论文中文题名: |
陕北侏罗纪煤田北部煤层上覆厚硬砂岩对覆岩采动裂隙发育影响规律研究
|
姓名: |
魏江波
|
学号: |
18109071009
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
0818
|
学科名称: |
工学 - 地质资源与地质工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
地质与环境学院
|
专业: |
地质资源与地质工程
|
研究方向: |
矿山地质环境保护
|
第一导师姓名: |
王双明
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-16
|
论文答辩日期: |
2023-06-05
|
论文外文题名: |
Study on the influence law of overlying thick hard sandstone on the development of overburden mining fissures in the northern of Jurassic coalfield in northern Shaanxi
|
论文中文关键词: |
覆岩采动裂隙 ; 厚硬砂岩 ; 三场演化规律 ; 碎胀系数 ; 侏罗纪煤田
|
论文外文关键词: |
Overburden mining fissures ; Thick sandstone ; Crushing expansion coefficient ; Three field evolution ; Jurassic coalfield
|
论文中文摘要: |
︿
陕北侏罗纪煤田北部煤炭开采活动导致的覆岩采动裂隙发育是影响关键含水层损伤的主要原因,也是造成矿区生态环境退化的根源。煤层上覆岩层结构中发育的厚硬砂岩作为一种典型的地质条件,其对覆岩采动裂隙的发育规律具有重要的影响。因此,研究覆岩采动裂隙发育规律,揭示其对厚硬砂岩的响应机制,对陕北煤矿区采动减损具有重要的理论指导意义。本文以陕北侏罗纪煤田北部煤炭开采区为研究区,采用室内测试、现场实测、数值模拟和理论分析等综合研究方法,界定了厚硬砂岩的条件,分析了研究区主采煤层上覆基岩中厚硬砂岩的发育特征及覆岩采动裂隙发育规律;研究了厚基岩条件下煤层上覆厚硬砂岩对覆岩采动裂隙动态发育过程的影响规律,以及薄基岩条件下煤层上覆厚硬砂岩对覆岩采动裂隙动态演化规律的影响和覆岩破坏结构的控制机制;构建了考虑厚硬砂岩影响作用的覆岩采动裂隙发育高度理论模型,并通过工程实例验证了模型的准确性和可靠性。取得的主要成果如下:
(1)系统分析了陕北侏罗纪煤田北部主采煤层上覆厚硬砂岩空间展布特征。在归纳分析研究区覆岩层状结构及砂岩发育特性的基础上,界定了厚硬砂岩条件为主采煤层上覆岩层中厚度系数大于或等于10%且单轴抗压强度大于或等于30 MPa的砂类岩层。其中,厚基岩区厚硬砂岩厚度大于或等于20 m,平均为25 m,距煤层约60 ~ 120 m,平均约80 m;薄基岩区厚硬砂岩基本小于10 m,距煤层约0 ~ 20 m,平均间距10 m左右;研究区内厚硬砂岩厚度自东北向西南逐渐增大,距主采煤层间距自东向西逐渐增大。
(2)研究了厚基岩与薄基岩矿区主采煤层覆岩采动裂隙发育特征。在厚基岩矿区,沿工作面走向中心剖面覆岩采动裂隙呈“正梯形”发育特征,覆岩采动裂隙发育高度介于115 ~ 140 m之间,裂采比介于23 ~ 28之间,当上覆厚硬砂岩距煤层间距 ≥ 100 m时,厚硬砂岩对覆岩采动裂隙向上发育具有显著的抑制作用,反之,采动裂隙发育最终发育贯穿厚硬砂岩,但其对采动裂隙空间形态的动态变化过程具有重要的影响。在薄基岩矿区,覆岩采动裂隙发育贯穿上覆厚硬砂岩后最终发育贯通地表形成地裂缝,相邻地表裂缝间距介于10 ~ 14 m之间,平均12 m。覆岩采动裂隙发育高度受工作面采高、覆岩岩性、开采速度以及采深等地质与采矿条件综合影响。
(3)模拟研究了厚硬砂岩厚度和位置对覆岩采动裂隙发育的影响规律。研究结果表明:在厚基岩条件下,覆岩采动裂隙发育高度随厚硬砂岩层位的升高呈“V”字型变化特征,厚硬砂岩距煤层间距平均为95 m时,采动裂隙发育高度处于“V”字型拐点最低状态;当厚硬砂岩位置系数处于45% ~ 50%时,厚硬砂岩处于有效抑制临界状态,采动裂隙未能完全贯穿厚硬砂岩且最终发育高度最小,约100 m左右,该临界状态下厚硬砂岩距煤层间距和厚度对应的双临界特征值之间呈现幂指数关系特征;当厚硬砂岩位置系数处于50% ~ 75%时,厚硬砂岩可有效抑制覆岩采动裂隙向上发育,采动裂隙最大发育高度随厚硬砂岩层位的升高呈线性增大特征;当厚硬砂岩位置系数小于45%时,覆岩采动裂隙发育贯穿厚硬砂岩,发育至峰值状态约150 m左右;当厚硬砂岩位置系数大于75%时,覆岩采动裂隙发育未能触及厚硬砂岩,且达到最大150 m左右。此外,当厚硬砂岩在煤层覆岩中的位置分别处于高位、中位、低位时,覆岩采动裂隙空间形态随工作面的推进依次呈现“全程马鞍形”、“拱形—马鞍形—正梯形”、“拱形—马鞍形—正梯形—马鞍形”的动态发育过程。在薄基岩条件下,覆岩采动裂隙最终均发育贯通至地表形成采动地裂缝,其先后先后经历非连续跳跃式、连续贯通式和横向扩展式3个宏观动态演化过程,以及“孕育产生—延伸扩展—聚合成群—贯通成缝”的细观动态发育过程,同时,受厚硬砂岩的控制作用,覆岩破坏结构呈现“双分层”特征,覆岩破断岩块尺寸随岩层层位的升高呈幂指数增长特征。
(4)基于岩层碎胀理论,建立了考虑厚硬砂岩影响作用的覆岩采动裂隙发育高度理论模型。通过分析覆岩残余碎胀系数与岩层高度的关系,以及厚硬砂岩对垮落带岩层残余碎胀系数的影响规律发现,覆岩残余碎胀系数随破坏岩层距煤层间距的增大而呈对数衰减特征,垮落带岩体碎胀压实后的残余碎胀系数随上覆荷载的增大而呈对数衰减变化特征;以此为基础构建了考虑上覆厚硬砂岩位置系数和厚度的覆岩采动裂隙发育高度理论模型,并通过工程实例验证了理论模型的可靠性和准确性。
﹀
|
论文外文摘要: |
︿
The development of overburden mining fractures caused by coal mining activities in the northern part of the Jurassic coalfield in northern Shaanxi is a key factor affecting key aquifers and also the root cause of ecological environment degradation in the mining area. As a typical geological condition, the thick hard sandstone developed in overlying strata structure of coal seam has an important influence on the development law of mining cracks in overlying strata. Therefore, it is of great theoretical guiding significance to study the developing law of mining cracks in overlying strata and reveal its response mechanism to thick hard sandstone. Taking the northern coal mining area of Jurassic coalfield in northern Shaanxi as the research area, this paper puts forward the concept of thick hard sandstone by using comprehensive research methods such as indoor testing, field measurement, numerical simulation and theoretical analysis, and analyzes the development characteristics of medium thick hard sandstone in overlying bedrock and the development law of mining cracks in overlying strata in the research area. The influence of thick hard sandstone on the dynamic development of mining cracks in overlying strata under the condition of thick bedrock, the influence of thick hard sandstone on the dynamic evolution of mining cracks in overlying strata under the condition of thin bedrock and the control mechanism of overlying strata failure structure are studied. A theoretical model of the development height of mining cracks in overlying strata considering the influence of thick hard sandstone is constructed, and the accuracy and reliability of the model are verified by engineering examples. The main achievements are as follows:
(1) This paper analyzes the spatial distribution characteristics of thick hard sandstone overlying the main coal seam in the northern mining area of the Jurassic coalfield in northern Shaanxi. On the basis of summarizing and analyzing the overlying strata structure and sandstone development characteristics in the study area, the concept of thick hard sandstone is defined as the sandy strata with thickness coefficient greater than or equal to 10% and uniaxial compressive strength greater than or equal to 30 MPa in the overlying strata of the main coal seam. Among them, the thickness of thick hard sandstone in the thick bedrock area is greater than or equal to 20 m, with an average of 25 m, about 60 ~ 120 m away from coal seams, with an average of 80 m. Thick hard sandstone in the thin bedrock area is basically less than 10 m, about 0 ~ 20 m away from coal seams, with an average spacing of about 10 m; The thickness of thick hard sandstone in the study area gradually increases from northeast to southwest, and the distance from the main coal seam gradually increases from east to west.
