of Pinus halepensis pine needle[J]. Fire Safety Journal, 2002, 37:481-494.

[15] 侯欣然, 王福生, 郭立稳, 等. 磷系阻化剂抑制煤自燃的试验研究[J]. 煤矿安全, 2018, 49(05):35-39.

[16] 邓军, 吕慧菲, 李达江, 等. [BMIM][BF4]对不同变质程度煤自燃热行为的影响研究[J]. 煤炭学报, 2019, 44(1):254-262.

[17] Y. Xiao, H.F. Lü, X. Yi, et al. Treating bituminous coal with ionic liquids to inhibit coal spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2018.

[18] W.Q. Zhang, S.G. Jiang, K. Wang, et al. An experimental study of the effect of ionic liquids on the low temperature oxidation of coal[J]. 矿业科学技术(英文版), 2012, 22(5):687-691.

[19] W. Zhang, S. Jiang, Z. Wu, et al. Influence of imidazolium-based ionic liquids on coal oxidation[J]. Fuel, 2018, 217:529-535.

[20] H.F. Coward. Research on spontaneous combustion of coal in mines[M]. Ministry of Power, 1957.

[21] D. Humphreys. The spontaneous heating of coal and its relation to petrography composition[D]. The University of Queensland, 1976.

[22] M.L.E. Tevrucht, P.R. Griffiths. Activation energy of air-oxidized bituminous coals[J]. Energy & Fuel, 1989, 3(4):522-527.

[23] R.N. Singh, J.A. Shonhaxdt, N.A. Texezopoulos. New dimension to studies of spontaneous combustion of coal[J]. Mineral Resources Engineering, 2002, 11(2):147-163.

[24] 周洋. 任家庄煤矿11306综采工作面煤自燃规律研究[D]. 西安科技大学, 2013.

[25] 李莉. 自燃煤低温氧化放热性实验研究[D]. 西安科技大学, 2004.

[26] 张人伟, 李增华. 新型凝胶阻化剂的研究与应用[J]. 中国矿业大学学报, 1995, 24(4):46-51.

[27] 徐精彩, 薛韩玲, 文虎, 等. 煤氧复合热效应的影响因素分析[J]. 中国安全科学学报, 2001(02):34-39.

[28] 李增华. 煤炭自燃的自由基反应机理. 中国矿业大学学报[J]. 1996, 25(3):111-114.

[29] D. Lopez. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel, 1998, 77(14):1623-1628.

[30] H. Wang. Theoretical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel, 1999, 78(9):1073-1081.

[31] 王继仁, 邓存宝. 煤微观结构与组分量质差异自燃理论[J]. 煤炭学报, 2007, 32(12):1291-1296.

[32] 邓军, 肖旸, 张辛亥, 等. 煤火灾害防治技术的研究与应用[J]. 煤矿安全, 2012, 43(S1): 58-61.

[33] 阮增定. 液态CO2灭火技术在高瓦斯矿井火灾的治理研究与应用[D]. 太原理工大学, 2013.

[34] L. Zhang, B. Qin, B. Shi, et al. The fire extinguishing performances of foamed gel in coal mine[J]. Natural Hazards, 2016, 81(3):1957-1969.

[35] 方连鑫. 浅析煤矿矿井防灭火[J]. 内蒙古煤炭经济, 2018(05):83-84.

[36] 彭献清, 王昌. 高位钻孔注水防灭火技术的应用研究[J]. 煤炭技术, 2016, 35(11): 163-165.

[37] X.W. Zhai, L. He, S.B. Wu, et al. Study of structural changes in dried bituminous coal soaked in water and its effect on spontaneous combustion in coal mines[C]. Proceedings of the 11th International Mine Ventilation Congress, 2019.

[38] X.W. Zhai, B. Wang, K. Wang, et al. Study on the influence of water immersion on the characteristic parameters of spontaneous combustion oxidation of low-rank bituminous coal[J]. 2019, 191(7):1101-1122.

[39] X.W. Zhai, W.J. Pan, S.B. Wu, et al. Laboratory experimental study on water-soaked-dried bituminous coal’s thermal properties: Implications for spontaneous combustion[J]. Journal of Thermal Analysis and Calorimetry, 2019.

[40] 郭旭东, 范智海, 司俊鸿, 等. 综放采空区矸石堵漏充填防灭火技术[J]. 陕西煤炭, 2016, 35(2):82-86.

[41] 刘志鹏. 采空区细水雾防灭火技术研究[D]. 西安科技大学, 2020.

