- 无标题文档
查看论文信息

论文中文题名:

 基于信息素挥发-追踪机制的改进黑寡妇优化算法及其应用    

姓名:

 张伟倩    

学号:

 22301009001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0701    

学科名称:

 理学 - 数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 数学    

研究方向:

 智能优化算法    

第一导师姓名:

 赵梦玲    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-20    

论文答辩日期:

 2025-06-08    

论文外文题名:

 Improved Black Widow Optimization Algorithm Based On Information Pheromone Evaporation-Tracking Mechanism And Applications    

论文中文关键词:

 黑寡妇优化算法 ; Logistic-Tent映射 ; 信息素 ; 柯西变异 ; 路径规划    

论文外文关键词:

 Black Widow optimization algorithm ; Logistic-Tent mapping ; Pheromone ; Cauchy mutation ; path planning    

论文中文摘要:

原有的黑寡妇优化算法框架简单,参数设置直观,适用于多种优化问题,能够有效地探索解空间,具备强大的全局搜索能力。然而在某些情况下,该算法可能会过早收敛到局部最优解,还可能需要较长的时间。针对黑寡妇优化算法存在的问题,本文提出基于信息素挥发-追踪机制的改进黑寡妇优化算法,并进行了仿真实验研究。

首先,Logistic-Tent 映射作为初始化策略,该方法能在初始化阶段生成更多样化的个体,不仅提升了种群的初始质量,还增强了算法整体的优化效率;引入了信息素挥发-追踪机制,不仅增强了探索与利用的平衡,而且提高了在复杂搜索空间中避免局部最优和加速收敛到全局最优的能力;采用了 Sine 映射和柯西分布变异,不仅增强了黑寡妇算法的全局搜索能力,还提高了解的多样性和算法的稳定性。

其次,为验证改进后算法的性能,选取 23 个测试函数进行实验,将改进的黑寡妇优化算法与原黑寡妇优化算法、灰狼优化算法、蝙蝠优化算法、蜘蛛蜂优化算法以及萤火虫优化算法进行对比。对比结果表明:改进后的算法能够有效提升算法的收敛精度和鲁棒性。

最后,将改进算法应用于优化设计问题,分别以二维栅格路径问题和无人机(UAV)三维路径规划问题为例。在二维栅格设计优化问题中,设置了 20×20 与 40×40 两组二维栅格地图,改进后的黑寡妇优化算法规划结果最优,路径长度最短;在无人机(UAV)三维路径规划问题中,通过建立无人机三维路径模型证明了改进后的黑寡妇优化算法的最优路径同时满足了安全性(如避障)和可行性(如飞行高度、转弯率限制),实现了多目 标综合成本最小化,验证了算法的实用性和可行性。

在文章的结尾,总结了本文的研究成果,阐述了当前算法的不足之处和未来探索方向。本文借助对黑寡妇优化算法的改进和应用,使得群优化算法在工程领域实现了更广泛的应用。

论文外文摘要:

The original Black Widow optimization algorithm has a simple framework and intuitive parameter settings, making it suitable for various optimization problems. It can effectively explore the solution space and possesses strong global search capabilities. However, in certain situations, this algorithm may converge too early to local optima and may require longer computation times.To address the issues with the Black Widow optimization algorithm, this paper proposes an improved black widow optimization algorithm based on information pheromone evaporation-tracking mechanism and conducts simulation experiments.

First, logistic-tent mapping as an initialization strategy can generate more diverse individuals during the initial stage, not only improving the initial quality of the population but also enhancing the overall optimization efficiency of the algorithm; it introduces a pheromone volatilization-tracing mechanism, which not only enhances the balance between exploration and exploitation but also improves the ability to avoid local optima and accelerate convergence to global optimality in complex search spaces; the use of sine mapping and Cauchy distribution variation not only strengthens the global search capability of the Black Widow algorithm but also increases the diversity of solutions and the stability of the algorithm .

Secondly, to verify the performance of the improved algorithm, 23 test functions were selected for experimentation. The improved Black Widow optimization algorithm was compared  with the original Black Widow optimization algorithm, Grey Wolf optimization algorithm, Batoptimization algorithm, Spider Bee optimization algorithm, and Firefly optimization algorithm. The results show that the improved algorithm can effectively enhance the convergence accuracy and robustness of the algorithm.