(2) In this paper, the development characteristics of mining cracks in overlying strata of main coal seams in thick and thin bedrock mining areas are studied. In the mining area with thick bedrock, the mining cracks in overlying strata along the central section of the working face are "regular trapezoid",and the development height of mining cracks in overlying strata is between 115 ~ 140 m, and the fracture-mining ratio is between 23 ~ 28. When the distance between overlying thick hard sandstone and coal seam is more than or equal to ≥100 m, thick hard sandstone has a significant inhibitory effect on the upward development of mining cracks in overlying strata. On the contrary, the development of mining cracks eventually runs through thick hard sandstone, but it has an important impact on the development process of mining cracks. In the thin bedrock mining area, mining cracks in overlying strata develop through thick hard sandstone, and then finally develop through the surface to form ground cracks. The distance between adjacent surface cracks is between 10 and 14 m, with an average of 12 m. The development height of mining induced fractures in overlying strata is influenced by geological and mining conditions such as mining face height, overlying rock lithology, mining speed, and mining depth.
(3) In this paper, the influence of the thickness and position of thick hard sandstone on the development of mining cracks in overlying strata is simulated and studied. The results show that under the condition of thick bedrock, the development height of mining cracks in overlying strata changes in a "V" shape with the increase of the thick hard sandstone horizon. When the average distance between thick hard sandstone and coal seam is 95 m, the development height of mining cracks is in the lowest state of "V" inflection point. When the position coefficient of thick hard sandstone is between 45% and 50%, the thick hard sandstone is in the critical state of effective suppression, and the mining fracture fails to completely penetrate the thick hard sandstone and the final development height is the smallest, about 100 m. In this critical state, the distance between the thick hard sandstone and the coal seam and the double critical eigenvalue corresponding to the thickness show a power exponential relationship. When the position coefficient of thick hard sandstone is between 50% and 75%, thick hard sandstone can effectively inhibit the upward development of mining cracks in overlying strata, and the maximum development height of mining cracks increases linearly with the increase of the thick hard sandstone horizon. When the position coefficient of thick hard sandstone is less than 45%, the mining cracks in overlying strata develop through thick hard sandstone and reach the peak state of about 150 m; When the position coefficient of thick hard sandstone is greater than 75%, the development of mining cracks in overlying strata fails to touch thick hard sandstone, and the maximum is about 150 m. In addition, when the position of thick hard sandstone in overlying strata of coal seam is in high position, middle position and low position respectively, the spatial shape of mining cracks in overlying strata presents a dynamic development process of "full saddle shape", "arch – saddle – saddle – shaped – trapezoid shape" and "arch – saddle – saddle – shaped – trapezoid shape – saddle – shaped" in turn with the advance of working face. Under the condition of thin bedrock, the mining cracks in overlying strata eventually developed through to the surface to form mining ground cracks, which successively experienced three macro-dynamic evolution processes: discontinuous jump, continuous penetration and lateral expansion, and the micro-dynamic development process of "gestation – extension – aggregation – penetration into cracks". At the same time, under the control of thick hard sandstone, the overlying strata failure structure is characterized by "double stratification", and the size of the overlying strata failure block increases exponentially with the increase of strata level.
(4) Based on the theory of rock fragmentation and expansion, this paper establishes a theoretical model of the development height of mining cracks in overlying strata considering the influence of thick hard sandstone. By analyzing the relationship between the residual crushing expansion coefficient of overlying strata and the height of rock strata, and the influence law of thick hard sandstone on the residual crushing expansion coefficient of rock strata in the caving zone, it is found that the residual crushing expansion coefficient of overlying strata decreases logarithmically with the increase of the distance between the damaged rock strata and the coal seam, and the residual crushing expansion coefficient of rock mass in the caving zone decreases logarithmically with the increase of overlying load. On this basis, a theoretical model of the development height of mining cracks in overlying strata considering the position coefficient and the thickness of overlying thick hard sandstone is constructed, and the reliability and accuracy of the theoretical model are verified by engineering examples.