[42] 张存江, 赵博生. 矿井角联风路均压防灭火技术应用[J]. 煤炭科学技术, 2013, 41(5): 76-78.

[43] 王海生. 双工作面均压通风防灭火技术在板定梁塔煤矿的应用[J]. 煤矿安全, 2017, 48(4):144-147.

[44] 熊珊珊, 田兆君. 防灭火材料的灭火机理研究[J]. 科技展望, 2016, (32): 90-91.

[45] 丁永禄, 董伟, 郝军. 工作面回撤期间封闭和注液氮防灭火技术[J]. 煤炭科学技术, 2013, 41(2):49-51.

[46] 张飞, 王贵林, 殷跃, 等. 煤自燃发火综合防治方法研究[J]. 2011, (01):21-23.

[47] Z. Huang, C. Sun, Y. Gao, et al. R&D of colloid components of composite material for fire prevention and extinguishing and an investigation of its performance[J]. Process Safety and Environmental Protection, 2018.

[48] 杨怀玉, 张青松. 注浆防灭火技术规范不合理性分析[J]. 中国煤炭, 2013(11):100-102.

[49] J. Pandey, N.K. Mohalik, R.K. Mishra, et al. Investigation of the role of fire retardants in preventing spontaneous heating of coal and controlling coal mine fires[J]. Fire Technology, 2015, 51(2):227-245.

[50] X.W. Zhai, S.B. Wu, K. Wang, et al. Environment influences and extinguish technology of spontaneous combustion of coal gangue heap of Baijigou coal mine in China[J]. Energy Procedia, 2017, 136:66-72.

[51] J. Deng, J. Zhao, Y. Zhang, et al. Study on coal spontaneous combustion characteristic temperature of growth rate analysis[J]. Procedia Engineering, 2014, 84:796-805.

[52] 赵洪月. 磁窑沟煤矿综采工作面采空区综合防灭火技术[J]. 煤矿安全, 2015, 46(6): 63-65.

[53] 刘吉波. 煤炭的阻燃机理分析和氯化盐类汽雾阻化剂的应用[J]. 华北科技学院学报, 2002, 4(2):8-10.

[54] 陆卫东, 王维仁, 邓存宝, 等. 基于活化能指标的煤自燃阻化剂实验研究[J]. 矿业快报, 2007, 462(10):45-47.

[55] 谢锋承. 阻化剂抑制煤自燃的实验研究[D]. 焦作: 河南理工大学, 2011.

[56] 杨漪. 基于氧化特性的煤自燃阻化剂机理及性能研究[D]. 西安科技学, 2015.

[57] 常绪华, 王德明, 时国庆. 采空区高硫煤自燃阻化技术试验分析[J]. 中南大学学报(自然科学版), 2013, (05):2118-2123.

[58] 肖辉, 杜翠凤. 新型高聚物煤自燃阻化剂的试验研究[J]. 安全与环境学报, 2006, 6(1):46-48.

[59] 王立芹. 防治煤层自燃的聚乙酸乙烯酯乳液的合成及其性能研究[D]. 山东科技大学, 2007.

[60] 马嫚. 温和条件下煤在离子液体中的溶解、溶胀及流变性的研究[D]. 河南理工大学, 2009.

[61] P. Painter, N. Pulati, R. Cetiner. Dissolution and dispersion of coal in ionic liquids[J]. Energy&Fuels, 2010, (24):1848-1853.

[62] P. Painter, R. Cetiner, N. Pulati, et al. Dispersion of liquefaction catalysts in coal using ionic liquids[J]. Energy &Fuels, 2010, 24(5):3086-3092.

[63] N. Pulati, M. Sobkowiak, J.P. Mathews, et al. Low-temperature treatment of Illinois No.6 coal in ionic liquids[J]. Energy &Fuels, 2012, 26(6):3548 -3552.

[64] P.A. Hunt. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the l-butyl-2,3-dimethyl-imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2007, 111(18):4844-4853.

[65] J.W. Kim, D. Kim, C.S. Ra, et al. Synthesis of ionic liquids based on alky imidazolium salts and their coal dissolution and dispersion properties[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(2):372-378.

[66] J. Cummings, P. Tremain, K. Shah, et al. Modification of lignites via low temperature ionic liquid treatment[J]. Fuel Processing Technology, 2017, 155:51-58.

[67] W.Q. Zhang, S.G. Jiang, T. Qin, et al. Effect of ionic liquid surfactants on coal oxidation and structure[J]. Journal of Analytical Methods in Chemistry, April 2019:1-9.