Finally,the improved algorithm was applied to optimization design problems, using two dimensional grid path problems and three-dimensional path planning for unmanned aerial vehicles (uav) as examples. In the two-dimensional grid design optimization problem, two sets of 20x20 and 40x40 two-dimensional grid maps were set up, and the improved Black Widow optimization algorithm yielded the best results, with the shortest path length. In the three-dimensional path planning for uav, a three-dimensional path model of the uav was established to demonstrate that the improved Black Widow optimization algorithm's optimal path simultaneously meets safety requirements (such as obstacle avoidance) and feasibility (such as flight altitude and turn rate constraints), achieving multi-objective comprehensive cost minimization, thus verifying the practicality and feasibility of the algorithm.

At the end of this paper, the research results are summarized, and the shortcomings of the current algorithm and the future exploration direction are expounded. With the improvement and application of the black widow optimization algorithm, the swarm optimization algorithm has been applied more widely in the engineering field.

参考文献:

[1]栾思瑶. 基于改进黑寡妇算法的层流冷却过程优化控制方法[D]. 沈阳建筑大学, 2024.

[2]Eberhart R, Kennedy J. A new optimizer using particle swarm thery [C]//Micro Machine and Human Science, 1995. MHS’95. Proceeding of the Sixth International Symposium on. IEEE, 1995: 39-43.

[3]Storn R, Price K. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization 1997, 11(4): 341-359.

[4]Yang XS. Nature-Inspired metaheuristic algorithms[M]. Frome, UK: Luniver Press, 2008.

[5]YANG X S. A new metaheuristie bat-inspired algorithm[M]//J R.González, Cruz, C.,et al, Nature Inspired Cooperative Strategiesfor Optimization (NICSO), Berlin: Springer 2010,284: 65-74.

[6]S. Mirjalili,S. M. Mirjalili and A. Lewis. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

[7]S. Mirjalili,A. Lewi. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.

[8]Arora S,Singh S. Butterfly optimization algorithm: Anovel approach for global optimizat-ion[J]. Soft Computing, 2019, 23(3): 715-734.

[9]STOA: A bio-inspired based optimization algorithm for industrial engineering problems[J]. Gaurav Dhiman;Amandeep Kaur.Engineering Applications of Artificial Intelligence, 2019.

[10]Faramarzi A, Heidarinejad M, Mirjalili S. Marine predators algorithm: a nature⁃inspired metaheuristic [J]. Expert systems with applications, 2020, 152: 113377.

[11]ABDEL-BASSET M, MOHAMED R, JAMEEI M, et al, Spider wasp optimizer: A novel meta-heuristic optimization algorithm [J]. Artificial IntelligenceReview, 2023, 56(10): 11675-11738.

[12]李郅琴, 杜建强, 聂 斌. 基于黑寡妇算法的特征选择方法研究[J]. 计算机工程应用. 2022. 58(16): 147-156.

[13]NAM D D . 面向发动机悬架系统的多目标优化算法和最优控制算法研究[D]. 东北大学, 2021. DOI:10.27007/d.cnki.gdbeu.2021.001355.

[14]曹源. 大数据下变电站多智能体系统故障诊断[D]. 新疆大学, 2020. DOI:10.27429/d. cnki. gxjdu. 2020. 000656.

[15]李雷雷, 李盼池, 赵娅. 一种改进的量子粒子群优化算法[J]. 计算机与数字工程, 2025, 53(02): 303-307+394.

[16]李久辉. 地下水LNAPLs污染溯源辨析[D]. 吉林大学, 2021. DOI:10.27162/d.cnki. gjlin. 2021. 000549.

[17]尹德鑫, 张达敏, 蔡朋宸, 等. 基于鸽群算法的Fuch混沌蝗虫算法[J]. 计算机应用研究, 2021, 38(07): 2013-2017. DOI: 10.19734/j. issn. 1001-3695. 2020. 10. 0359.

[18]Hu G, Du B, Wang X. An enhanced black widow optimization algorithm for feature selection[J]. Knowledge-based systems, 2022(Jan.10):235.

[19]Fu Y P, Hou Y S, Chen Z H. Modelling and scheduling integration of distributed product-ion and distribution problems via black widow optimization[J]. Swarm and Evolutionary Computation, 2021, 68: 101015.

[20]赵小惠, 杨文彬, 胡胜, 等. 基于VMD能量权重法与BWO-SVM 的铣刀磨损状态监机电工程, 2022. 39(12): 1762-1768+1783.

[21]Dahiya P, Saha A K.Frequency Regulation of Interconnected Power System Using Black Widow Optimization[J]. IEEE Access, 2022, 10(000): 25219-25236. DOI:10.1109/ACCE-SS.2022.3155201.

[22]Mukilan P, Semunigus W.Human object detection: An enhanced black widow optimizati-on algorithm with deep convolution neural network[J]. Neural Computing and Applicatio-ns, 2021.