﹀
|
参考文献: |
︿
[1] 王双明, 孙强, 乔军伟, 等. 论煤炭绿色开采的地质保障[J]. 煤炭学报, 2020, 45(01) : 8-15. [2] 中国煤炭工业协会. 2022 煤炭行业发展年度报告[R]. 中国煤炭工业协会, 2022. [3] 国家统计局. 中华人民共和国 2022 年国民经济和社会发展统计公报[R]. 国家统计局,2023 [4] 谢和平, 吴立新, 郑德志. 2025 年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960. [5] 匡立春, 邹才能, 黄维和, 等. 碳达峰碳中和愿景下中国能源需求预测与转型发展趋势[J]. 石油科技论坛, 2022, 41(1): 9-17. [6] 王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(02): 11-16. [7] 郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020,45(2):509-523. [8] 郭文兵, 赵高博, 白二虎, 等. 中部矿粮复合区采煤沉陷及耕地损毁研究现状与展望[J]. 煤炭学报, 2023, 48(01) : 388-401. [9] 王双明,黄庆享,范立民,等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010. [10] 王双明, 杜 麟, 宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报, 2021, 46(9) : 3027-3038. [11] 王双明, 申艳军, 孙强, 等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报, 2020,2(4):043531. [12] 王双明, 魏江波, 宋世杰, 等. 黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J]. 煤炭科学技术, 2022, 50(5) : 1-9. [13] 宋世杰. 基于关键地矿因子的开采沉陷分层传递预计方法研究[D]. 西安科技大学, 2013. [14] 王双明, 黄庆享, 范立民, 等. 生态脆弱矿区含(隔)水层特征及保水开采分区研究[J]. 煤炭学报, 2010,35(1):7-14. [15] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017,42(1):17-26. [16] 王云广. 高强度开采覆岩破坏特征与机理研究[D]. 河南理工大学, 2016. [17] 杨志. 陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D]. 中国矿业大学, 2019. [18] 王旭, 尹尚先, 徐斌, 等. 综采工作条件下覆岩导水裂隙带高度预测模型优化研究[J/OL]. 煤炭科学技术, 2022: 1-13. [19] 盛奉天, 段玉清. 彬长矿区巨厚硬砂岩含水层下综放开采导水裂隙带高度研究[J]. 煤炭工程, 2022, 54(03) : 84-89. [20] Xingping Lai, Leiming Zhang, Yun Zhang, et al. Research of the Backfill Body Compaction Ratio Based on Upward Backfill Safety Mining of the Close-Distance Coal Seam Group[J]. Geofluids, 2022, 8418218: 1-11. [21] Liu C , Cheng Y , Nie Q , et al. Analysis of migration and failure regular pattern of overlying strata in different mining heights[J]. IOP Conference Series: Earth and Environmental Science, 2019, 384(1) : 012152. [22] 原富珍, 马克, 唐春安, 等. 多关键层结构下不同采厚覆岩移动及围岩响应特征[J]. 煤炭科学技术, 2022, 50(06) : 211-218. [23] Liu Q . Investigation on mining-induced fractured zone height developed in different layers above Jurassic coal seam in western China[J]. Arabian journal of geosciences, 2018, 11(2). [24] 李树刚, 李志梁, 林海飞, 等. 采高对采动裂隙演化规律的影响研究[J]. 矿业安全与环保, 2015, 42(5) : 25-28. [25] Wang X, Xie J, Xu J, et al. Effects of coal mining height and width on overburden subsidence in longwall pier-column backfilling[J]. Applied Sciences, 2021, 11(7) : 3105. [26] 袁喜东. 榆神矿区导水裂隙带发育规律研究[D]. 西安科技大学, 2017. [27] 国家煤炭工业局. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规范[S]. 北京: 煤炭工业出版社, 2017. [28] 胡炳南,张华兴,申宝宏. 建筑物、水体、铁路及主要井巷煤柱留设与压煤开采指南[M]. 北京: 煤炭工业出版社, 2017 : 34-35. [29] 国家市场监督管理总局、国家标准化管理委员会. 矿区水文地质工程地质勘探规范[S]. 北京:煤炭工业出版社,2021. [30] 郭旭. 榆神府矿区煤层开采覆岩移动破坏和导水裂隙带发育规律[D]. 中国地质大学(北京), 2020. [31] 刘瑜. 陕北侏罗系煤层开采导水裂缝带动态演化规律研究及应用[D]. 中国矿业大学, 2018. [32] 王创业, 薛瑞雄, 朱振龙. 不同采高和关键层对导水裂隙带发育的影响[J]. 煤矿安全, 2016, 47(3) : 1-3. [33] 王晓振, 许家林, 韩红凯, 等. 顶板导水裂隙高度随采厚的台阶式发育特征[J]. 煤炭学报, 2019, 44(12) : 3740-3749. [34] 张玉军, 申晨辉, 张志巍, 等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术, 2022, 50(5) : 38-48. [35] 孙强. 充填开采再造隔水关键层机理及方法研究[J]. 中国矿业大学, 2019. [36] 范立民, 马雄德, 蒋泽泉, 等. 保水采煤研究 30 年回顾与展望[J]. 煤炭科学技术, 2019, 47(7) : 1-30. [37] 刘坤, 周华强, 郑立军, 等. 膏体充填条带开采技术[J]. 煤炭科学技术, 2010, 38( 2) : 10-14. [38] 孙希奎, 赵庆民, 施现院. 条带残留煤柱膏体充填综采技术研究与应用[J]. 采矿与安全工程学报, 2017, 34(4) : 650-654. [39] Jiang Ning, Wang Changxiang, Pan Haiyang, et al. Modeling study on the influence of the strip filling mining sequence on mining-induced failure[J]. Energy Science & Engineering, 2020,8(6): 2239-2255. [40] 陈绍杰, 尹大伟, 胡炳南, 等. 条带充填坚硬顶板与充填体组合系统力学特性试验研究[J]. 采矿与安全工程学报, 2020, 37(01) : 110-117. [41] Shao Xiaoping, Wang Long, Li Xin, et al Conversion mechanism of a continuous pressure arch structure in strip filling mining[J]. Arabian Journal of Geosciences, 2021, 14(18) :1825. [42] Sun Weibo, Wang Yan, Qiu Huafu, et al. Numerical simulation study of strip filling for water-preserved coal mining[J]. Environmental science and pollution research international, 2020, 27(12) : 12899-12907. [43] Lei Zhu, Tianqi Song, Wenzhe Gu, et al. Study on Layered-Backfill-Based Water Protection Technology of Thick Coal Seam in the Ecologically Fragile Mining Area in Western China[J]. Geofluids, 2022, 3505176 : 1-16. [44] 余学义, 刘樟荣, 赵兵朝, 等. 王家沟煤矿条带充填开采导水裂隙发育规律研究[J]. 煤炭工程, 2015, 47(5): 83-86. [45] 王冠一, 赵文静, 张步初, 等. 浅埋厚煤层条带充填开采效果研究[J]. 煤炭技术, 2019, 38(02) : 1-3. [46] 王晓东. 煤炭条带式充填开采采场覆岩运动演化规律[J]. 中国煤炭地质, 2015, 27(3) : 1-7. [47] 邵小平, 陶叶青, 刘二帅, 等. 陕北浅埋煤层似膏体充填条带开采参数研究及应用[J]. 