[68] 董希琳. DDS系列煤炭自燃阻化剂实验研究[J]. 火灾科学, 1997(01):21-27.

[69] X.L. Dong, D. Drysdale. The effect of DDS inhibitors on suppressing the spontaneous ignition of coal[J]. Fire Safety Science, 1997, 5(2):571-580.

[70] 王国利, 周安宁, 葛岭梅. PE-HD/煤粉/OMMT复合阻燃材料制备及性能研究[J]. 中国塑料, 2006(05):59-63.

[71] 张嬿妮, 邓军, 罗振敏, 等. 煤自燃影响因素的热重分析[J]. 西安科技大学学报, 2008, 02:388-391.

[72] J.C. Jones. Low-temperature oxidation of coal studi-ed using wire-mesh reactors with both steady-state and transient methods[J]. Fuel, 2000, 98:121-129.

[73] B.B. Beamish, M.A. Barakat, J.D. St George. Adiabatic testing procedures for deter-mining the self-heating propensity of coal and sample ageing effects[J]. Thermochimica Acta, 2000, 12:1-2.

[74] 徐晓楠. 新一代评估方法-锥形量热仪(CONE)法在材料阻燃研究中的应用[J]. 中国安全科学学报, 2003, 13(01):19-22.

[75] 舒中俊, 徐晓楠, 李响. 聚合物材料火灾燃烧性能评价:锥形量热仪试验方法[M].化学工业出版社, 2007.

[76] 张辛亥, 罗振敏, 张海珩. 煤自燃性的红外光谱研究[J]. 西安科技大学学报, 2007, 27(2):38-42.

[77] MT/T 700-1997. 煤矿防火用阻化剂通用技术条件[S], 1997.

[78] 袁强, 欧阳冬华. 浅析煤的自然发火阻化剂及其阻化效果[J]. 煤矿安全, 2001, 9:15-17.

[79] X.L. Dong, D. Drysdale. Retardation of the spontaneous ignition of bituminous coal[C]. 8th International Conference on Coal Science, 10-15Sept. 1995, Oviedo, Spain, Coal Science and Technology, 1995, 24(1):501-504.

[80] 陆伟, 王德明, 陈舸, 等. 煤自燃阻化剂性能评价的程序升温氧化法研究[J]. 矿业安全与环保, 2005, 32(6):12-14.

[81] X.L. Dong, D. Drysdale. Selection of the effective inhibitors to suppress the spontaneous ignition of coal[C]. Fifth China-Japan Symposium on Coal and Coal Chenistry, 13-16 May, 1996:155-160.

[82] P.C. Bowes. Self-Heating: Evaluating and controlling the hazards[M]. Building Research Establishment, HMSO, London,1984.

[83] 陈文胜, 刘剑, 吴强. 基于活化能指标的煤自燃倾向性及发火期研究[J]. 中国安全科学学报, 2005, 15(11):19-22.

[84] A. Cuesta, A. Alonso, J. Tascon. Correlation between arrhenius kinetic parameters in the reaction of different carbon materials with oxygen[J]. Energy Fuels, 1993 ,7(6):1141-1145.

[85] B. Schartell, T.R. Hull. Development of fire-retarded materials-Interpretation of cone calorimeter data[J]. Fire and Materials, 2007, 31(5):327-354.

[86] 彭本信. 煤的自然发火阻化剂及其阻化机理[J]. 煤炭学报, 1980, (3):38-47.

[87] 焦新明, 王德明, 仲晓星, 等. 不同阻化剂对煤自燃临界温度影响的实验研究[J]. 煤炭工程, 2012, 2:88-91.

[88] 曹旭光. 阻化泡沫防治煤自燃技术研究[D]. 西安科技大学, 2013.

[89] 周西华, 李诚玉, 李昂, 等. 以着火活化能变化为指标的优选煤自燃阻化剂研究[J]. 中国安全科学学报, 2014, 24(6):21-25.

[90] 刘博, 贾雪梅, 周安宁, 等. 锌镁铝类水滑石/煤复合材料协同阻燃乙烯-醋酸乙烯酯共聚物[J]. 高分子材料科学与工程, 2014, 30(11):145-150.

[91] 于水军, 谢锋承, 路长, 等. 不同还原程度煤的氧化与阻化特性[J]. 煤炭学报, 2010, 35(S1):136-140.

[92] 单亚飞, 王继仁, 邓存宝, 等. 不同阻化剂对煤自燃影响的实验研究[J]. 辽宁工程技术大学学报(自然科学版), 2008, 27(1):1-4.