[23]傅彦铭, 许励强, 祁康恒. 角逐和信息素引导的多目标黑寡妇优化算法[J]. 计算机科学与探索, 2023, 17(12): 2913-2927.

[24]匡振宇, 张俊, 王艳红. 多策略改进麻雀搜索算法及工程应用[J]. 运筹与管理, 2024, 33(11): 58-64. DOI:10.12005/orms.2024.0353.

[25]孙家茂. 群智能优化算法及应用研究[D]. 东北大学[2025-03-24].

[26]吴超略. 混合自适应的改进麻雀搜索算法及应用研究[D]. 广西民族大学, 2023.

[27]刘凯, 代永强. 融合变异策略的自适应蝴蝶优化算法[J]. 计算机应用研究, 2022, 39(01): 134-140+145. DOI:10.19734/j.issn.1001-3695.2021.06.0244.

[28]安宁. 黑寡妇算法与P&O相结合的光伏MPPT研究[J]. 重庆工商大学学报(自然科学版), 2024, 41(05): 104-109. DOI:10.16055/j.issn.1672-058X.2024.0005.013.

[29]刘慧. 黑寡妇优化算法及其在时间序列预测的应用[D]. 广西民族大学, 2023.

[30]Adnan M R I , Ahmadi A D , Binqiao Z, et al. A novel swarm intelligence: cuckoo optimiz-ation algorithm (COA) and SailFish optimizer (SFO) in landslide susceptibility assessment[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(5): 1717-1743.

[31]聂盼盼. 基于对支持向量机的入侵检测技术研究[D]. 南京航空航天大学, 2012.

[32]李郅琴. 中药物质基础高维小样本数据的特征选择方法研究[D]. 江西中医药大学, 2021.

[33]李维希, 何晋, 杨凡. 基于多策略黑寡妇算法的断路器全寿命周期成本优化[J]. 陕西科技大学学报, 2023. 41(01): 159-165+173. DOI: 10.19481/j.cnki.issn2096-398x. 2023.01.005.

[34]安宁. 基于模型预测直接功率控制的光伏并网逆变控制研究[D]. 安徽理工大学, 2024.

[35]蒋正锋, 李春青, 杨秀增, 等. 灰狼优化算法研究综述[J/OL]. 计算机工程与应用, 142[2025-06-06]. http://kns.cnki.net/kcms/detail/11.2127.tp.20250514.1037.002.html.

[36]王宇杰, 李宇, 黄海宁. 一种基于蝙蝠算法的多目标跟踪数据关联方法[J]. 声学技术, 2020, 39(01): 98-103. DOI:10.16300/j.cnki.1000-3630.2020.01.017.

[37]杨中仪. 集装箱码头作业联合调度优化研究[D]. 哈尔滨工程大学, 2024.

[38]王彩霞. 基于tent混沌映射的改进粒子群算法在光伏MPPT中的应用研究[D]. 伊犁师范大学, 2022.

[39]秦秋霞, 梁仲月, 徐毅. 基于Logistic-Tent混沌映射和位平面的图像加密算法[J]. 大连民族大学学报, 2022. 24(03): 245-252. DOI:10.13744/j.cnki.cn21-1431/g4. 2022.03.016.

[40]黄亿辉. 基于群体智能算法的WSN覆盖优化研究[D]. 贵州大学, 2023.

[41]伍鹏飞. 基于智能算法的无人机路径规划研究[D]. 南京信息工程大学, 2022.

[42]戴峦岳, 梁宵月, 王帅. 基于互利共生与变异的GOA及UAV路径规划应用[J]. 电光与控制, 2023, 30(09): 1-8.

[43]宋志强, 夏庆锋, 陈少博. 基于改进球面向量粒子群优化的UAV航迹规划[J]. 电光与控制, 2023, 30(04): 56-60.

[44]刘棋锴. 贫富优化算法和人工蜂鸟算法的分析及应用研究[D]. 广西民族大学, 2023.

[45]葛超, 马朋贺, 王蕾. 基于改进蛇优化算法的无人机三维路径规划[J]. 计算机仿真, 2024, 41(07): 80-84+441

[46]Li H, Miao F, Mei X. Facilitating Multi-UAVs application for rescue in complex 3D sea wind offshore environment: A scalable Multi-UAVs collaborative path planning method ba-sed on improved coatis optimization algorithm[J]. Ocean Engineering, 2025, 324120701-120701.

[47]邢博闻, 杨柳, 胡庆松. 无人船全覆盖路径规划算法研究[J]. 兵器装备工程学报, 2022,43(09):28-33.

中图分类号:

 O29    

开放日期:

 2025-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式