煤炭科学技术, 2021, 49(7) : 63-70. [48] Chang Qingliang, Yao Xingjie, Leng Qiang, et al. Strata Movement of the Thick Loose Layer under Strip-Filling Mining Method: A Case Study[J]. Applied Sciences, 2021, 11(24): 1-14. [49] 孟宪锐, 吴昊天, 王国斌. 我国厚煤层采煤技术的发展及采煤方法的选择[J]. 煤炭工程, 2014, 46(10) : 43-47. [50] 唐鑫, 姜振泉, 曹丁涛, 等. 厚煤层分层开采导水断裂带发育高度的确定[J]. 矿业安全与环保, 2014, 41(6) : 44-47. [51] 王钰, 谭志祥, 魏飞, 等. 巨厚煤层分层开采导水裂缝带发育高度研究[J]. 煤炭技术, 2018, 37(06) : 171-173. [52] 康志鹏, 赵 靖, 段昌瑞. 分层开采厚硬顶板覆岩结构破坏及移动规律研究 [J]. 煤炭工程, 2022, 54(8) : 78-83. [53] 朱磊, 柴敬, 文杰. 综放开采导水裂隙带发育高度数值模拟分析[J]. 煤炭技术, 2017, 36(02): 159-161. [54] 吕广罗, 杨磊, 田刚军, 等. 深埋特厚煤层综放开采顶板导水裂隙带发育高度探查分析[J]. 中国煤炭, 2016, 42(11) : 53-57. [55] 刘振广, 崔宏磊, 黄美涛. 特厚煤层综放开采导水裂隙带发育高度分析[J]. 煤炭技术, 2020, 39(09) : 119-122. [56] 陈凯, 葛颖, 张全, 等. 基于离散元模拟的巨厚煤层分层开采覆岩裂隙演化分形特征[J]. 工程地质学报, 2021, 29(4) : 1113-1120. [57] 余学义, 穆驰, 李剑锋. 孟巴矿强含水体下分层开采覆岩导水裂隙带发育规律[J]. 煤炭学报, 2022, 47(S1) : 29-38. [58] 白建平, 郝春生, 杨昌永, 等. 综采工作面覆岩采动裂隙三维分布规律研究[J]. 煤炭科学技术, 2020, 48(11) : 106-112. [59] 许永祥, 王国法, 李明忠, 等. 基于黏结颗粒模型的特厚坚硬煤层综放开采数值模拟研究[J]. 煤炭学报, 2019, 44(11) : 3317-3328. [60] 王红胜, 张胜伟, 李斌, 等. 近距离煤层群综放开采覆岩导水裂隙发育规律[J]. 西安科技大学学报, 2022, 42(4) : 629-636. [61] 王振荣, 赵立钦, 康健, 等. 多煤层重复采动导水裂隙带高度观测技术研究 [J]. 煤炭工程, 2018, 50(12) : 82-85. [62] 黄庆享, 杜君武, 侯恩科, 等. 浅埋煤层群覆岩与地表裂隙发育规律和形成机理研究[J]. 采矿与安全工程学报, 2019, 36(01) : 7-15. [63] 杨艳国, 王军, 于永江. 河下多煤层安全开采顺序对导水裂隙带高度的影响[J]. 煤炭学报, 2015, 40(S1) : 27-32. [64] 黄庆享, 曹健. 浅埋近距煤层开采三场演化规律及煤柱群结构控制效应[J]. 煤炭学报, 2021, 46(S1) : 1-9. [65] 黄庆享, 曹健, 杜君武, 等. 浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J]. 煤炭学报, 2019, 44(03) : 681-689. [66] 侯恩科, 张萌, 孙学阳, 等. 浅埋近距离煤层群开采覆岩与地表移动破坏规律研究[J]. 中国煤炭地质, 2022, 34(05) : 31-36+71. [67] 侯恩科, 从通, 谢晓深, 等. 基于颗粒流的浅埋双煤层斜交开采地表裂缝发育特征[J]. 采矿与岩层控制工程学报, 2020, 2(01) : 20-28. [68] 赵兵朝, 刘樟荣, 同超, 等. 覆岩导水裂缝带高度与开采参数的关系研究[J]. 采矿与安全工程学报, 2015, 32(04) : 634-638. [69] 刘贵. 宽条带全柱开采覆岩破坏机理及地表沉陷规律研究[D]. 煤炭科学研究总院, 2020. [70] 李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探, 2019, 47(2) : 129-136. [71] 尹增德. 采动覆岩破坏特征及其应用研究[D]. 山东科技大学, 2007. [72] 赵高博. 高强度长壁开采覆岩破坏传递特征及其充分采动判据[D]. 河南理工大学, 2020. [73] 尹尚先, 徐斌, 徐慧, 等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术, 2013, 41(9) : 138-142. [74] 李新华, 许家林, 汪锋, 等. 工作面宽度对采动裂隙“O”形圈发育形态的影响规律[J]. 煤矿安全, 2012, 43(09) : 34-36. [75] 刘洋. 工作面不同采宽与导水裂隙带高度关系研究[J]. 煤矿安全, 2010, 41(04) : 13-17. [76] 李培现, 谭志祥, 顾伟, 等. 基于 FLAC 的导水断裂带分布规律模拟研究[J]. 煤炭科学技术, 2015, 43(4) : 31-34. [77] 郭文兵, 王云广. 基于绿色开采的高强度开采定义及其指标体系研究[J]. 采矿与安全工程学报, 2017, 34(04) : 616-623. [78] 赵洪亮. 综放开采覆岩结构破坏与裂隙演化的数值分析[J]. 煤炭科学技术, 2009, 37(05) : 107-110. [79] 刘卓然, 赵高博. 综放开采覆岩“两带”高度影响因素及预测模型研究[J]. 中国安全生产科学技术, 2021, 17(05) : 60-66. [80] Cui, Yang, Lai, et al. Experimental Study on the Effect of Advancing Speed and Stoping Time on the Energy Release of Overburden in an Upward Mining Coal Working Face with a Hard Roof[J]. Sustainability, 2019, 12(1):37. [81] 武忠山, 王生全, 彭涛, 等. 曹家滩煤矿导水裂隙带发育规律影响因素数值模拟[J]. 科学技术与工程, 2019 19(25) : 125-129. [82] 孙学阳, 李玲华, 李成, 等. 过沟开采速度对浅埋煤层覆岩移动变形的影响研究[J]. 煤炭工程, 2022, 54(07) : 92-96. [83] Liu H , Deng K , Zhu X , et al. Effects of mining speed on the developmental features of mining-induced ground fissures[J]. Bulletin of engineering geology and the environment, 2019, 78(8):6297-6309. [84] 赵高博, 郭文兵, 杨达明, 等. 综放开采覆岩运移及导水裂隙带高度研究[J]. 中国科技论文, 2017, 12(21) : 2425-2430. [85] Ma K , Wang S J , Yuan F Z , et al. Study on Mechanism of Influence of Mining Speed on Roof Movement Based on Microseismic Monitoring[J]. Hindawi Limited, 2020. [86] 谢晓锋, 李夕兵, 尚雪义, 等. PCA-BP 神经网络模型预测导水裂隙带高度[J]. 中国安全科学学报, 2017, 27(03) : 100-105. [87] 李振华, 许延春, 李龙飞, 等. 基于 BP 神经网络的导水裂隙带高度预测[J]. 采矿与安全工程学报, 2015, 32(06) : 905-910. [88] 刘涛, 徐东晶, 付青, 等. 大跨度深埋煤层导水裂隙带高度数值模拟研究[J]. 矿业研究与开发, 2013, 33(03) : 67-70. [89] 李鹏宇, 姜岳, 宗琪, 等. 中硬覆岩综放开采导水裂隙带发育高度影响因素与预计模型[J]. 煤炭技术, 2018, 37(02) : 80-82. [90] Feng Dong, Hou Enke, Xie Xiaoshen, et al. Research on Water-Conducting Fractured Zone Height under the Condition of Large Mining Height in Yushen Mining Area, China[J]. Lithosphere, 2023, 8918348: 1-12. [91] 杨达明, 郭文兵, 赵高博, 等. 厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J]. 煤炭学报, 2019, 44(11) : 3308-3316. [92] Chi M, Zhang D, Honglin L, et al. Simulation analysis of water resource damage feature and development degree of mining-induced fracture at ecologically fragile mining area[J]. Environmental Earth Sciences, 2019, 78(3): 1-15. [93] FENG Shaojie, SUN Shiguo, LV Yuguo. Research on the height of water flowing fractured zone of fully mechanized caving mining in extra-thick coal seam[J]. Procedia Engineering, 2011, 26 : 466-471. [94] 贺征勋, 刘勇, 康向涛, 等. 