[93] 曹凯. 综放采空区遗煤自然发火规律及高效防治技术[D]. 中国矿业大学, 2013.

[94] 余明高, 孟牒, 路长, 等. 基于锥形量热仪实验研究阻化剂对煤自燃的影响[J]. 热科学与技术, 2010, 4(9):343-347.

[95] 叶正亮, 李金亮, 陆伟, 等. 化学阻化剂对高硫煤的阻化实验研究[J]. 煤矿安全, 2011, 11(42):12-14.

[96] 王亚敏. 防止煤炭自燃的化学阻化剂的实验结果研究[J]. 煤炭技术, 2014, 2(33):183-185.

[97] 张卫清, 蒋曙光, 吴征艳, 等. 离子液体处理对煤微观活性结构的影响[J]. 中南大学学报(自然科学版), 2013, 44(5):2008-2013.

[98] 石必明. 易自燃煤低温氧化和阻化的微观结构分析[J]. 煤炭学报, 2000, 25(3):294-298.

[99] 陈洪博, 李文华, 姜英, 等. 神东煤显微组分与基本结构特征研究[J]. 煤炭转化, 2006, 29(1):6-10.

[100]P.R. Solomon, M.C. Robert. FTIR analysis of coal:2. Aliphatic and aromatic hydrogen concentration[J]. Fuel, 1988, 67:949-959.

[101]周利民, 王一平, 黄群武, 等. 煤/塑料共热解的热重分析及动力学研究[J]. 燃烧科学与技术, 2008, 14(2):132-136.

[102]J.D. Davis, J.F. Byrne. An adiabatic method for studying spontaneous heating of coal[J]. Journal of American Ceramic Society, 1924, (7):809-816.

[103]B. Beamish, M. Barakat, J. George. Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects[J]. Thermochimica Acta, 2000, (362):79-87.

[104]J.C. Jones. Low-temperature oxidation of coal studied using wire-mesh reactors with both steady-state and transient methods[J]. Fuel, 2000, (98):646-650.

[105]余明高, 贾海林, 于水军, 等. 乌达烟煤微观结构参数解算及其与自燃的关联性分析[J]. 煤炭学报, 2006, 31(5):610-614.

[106]翁诗甫. 傅里叶变换红外光谱分析[M]. 化学工业出版社, 2010:78-126.

[107]邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05):1164-1172.

[108]H.H. Xin, D.M. Wang, X.Y. Qi, et al. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra[J]. Fuel Processing Technology, 2014, 118(2):287-295.

[109]戴广龙, 张国枢, 赵继尧, 等. 气煤的化学基团在低温氧化过程中的变化[J]. 煤炭科学技术. 2003, 31(5):30-33.

[110]W.J. Parker, R.J. Jenkins, C.P. Butler, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 1961, 32:1679-1684.

[111]邓军. 煤田火灾防治理论与技术[M]. 中国矿业大学出版社, 2014.

[112]J. Guo. Preventing spontaneous combustion of coal from damaging ecological environment based on thermogravimetric analysis[J]. Applied Ecology and Environmental Research, 2019.

[113]张玉涛, 史学强, 李亚清, 等. 环保型煤自燃阻化剂的阻化特性及机理研究[J]. 中国矿业大学学报, 2018, 47(6):1224-1232.

[114]孔令坡. 低温氧化对煤TG-DSC曲线的影响研究[J]. 煤质技术, 2014, (2):41-44.

[115]王庭焱. 水浸干燥烟煤活性基团及自燃特征温度变化规律研究[D]. 西安科技大学, 2018.

[116]Y. Li, C. Zhang, D.Z. Tang, et al. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China[J]. Fuel, 2017, 206:352-363.

[117]白亚娥. 不同预氧化程度煤二次氧化特性研究[D]. 西安科技大学, 2017.

[118]陈文胜, 吴强, 利用热重法(TG)确定煤的活化能[J]. 黑龙江科技学院学报, 2005, (15):269-271.

[119]B. Li, G. Chen, H. Zhang, et al. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014, 118(15):385-391.

[120]贺化平, 韩志飞. 含不同阻化剂煤自燃的实验研究[J]. 中州煤炭, 2009, (10):6-7.

[121]吴玉国, 张晋花, 邬剑明. 基于氧化热解综合指标的煤自燃倾向性研究[J]. 煤炭工程, 2012, (07):87-89.

中图分类号:

 TD752.2    

开放日期:

 2023-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式