论文中文题名: | 基于深度森林网络的SAR图像变化检测算法研究 |
姓名: | |
学号: | 21207223065 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 遥感图像分析与解译 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-05-31 |
论文外文题名: | Research on SAR Image Change Detection Algorithm Based on Deep Forest Network |
论文中文关键词: | |
论文外文关键词: | Change detection ; deep forest ; heterogeneous deep forest ; feature fusion ; feature selection |
论文中文摘要: |
合成孔径雷达(Synthetic Aperture Radar,SAR)的微波成像技术具有全天时、全天候的特性,在民用和军用领域得到广泛应用。SAR图像变化检测是指对同一地点两幅不同时相的SAR图像通过合适的算法得到变化区域的过程,该技术在环境监测、农田检测、自然灾害检测等方面的应用日益重要。然而,SAR图像存在大量相干斑噪声,对变化检测产生很大影响。当前,提高SAR图像变化检测准确率仍是关键目标。本文以SAR图像为研究对象,深度森林网络为基本方法,着重针对SAR图像中的相干斑噪声对变化检测产生的影响展开研究。 (1)针对SAR图像中的相干斑噪声问题,本文提出了一种基于深度森林网络的特征融合(简称RF-MGS-DF)与SAR图像变化检测方法。首先,提取了差异图两种不同尺度的邻域特征,通过深度森林(deep forest,DF)网络的多粒度扫描(multi granularity scanning,MGS)结构将两种不同尺度的邻域特征转化为类概率特征;然后,提取了差异图的纹理特征,通过随机森林(random forest,RF)特征重要性评分去除冗余特征;最后,将类概率特征与筛选后的纹理特征进行串联融合,采用DF进行决策分类。实验结果表明,邻域特征经过MGS后假阳性有所下降,抑制噪声性能更好;纹理特征经过RF特征筛选后,假阴性有所下降,检测精度更高;RF-MGS-DF方法得到的变化检测结果与特征融合前相比噪声减少,变化边缘更加细致,总体精度和Kappa系数有所上升。 (2)针对DF网络在SAR图像变化检测上的局限性,本文提出了一种基于异构深度森林网络的特征筛选(简称RFHDF)与SAR图像变化检测方法。首先,为了增大网络的多样性,提高泛化性能,在DF的基础上改进得到异构深度森林网络(heterogeneous deep forest,HDF),该网络每层由RF、完全随机树(extremely randomized trees,ERT)、梯度提升决策树(gradient boosting decision tree,GBDT)、完全梯度提升决策树(extreme gradient boosting,XGBoost)、轻梯度提升机(light gradient boosting machine,LightGBM)五种基本模型组成;其次,为了充分利用HDF每层输出的特征,在HDF每层之间添加一个RF特征筛选模块,将每层输出的重要特征保留下来,作为下一层的输入特征。经过消融实验和对比试验发现,RFHDF方法所得到的变化检测结果噪声变少,准确率和Kappa系数有所提高。 |
论文外文摘要: |
The microwave imaging technology of Synthetic Aperture Radar (SAR) possesses all-weather and all-day capabilities, and is widely utilized in civilian and military sectors. The SAR image change detection refers to the process of identifying changing regions by analyzing two SAR images of the same location acquired at different times using appropriate algorithms. This technology is becoming increasingly important in applications such as environmental monitoring, agricultural land detection, and natural disaster detection. However, SAR images are plagued by a significant amount of speckle noise, which has a substantial impact on change detection. Therefore, enhancing the accuracy of SAR image change detection remains a key objective. This article focuses on SAR images as the research subject, with deep forest networks as the fundamental method, specifically investigating the impact of coherent speckle noise in SAR images on change detection. (1) In response to the incoherent speckle noise issue in SAR images, this article proposes a feature fusion method based on deep forest networks (referred to RF-MGS-DF) for SAR image change detection. Firstly, two different scale neighborhood features of the difference map are extracted, and converted into probabilistic features by multi-granularity scanning (MGS) structure of deep forest (DF) network. Then, the texture features of the difference map were extracted, and the redundant features were removed by random forest (RF) feature importance score. Finally, the class probability features and the selected texture features are fused in series, and DF is used for decision classification. The experimental results indicate that after undergoing MGS, false positives of neighborhood features are reduced, leading to improved noise suppression performance. Texture features, post RF feature selection, showed a decrease in false negatives, enhancing detection accuracy. The change detection results from the RF-MGS-DF method exhibited reduced noise, finer change edges compared to before feature fusion, and an increase in overall accuracy and Kappa coefficient. (2) To address the limitations of DF networks in SAR image change detection, this paper proposes a feature selection method based on heterogeneous deep forest networks (referred to as RFHDF) for SAR image change detection. To increase the diversity of the network, an improvement over the DF called the Heterogeneous Deep Forest (HDF) was developed. This network consists of RF, Extremely Randomized Trees (ERT), Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) at each layer. This enhancement aims to boost the feature transformation capabilities of the network. To fully utilize the features output by each layer of HDF, an RF feature selection module is added between each layer of HDF to retain the important features from the output of each layer and use them as input features for the next layer. Through ablation and comparative experiments, it was found that the change detection results obtained by the RFHDF method had less noise, and the accuracy and Kappa coefficient were improved. |
参考文献: |
[17] 王恒涛,张上,贾付文.基于随机森林SAR图像变化检测方法[J].激光杂志,2023,44(06):72-77. [30] Kittler J, Illingworth J. Minimum error thresholding. Pattern Recogn[J]. 1986, 19:41–47 [39] 张萌,潘志刚. 基于分层模糊聚类和小波卷积神经网络的SAR图像变化检测算法[J]. 中国科学院大学学报,2023,40(5),637-646. [52] 王洪菠.极化SAR图像变化检测算法及其快速实现[D].西安电子科技大学,2022. [53] 张杰.基于样本不平衡学习和结构语义信息的SAR图像变化检测网络[D].西安电子科技大学,2019. [54] Zhou Z H, Feng J. Deep forest[J]. National Science Review, 2019, 6(01), 74-86. [55] Breiman L. Random Forests[J]. Machine learning, 2001, 45(1) 5–32. [56] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees[J]. Machine Learning, 2006, 63, 3–42. |
中图分类号: | TP75 |
开放日期: | 2024-06-14 |