含断层覆岩采动裂隙演化规律[J]. 煤矿安全, 2017, 48(08) : 201-203. [95] 赵鹏翔, 刘李东, 李树刚, 等. 煤层倾角对仰斜工作面覆岩压实区裂隙演化规律的影响[J]. 煤炭科学技术, 2021, 49(11) : 65-72. [96] Zhang T, Gan Q, Zhao Y, et al. Investigations into Mining-Induced Stress -Fracture -Seepage Field Coupling Effect Considering the Response of Key Stratum and Composite Aquifer[J]. Rock Mechanics and Rock Engineering, 2019, 52 : 4017-4031. [97] 施龙青, 辛恒奇, 翟培合, 等. 大采深条件下导水裂隙带高度计算研究[J]. 中国矿业大学学报, 2012, 41(01) : 37-41. [98] 侯恩科, 范继超, 谢晓深, 等. 基于微震监测的深埋煤层顶板导水裂隙带发育特征[J]. 煤田地质与勘探, 2020, 48(05) : 89-96. [99] 余学义, 王昭舜, 杨云, 等. 大采深综放开采覆岩移动规律离散元数值模拟研究[J]. 采矿与岩层控制工程学报, 2021, 3(1) : 013533. [100] 杜时贵, 翁欣海. 煤层倾角与覆岩变形破裂分带[J]. 工程地质学报, 1997(03) : 20-26. [101] 施峰, 王宏图, 舒才. 煤层倾角变化对采动覆岩变形规律影响的相似模拟试验研究[J]. 重庆大学学报, 2018, 41(12) : 36-45. [102] 李树刚, 刘李东, 赵鹏翔, 等. 综采工作面覆岩压实区裂隙动态演化规律影响因素分析[J]. 煤炭科学技术, 2022, 50(01) : 95-104. [103] 曹祖宝, 王庆涛. 基于覆岩结构效应的导水裂隙带发育特征[J]. 煤田地质与勘探, 2020, 48(03) : 145-151. [104] 徐祝贺, 李全生, 李晓斌, 等. 浅埋高强度开采覆岩结构演化及地表损伤研究[J]. 煤炭学报, 2020, 45(8) : 2728-2739. [105] 黄万朋, 高延法, 王波, 等. 覆岩组合结构下导水裂隙带演化规律与发育高度分析[J]. 采矿与安全工程学报, 2017, 34(02) : 330-335. [106] Wang F, Jiang B, Chen S, et al . Surface collapse control under thick unconsolidated layers by backfilling strip mining in coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 1-10. [107] Wang F , Xu J , Xie J . Effects of arch structure in unconsolidated layers on fracture and failure of overlying strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:141-152. [108] 李江华, 王东昊, 黎灵, 等. 不同覆岩类型高强度采动裂隙发育特征对比研究[J]. 煤炭科学技术, 2021, 49(10) : 9-15. [109] 黄炳香, 刘长友, 许家林. 采场小断层对导水裂隙高度的影响[J]. 煤炭学报, 2009, 34(10) : 1316-1321. [110] 许家林, 王晓振, 刘文涛, 等. 覆岩主关键层位置对导水裂隙带高度的影响[J]. 岩石力学与工程学报, 2009, 28(2):380-385. [111] 许家林, 朱卫兵, 王晓振. 基于关键层位置的导水裂隙带高度预计方法[J]. 煤炭学报, 2012, 37(5) : 762-769. [112] 夏玉成, 雷通文. 构造应力与采动损害关系的数值试验研究[J]. 辽宁工程技术大学学报, 2006(04) : 527-529. [113] 夏玉成. 构造应力对煤矿区采动损害的影响探讨[J]. 西安科技学院学报, 2004(01) : 72-74+78. [114] 王军, 宁建国, 刘学生, 等. 构造应力下采空区上覆岩层破坏规律数值模拟[J]. 煤矿安全, 2017, 48(01): 183-186. [115] 江文武, 杨作林, 李国建, 等. 构造应力型矿山顶板覆岩移动冒落响应特征研究[J]. 矿业研究与开发, 2015, 35(07): 58-62. [116] Wang C, Zhang C, Zhao X, et al. Dynamic structural evolution of overlying strata during shallow coal seam longwall mining[J]. International Int J Rock Mech Min Sci, 2018, 103:20-32. [117] 魏江波, 王双明, 宋世杰, 等. 浅埋煤层过沟开采覆岩裂隙与地表裂缝演化规律数值模拟[J]. 煤田地质与勘探, 2022, 50(10) : 67-75. [118] 杨滨滨, 袁世冲, 郑德志, 等. 近距离煤层重复采动覆岩裂隙时空演化特征研究[J]. 采矿与安全工程学报, 2022, 39(02) : 255-263. [119] 梁涛, 刘晓丽, 王思敬. 采动裂隙扩展规律及渗透特性分形研究[J]. 煤炭学报, 2019, 44(12) : 3729-3739. [120] YU Guangming, XIE Heping, ZHAO Jianfeng, et al. Fractal evolution of a crack network in overburden rock stratum[J]. Discrete Dynamics in Nature & Society, 2000, 5(1) : 47-52. [121] WEI Xiujun, GAO Mingzhong, LV Youchang, et al. Evolution of a mining induced fracture network in the overburden strata of an inclined coal seam[J]. International Journal of Mining Science and Technology, 2012, 22(6) : 779-783. [122] LA Pointe Paul. A method to characterize fracture density and connectivity through fractal geometry[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(6) : 421-429. [123] LIU X Y. Experimental study of dynamic development and fractal law of mining rock fracture[J]. Applied Mechanics and Materials, 2011(71/78) : 3428-3432. [124] Yang Daming, Guo Wenbing, Tan Yi. Study on the Evolution Characteristics of Two-Zone Failure Mode of the Overburden Strata under Shallow Buried Thick Seam Mining[J]. Advances in Civil Engineering, 2019, 9874769: 1-10. [125] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999, Z1(3-4) : 44-46. [126] YU Guangming, XIE Heping, ZHAO Jianfeng, et al. Fractal evolution of a crack network in overburden rock stratum[J]. Discrete Dynamics in Nature & Society, 2000, 5(1) : 47-52. [127] 王志国, 周宏伟, 谢和平. 深部开采上覆岩层采动裂隙网络演化的分形特征研究[J]. 岩土力学, 2009, 30( 8) : 2403-2408. [128] 李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报,2014,39( 6) : 1023-1030. [129] 王诗海. 煤层覆岩导水裂隙带高度发育规律与观测方法研究[D]. 山东科技大学, 2015. [130] 刘天泉, 仲维林, 焦传武. 煤矿地表移动与覆岩破坏规律及其应用[M]. 北京: 煤炭工业出版社, 1981. [131] (苏)格维尔茨曼著; 于振海译. 水体下安全采煤[M]. 1980: 143. [132] Hill J G, Price D R. The impact of deep mining on an overlying aquifer in western Pennsylvania[J]. Groundwater Monitoring & Remediation, 1983, 3(1): 138-143. [133] Elsworth D, Liu J. Ttopographic influence of longwall mining on groundwater supplies[J]. Groundwater, 1995, 33(5): 786-793. [134] 范钢伟. 浅埋煤层开采与脆弱生态保护相互响应机理与工程实践[M]. 徐州:中国矿业大学出版社, 2011. [ 135 ] Holla L., Buizen M. The ground movement, strata fracturing and changes in permeability due to deep longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(2-3) : 207-217. [136] BAI M,ELSWORTH D.Some aspects of mining under aquifers in China[J].Mining Science and Technology, 1990, 10(1) : 81-91. [137] PALCHIK V. Formation of fractured zones of overburden due to long wall mining[J]. Environmental Geology, 2003, 44 : 28-38. [138] Holla L. Ground movement due to longwall mining in high relief areas in New South Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(5) : 775-787. [139] Booth C J, Spande E D. Potentiometric and aquifer property changes above subsiding longwall mine panels, Illinois basin coalfield[J]. Ground Water, 1992, 30(3): 362-368. [140] 姜福兴, 蒋国安, 谭云亮. 印度浅埋坚硬顶板厚煤层开采方法探讨[J]. 矿山压力与顶板管理, 2002(1):57-59. [141] 赵宏珠. 印度综采长壁工作面浅部开采实践[J]. 中国煤炭, 1998(12):49-51. [142] SINGH R P and YADAV R N. Subsidence due to coal mining in India. Proceedings of the Fifth International Symposium on Land Subsidence. Hague, 1995[C]. Hague: IAHS, 1995, 234: 207-214. [143] Palchik V. Formation of fractured zones in overburden due to longwall mining [J]. Environmental Geology 2003, 44: 28-38. [144] 钱鸣高, 何富连, 王作棠, 等. 再论采场矿山压力理论[J]. 中国矿业大学学报, 1994,23(3):1-9. [145] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. [146] Arasteh H , Esmaeili K , Saeedi G , et al. Discontinuous Modeling of Roof Strata Caving in a Mechanized Longwall Mine in Tabas Coal Mine[J]. International journal of geomechanics, 2022(5) : 22. [147] Rezaei, Mohammad. Development of an intelligent model to estimate the height of caving–fracturing zone over the longwall gobs[J]. Neural Computing & Applications, 2016. [148] Mohammadi S., M. Ataei, R. Kakaie, et al. A new Roof Strata Cavability Index (RSCi) for longwall mining incorporating new rating system[J]. Geotech. Geol. Eng., 2019, 37(5): 3619-3636. [149] Mukherjee SN. Mechanised longwall mining in India–a status review[J]. J. Inst. Eng. 2003, 81: 5-10. [150] Majdi A, Hassani FP, Yousef Nasiri M. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining[J]. Int J Coal Geol, 2012, 98(1): 62-72. [151] 钱鸣高, 刘听成. 矿山压力及其控制[M]. 修订本. 北京: 煤炭工业出版社, 1990. [152] 钱鸣高, 缪协兴, 许家林. 岩层控制的关键层理论[M]. 徐州: 中国矿业大学出版社, 2000. [153] 师修昌. 煤炭开采上覆岩层变形破坏及其渗透性评价研究[D]. 中国矿业大学(北京), 2016. [154] 煤科院北京开采所. 煤矿地表移动与覆岩破坏规律及应用[M]. 北京: 煤炭工业出版社, 1981. [155] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995, 20(1): 1-5. [156] 刘天泉. “三下一上”采煤技术的现状及展望[J]. 煤炭科学技术, 1995(01): 5-7+62. [157] 刘天泉. 矿山岩层和地表变形规律及其与地质因素的关系[J]. 煤田地质与勘探, 1985(03): 31-35. [158] 刘天泉. 我国“三下”采煤技术的现状及发展趋势[J]. 煤炭科学技术, 1984(10): 24-28. [159] 钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994(06) : 557-563. [160] 钱鸣高, 张顶立, 黎良杰, 等. 砌体梁的“S-R”稳定及其应用[J]. 矿山压力与顶板管理, 1994(03) : 6-11+80. [161] 缪协兴, 钱鸣高. 采场围岩整体结构与砌体梁力学模型[J]. 矿山压力与顶板管理, 1995(Z1): 3-12+197. [162] 钱鸣高, 何富连, 王作棠, 等. 再论采场矿山压力理论[J]. 中国矿业大学学报, 1994(03) : 1-9. [163] 钱鸣高, 缪协兴. 采场上覆岩层结构的形态与受力分析[J]. 岩石力学与工程学报, 1995(02) : 97-106. [164] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996(03) : 2-7. [165] 缪协兴, 钱鸣高. 采动岩体的关键层理论研究新进展[J]. 中国矿业大学学报, 2000(01) : 25-29. [166] 许家林, 钱鸣高. 岩层控制关键层理论的应用研究与实践[J]. 中国矿业, 2001(06) : 56-58. [167] 宋振骐. 实用矿山压力控制[M]. 徐州: 中国矿业大学出版社, 1988. [168] 钱鸣高, 许家林. 覆岩采动裂隙分布的“O”形圈特征研究[J]. 煤炭学报, 1998, 23(5) : 466-469. [169] 王晓振, 许家林, 朱卫兵. 主关键层结构稳定性对导水裂隙演化的影响研究[J]. 煤炭学报, 2012, 37(04) : 606-612. [170] 许家林. 岩层采动裂隙演化规律与应用[M]. 徐州: 中国矿业大学出版社, 2016. [171] 侯忠杰. 组合关键层理论的应用研究及其参数确定[J]. 煤炭学报, 2001, 26(06) : 611-615. [172] 侯忠杰. 地表厚松散层浅埋煤层组合关键层的稳定性分析[J]. 煤炭学报, 2000, 25(02) : 127-131. [173] 黄庆享, 曹健, 高彬, 等. 基于三场演化规律的浅埋近距煤层减损开采研究[J]. 采矿与安全工程学报, 2020, 37(06) : 1171-1179. [174] 黄庆享, 韩金博. 浅埋近距离煤层开采裂隙演化机理研究[J]. 采矿与安全工程学报, 2019, 36(04) : 706-711. [175] 王双明, 范立民, 黄庆享, 等. 陕北生态脆弱矿区煤炭与地下水组合特征及保水开采[J]. 金属矿山, 2009, 11(S1) : 697-702+707. [176] 陈学星, 刘伟韬, 张培森. 厚表土层薄基岩条件下分层开采覆岩破坏规律研究[J]. 矿业安全与环保, 2010, 37(6) : 20-26. [177] 李佩全, 白汉营, 马杰, 等. 厚松散层薄基岩综采面覆岩破坏高度发育规律[J]. 煤炭科学技术, 2012, 40(1) : 35-41. [178] 柴敬, 袁强, 王帅, 等. 长壁工作面覆岩采动“横三区”光纤光栅检测与表征[J]. 中国矿业大学学报, 2015, 44(06) : 971-976. [179] 柴敬, 王帅, 袁强, 等. 采场覆岩离层演化的光纤光栅检测试验研究[J]. 西安科技大学学报, 2015, 35(02) : 144-151. [180] 柴敬, 薛子武, 郭瑞, 等. 采场覆岩垮落形态与演化的分布式光纤检测试验研究[J]. 中国矿业大学学报, 2018, 47(06) : 1185-1192. [181] 柴敬, 郭瑞, 薛子武, 等. 覆岩垮落形态的光纤监测立体模型试验研究[J]. 煤炭技术, 2018, 37(05) : 11-13. [182] 柴敬, 雷武林, 杜文刚, 等. 分布式光纤监测的采场巨厚复合关键层变形试验研究[J]. 煤炭学报, 2020, 45(01) : 44-53. [183] 赵高博, 郭文兵, 娄高中, 等. 基于覆岩破坏传递的导水裂缝带发育高度研究[J]. 煤田地质与勘探, 2019, 47(2) : 144-150. [184] 赵高博, 郭文兵, 杨达明, 等. 综放开采覆岩破坏模型及导水裂隙带高度研究[J]. 中国安全科学学报, 2017, 27(11) : 144-149. [185] Guo W, Zhao G, Lou G, at al. A new method of predicting the height of the fractured water-conducting zone due to high-intensity longwall coal mining in China[J]. Rock Mech Rock Eng, 2018, 52(8) : 2789-2802. [186] Du Feng, Gao Rui. Development Patterns of Fractured Water-Conducting Zones in Longwall Mining of Thick Coal Seams-A Case Study on Safe Mining Under the Zhuozhang River[J]. Energies, 2017,10, 1856: 1-16. [187] Lu W, He C, Zhang X. Height of overburden fracture based on key strata theory in longwall face[J]. PLOS ONE, 2020, 1: 1-15. [188] Wang X, Qin Q, Fan C. Failure Characteristic and Fracture Evolution Law of Overburden of Thick Coal in Fully Mechanized Sub-level Caving Mining[J]. Journal of Engineering Geology, 2017, 46(11): 2041-2048. [189] Lyu Pengfei, Lu Kangbin, Chen Xuehua. Mining Stress Distribution in Stope and Overlying Rock Fracture Characteristics and Its Disaster-Pregnant Mechanism of Coal Mine Earthquake[J]. Shock and Vibration, 2022, 7606360 : 1-17. [190] Ju Y , Wang Y , Su C , et al. Numerical analysis of the dynamic evolution of mining-induced stresses and fractures in multilayered rock strata using continuum-based discrete element methods[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 113 : 191-210. [191] Wang Gang, Wu Mengmeng, Wang Rui, et al. Height of the mining-induced fractured zone above a coal face[J]. Engineering Geology, 2017, 216: 140-152. [192] Chen Ying, Zhao Guoyan, Wang Shaofeng, et al. Investigations of the height of fractured zones in overburden induced by undersea mining[J]. Arabian Journal of Geosciences, 2019, 12(19):618. [193] 胡小娟, 李文平, 曹丁涛, 等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报, 2012, 37(04) : 613-620. [194] 丁鑫品, 郭继圣, 李绍臣, 等. 综放开采条件下上覆岩层“两带”发育高度预计经验公式的确定[J]. 煤炭工程, 2012(11) : 75-78. [195] 孙云普, 王云飞, 郑晓娟. 基于遗传-支持向量机法的煤层顶板导水断裂带高度的分析[J]. 煤炭学报, 2009, 34(12) : 1610-1615. [196] 许延春, 李俊成, 刘世奇, 等. 综放开采覆岩“两带”高度的计算公式及适用性分析[J]. 煤矿开采, 2011, 16(02) : 4-7+11. [197] 柴华彬, 张俊鹏, 严超. 基于 GA-SVR 的采动覆岩导水裂隙带高度预测[J]. 采矿与安全工程学报, 2018, 35(02) : 359-365. [198] Hou Enke, Wen Qiang, Ye Zhenni, et al. Height prediction of water-flowing fracturezone with a geneticalgorithm support-vector-machine method[J]. Int J Coal Sci Technol, 2020, 7(4): 740-751. [199] 徐树媛, 张永波, 孙灏东, 等. 基于 RBF 核 ε-SVR 的导水裂隙带高度预测模型研究[J]. 安全与环境学报, 2021, 21(05) : 2022-2029. [200] 陈佩佩, 刘鸿泉, 朱在兴, 等. 基于人工神经网络技术的综放导水断裂带高度预计[J]. 煤炭学报, 2005, 30(4): 438-442. [201] 马亚杰, 李建民, 郭立稳, 等. 基于 ANN 的煤层顶板导水断裂带高度预测[J]. 煤炭学报, 2007, 32(9) : 926-929. [202] 娄高中, 谭毅. 基于 PSO-BP 神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(04) : 198-204. [203] 徐树媛, 张永波, 时红, 等. 采动覆岩导水裂隙带发育高度研究进展[J]. 科学技术与工程, 2018, 18(34) : 139-148. [204] 程磊, 罗辉, 李辉, 等. 近年来煤矿采动覆岩导水裂隙带的发育高度的研究进展[J]. 科学技术与工程, 2022, 22(1) : 28-38. [205] 李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律试验研究[J]. 采矿与安全工程学报, 2016, 33(05) : 904-910. [206] 张峰, 题正义, 秦洪岩, 等. 基于覆岩剩余自由空间高度的地表最大下沉值确定方法[J]. 煤矿安全, 2021, 52(04) : 226-230. [207] 蒋力帅, 武泉森, 李小裕, 等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报, 2017, 42(08) : 1951-1959. [208] Pappas D M, Mark C. Behavior of simulated longwall gob material[R]. Report of Investigation, 1993. [209] PALCHIK V. Influence of physical characleristics of weak rock mass on height of caved zone over abandoned subsurface coal mines[J]. Environmental Geology ,2002 ,42(1) :92-101. [210] 王悦汉, 邓喀中, 张冬至, 等. 重复采动条件下覆岩下沉特性的研究[J]. 煤炭学报, 1998(05) : 24-29. [211] 陈晓祥, 苏承东, 唐 旭, 等. 饱水对煤层顶板碎石压实特征影响的试验研究[J]. 岩石力学与工程学报, 2014, 31(1): 3318-3326. [212] 黄炳香, 刘长友, 许家林. 采动覆岩破断裂隙的贯通度研究[J]. 中国矿业大学学报, 2010, 39(1): 45-49. [213] 张永波, 靳钟铭, 刘秀英. 采动岩体裂隙分形相关规律的试验研究[J]. 岩石力学与工程学报, 2004, 23(20) : 3426-3429. [214] SHAO Hao, JIANG Shuguang, WANG Lanyun, et al. Bulking factor of the strata overlying the gob and a three-dimensional numerical simulation of the air leakage flow field[J]. Mining Science and Technology, 2011, 21(2) : 261-266. [215] 王文学, 王四巍, 刘海宁, 等. 采后覆岩裂隙岩体应力恢复的时空特征[J]. 采矿与安全工程学报, 2017, 34(01) : 127-133. [216] 王少锋, 王德明, 曹凯, 等. 采空区及上覆岩层空隙率三维分布规律[J]. 中南大学学报(自然科学版), 2014, 45(03) : 833-839. [217] 焦彦锦, 朱建芳, 耿瑶, 等. 采空区覆岩“竖三带”孔隙率三维分布研究[J]. 煤矿安全, 2021, 52(11) : 159-165. [218] 朱明华, 邹俊兴. 初采覆岩破坏性影响区的解析高度[J]. 焦作矿业学院学报, 1995(02) : 83-88. [219] 夏小刚, 黄庆享. 基于空隙率的冒落带动态高度研究[J]. 采矿与安全工程学报, 2014, 31(1): 102-107. [220] 王泓博, 张勇, 庞义辉, 等. 废弃采空区裂隙带高度预测模型及应用[J]. 岩土力学, 2022, 43(04) : 1073-1082. [221] 张广超, 陶广哲, 曹志国, 等. 考虑垮落岩体应变硬化特性的采场覆岩破坏特征研究[J]. 煤炭科学技术, 2022, 50(03) : 46-52. [222] 袁江强. 煤矿顶板覆岩碎胀特征及碎裂胶结体力学特性试验研究[D]. 西安科技大学, 2021. [223] 尹增德, 李伟, 王宗胜. 厚煤层不同开采方法覆岩破坏规律研究[J]. 焦作工学院学报, 1999(03) : 13-15. [224] 吴锋锋, 杨敬轩, 于斌, 等. 厚及特厚煤层工作面顶板垮落高度的确定[J]. 中国矿业大学学报, 2014, 43(05) : 765-772. [225] 薛东杰, 周宏伟, 任伟光, 等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015, 40(08) : 1746-1752. [226] 周泽, 赵维生, 朱川曲, 等. 基于塑性铰理论的导水裂隙带发育高度预判[J]. 地下空间与工程学报, 2018, 14(05) : 1305-1312. [227] 李树刚, 徐培耘, 赵鹏翔, 等. 综采工作面覆岩压实区演化采高效应分析及应用[J]. 煤炭学报, 2018, 43(S1) : 112-120. [228] 侯恩科, 冯栋 ,谢晓深, 等. 浅埋煤层沟道采动裂缝发育特征及治理方法[J]. 煤炭学报, 2021, 46(04) : 1297-1308. [229] 赵强. 金鸡滩煤矿厚煤层开采双组土层采动隔水性演变规律[D]. 中国矿业大学(北京), 2015. [230] 程志恒. 近距离煤层群保护层开采裂隙演化及渗流特征研究[D]. 中国矿业大学, 2020. [231] 陈秀友, 檀双英, 易德礼. 祁东煤矿3224工作面导水裂缝带高度数值模拟[J]. 煤炭科学技术, 2007(10) : 84-86. [232] 彭文斌. FLAC 3D 实用教程[M]. 北京: 机械工业出版社, 2007: 1-3. [233] 陈育民 ,徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 北京: 中国水利水电出版社, 2009. [234] 王涛, 韩煊, 赵先宇, 等. FLAC3D 数值模拟方法及工程应用[M]. 北京: 中国建筑工业出版社, 2015. [235] 常中保. 无煤柱开采保护层覆岩裂隙发育及瓦斯抽采技术[D]. 中国矿业大学, 2015. [236] 郭文兵. 煤矿开采损害与保护[M]. 煤炭工业出版社, 2013:40+58-60. [237] 王云飞, 王立平, 焦华喆, 等. 不同围压下砂岩的变形力学特性与损伤机制[J]. 煤田地质与勘探, 2015, 43(04) : 63-68. [238] 杨逾. 垮落带注充控制覆岩移动机理研究[D]. 辽宁工程技术大学, 2007. [239] 武猛猛, 王刚, 王锐, 等. 浅埋采场上覆岩层孔隙率的时空分布特征[J]. 煤炭学报,2017, 42(S1) : 112-121. [240] 武占超. 大柳塔矿 22615 工作面采空区覆岩结构特征及地表沉陷预测[D]. 辽宁工程技术大学, 2017. [241] 王泓博, 张勇, 庞义辉, 等. 基于地表点下沉阶段特征的覆岩裂隙带高度演化[J]. 中国矿业大学学报, 2022, 51(1) : 24-34. [242] DETOURNAY E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mechanics and Rock Engineering, 1986, 19 : 99-108. [243] DETOURNAY E. Elastoplastic model of a deep tunnel for a rock with variable dilatancy[J]. Rock Mechanics and Rock Engineering, 1986, 19 : 99-108. [244] 许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(1) : 35-43. [245] 张俊英. 采动破碎岩体的动态碎胀性物理模拟的研究[J]. 选煤技术, 2006, 9 : 1-5. [246] 汪北方, 梁冰, 王俊龙, 等. 煤矿地下水库岩体碎胀特性试验研究[J]. 岩土力学, 2018, 39(11) : 1-8. [247] 张冬至, 邓喀中, 周鸣. 采动岩体碎胀系数变化规律研究[J]. 中国矿业大学学报, 1998, 27(1) : 1-3. [248] 郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展[J]. 煤炭学报, 2020, 45(2) : 509-523. [249] Feng D. , Hou E. K. , Xie X.S. , et al. Research on Water-conducting Fractured Zone height under the condition of large mining height in Yushen mining area, China [J]. Lithosphere, 2023 : 1-12. [250] 娄高中, 谭毅. 基于 PSO-BP 神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(4) : 198-204. [251] 武忠山, 王生全, 彭涛, 等. 曹家滩煤矿导水裂隙带发育规律影响因素数值模拟[J]. 科学技术与工程, 2019, 19(25) : 125-129. [252] 王连国, 王占盛, 黄继辉, 等. 薄基岩厚风积沙浅埋煤层导水裂隙带高度预计[J]. 采矿与安全工程学报, 2012, 29(05): 607-612. [253] 董博文. 曹家滩煤矿采煤对地下水的影响研究[D]. 西安科技大学, 2021. [254] 车晓阳, 侯恩科, 谢晓深, 等. 煤层开采导水裂隙带发育高度分析[J]. 中国科技论文, 2016, 11(3) : 1-4. [255] 王文学, 隋旺华, 董青红. 应力恢复对采动裂隙岩体渗透性演化的影响[J]. 煤炭学报, 2014, 39(6) : 1031-1038. [256] 郭广礼, 缪协兴, 张振南. 老采空区破裂岩体变形性质研究[J]. 科学技术与工程, 2002, 2(5) : 44-47. [257] SHAO H. , JIANG S. G. , WANG L. Y. , et al. Bulking factor of the strata overlying the gob and a three-di mensional numerical simulation of the air leakage flow field[J]. Mining Science and Technology, 2011, 21(2) : 261-266. [258] 勒热夫斯基 B B, 等; 何修仁 译. 岩石物理学基础. 徐州 中国矿业大学出版社, 1989. [259] 谷文伟, 高召宁, 李颜. 极近距离煤层综放开采工作面覆岩“两带”发育规律研究[J]. 中国安全生产科学技术, 2022, 18(5) : 1-8. [260] 聂琦苗, 牛会永, 刘轶康, 等. 深井覆岩采动冒落及孔隙率分布特征研究[J].煤炭技术, 2021, 40(11) : 18-22. [261] 邓喀中, 周鸣, 谭志祥, 等. 采动岩体破裂规律的试验研究[J]. 中国矿业大学学报, 1998, 27(3) : 1-4. [262] 秦洪岩, 欧阳振华, 提正义, 等. 充填工作面上覆岩层碎胀特性试验研究[J]. 煤炭技术, 2019, 38(11) : 1-3. [263] 梁冰, 汪北方, 姜利国, 等. 浅埋采空区垮落岩体碎胀特性研究[J]. 中国矿业大学学报, 2016, 45(3) : 1-8. [264] 苏承东, 顾明, 唐旭, 等. 煤层顶板破碎岩石压实特征的试验研究[J]. 岩石力学与工程学报, 2012, 31(1) : 18-26. [265] 李连崇, 唐春安, 梁正召. 考虑岩体碎胀效应的采场覆岩冒落规律研究[J]. 岩土工程, 2010, 31(11) : 3537-3541. [266] 许延春, 李俊成, 刘世奇, 等. 综放开采覆岩“两带”高度的计算公式及适用性分析[J]. 煤矿开采, 2011, 16(02) : 4-7+11. [267] 丁鑫品, 郭继圣, 李绍臣, 等. 综放开采条件下上覆岩层“两带”发育高度预计经验公式的确定[J]. 煤炭工程, 2012(11) : 75-78. [268] Wei Jiangbo, Wang Shuangming, Song Shijie, et al. Experiment and numerical simulation of overburden and surface damage law in shallow coal seam mining under the gully[J]. Bulletin of Engineering Geology and the Environment, 2022, 81: 207. [269] 张伟胜. 葫芦素煤矿厚硬砂岩顶板中厚煤层综采覆岩活动规律研究[D]. 中国矿业大学, 2020. [270] Dong Feng, Enke Hou, Xiaoshen Xie, Jiangbo Wei. Diferences in the dynamic evolution of surface crack widths at diferent locations in the trench slope area and the mechanisms: a case study[J]. Environ Geochem Health, 2022, 12: 1-22
﹀
|
中图分类号: |
TD325
|
开放日期: |
2023-06-16
|