- 无标题文档
查看论文信息

论文中文题名:

 双悬臂截割机器人动力学建模与控制研究    

姓名:

 周昊晨    

学号:

 21205016009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 机器人技术及应用    

第一导师姓名:

 刘鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-01-02    

论文答辩日期:

 2024-12-01    

论文外文题名:

 On the dynamics and control of dual-arm cutting robots for a coal mine    

论文中文关键词:

 大断面快速成形 ; 双悬臂截割机器人 ; 相对运动学 ; 相对动力学 ; 工作空间 ; 反馈控制 ; 相对力/位置混合控制    

论文外文关键词:

 Rapid forming of large-sized cross-section ; dual-arm cutting robot ; relative kinematics ; relative dynamics ; workspace ; feedback control ; relative force/position hybrid control.    

论文中文摘要:

煤炭是中国最主要的一次能源,在中国经济发展中处于托底保障的决定性地位。但由于开采和掘进智能化水平差异,导致了煤炭行业存在“采掘失衡”问题,严重制约着煤炭产能提升的潜力。随着矿山开采规模的增加,为保证矿井掘进、运输、通风等大型井下设备的安装和运行,煤矿巷道的断面有逐渐扩大的趋势。传统的单悬臂掘进机因工作空间有限,在大断面快速成形时无法一次完成,工序繁复且效率低下。因此,本文提出了双悬臂截割机器人,旨在为大断面快速成型和巷道掘进提供理论依据和指导。本文的主要研究工作如下:
(1) 双悬臂截割机器人相对运动学建模:针对双悬臂截割机器人难以建立统一描述双臂运动的模型问题,基于D-H方法和机器人广义连杆坐标系建立了双悬臂截割机器人的运动学模型,通过运动学方程求导法和微分变换法相结合,计算得到单截割臂的雅可比矩阵。进一步地,通过相对旋转变换和相对旋转平移复合变换,建立了两种运动学的传播路径,并基于两种传播路径构建两臂的运动等式,最终建立双悬臂截割机器人的相对运动学模型,并基于机器人的运动学模型提出了机器人的双臂联合工作空间。对机器人的相对运动学建模表明,相对运动学模型能通过两末端截割头的相对运动作为唯一变量同时描述两截割臂的运动状态,将两臂独立的运动学整合为一个整体进行表达。对机器人的联合工作空间的仿真表明,相比于单臂掘进机,双悬臂截割机器人拥有更大的工作空间,其联合工作空间能够包络更大尺寸的断面,能够一次性完成大断面的成形工作,简化了单臂掘进机在开挖大断面时繁复的工序。
(2) 双悬臂截割机器人相对动力学建模:针对双悬臂截割机器人难以建立统一描述双臂动力学特性的模型问题,基于拉格朗日动力学方程求得机器人独立的单臂的动力学模型,再将机器人的动力学模型与虚位移与虚功原理结合,基于相对雅可比矩阵求得双悬臂截割机器人的相对动力学模型,由此求解了双臂末端相对力和机器人关节变量的映射关系。对机器人建立的相对动力学模型表明,以相对力作为唯一变量,相对动力学模型能够同时描述两臂的力学与动力学特性,将两臂独立的动力学整合为一个整体进行表达,为后续研究该机器人的控制算法提供了参考。
(3) 双悬臂截割机器人控制方法研究:针对双悬臂截割机器人存在多自由度导致统一控制困难的问题,基于机器人相对运动学模型设计了闭环的误差反馈控制器,通过末端相对位置误差实现同时控制双臂的运动。同时,基于机器人的相对动力学模型设计了闭环的相对力/位置混合控制器,最后搭建机器人虚拟样机进行了模型验证。对相对运动学反馈控制器的仿真表明,双悬臂截割机器人能够仅通过两截割头的相对运动这一唯一变量实现同时控制双臂的运动,使双臂末端截割头在笛卡尔空间中的轨迹逐渐收敛至期望位置。对相对力/位置控制器的仿真结果表明,该控制器能够在位置层通过唯一变量相对位置同时控制两截割头的运动,并在力层通过唯一变量相对力同时控制两截割头的输出力,为该机器人的控制提供了理论依据和有益参考。

论文外文摘要:

Coal plays a crucial role as the primary non-renewable energy source in China, providing essential support for China’s economic development. However, due to disparities in the level of automation between coal mining and roadway excavation, the coal industry faces a problem of “mining imbalance”, which severely constrains the potential for increasing coal production capacity. With the increase in the scale of mining operations, there is a trend of gradually expanding the cross-section of coal mine tunnels to ensure the installation and operation of large underground equipment for mine driving, transportation, ventilation, and other purposes. The traditional single-arm mining machine, due to its limited working space, cannot complete large-section rapid formation in a single operation. The process is complex and inefficient. Therefore, this research proposes a dual-arm cutting robot, aiming to provide theoretical basis and guidance for large-section rapid formation and tunnel excavation. The main research is as follows: (1) Relative kinematic modeling of the dual-arm cutting robot: To address the difficulty in establishing a unified description of the dual-arm motion for a dual-arm cutting robot, a kinematic model of the robot is developed based on the Denavit-Hartenberg (D-H) method and the robot’s generalized link coordinate system. By combining the methods of kinematic equation differentiation and differential transformation, the Jacobian matrix for a single cutting arm is calculated. Furthermore, two kinematic propagation paths are established through relative rotational transformation and composite relative rotational-translational transformation. Based on these two propagation paths, the motion equations for the two arms are derived, ultimately leading to the development of the relative kinematic model for the dual-arm cutting robot. Based on the kinematic model, the dual-arm cooperative workspace of the robot is proposed. The relative kinematic modeling of the robot shows that the relative kinematic model can describe the motion states of both cutting arms simultaneously, using the relative motion of the two end cutting heads as the sole variable, integrating the independent kinematics of both arms into a unified expression. Simulation of the robot’s cooperative workspace indicates that, compared to a single-arm mining machine, the dual-arm cutting robot has a larger workspace. Its cooperative workspace can envelop larger cross-sections, enabling the robot to complete large-section formation in one operation, thus simplifying the complex procedures involved in large-section excavation with a single-arm mining machine. (2) Relative dynamic modeling of the dual-arm cutting robot: To address the difficulty in establishing a unified description of the dynamic characteristics of the two arms of a dual-arm cutting robot, the dynamic model of the independent single arm is first derived using the Lagrangian dynamics equation. Then, the dynamics model of the single arm is combined with the principles of virtual displacement and virtual work. Based on the relative Jacobian matrix, the relative dynamics model of the dual-arm cutting robot is obtained, which allows for solving the mapping relationship between the relative forces at the end-effector and the robot’s joint variables. The relative dynamics model established for the robot shows that, using the relative force as the sole variable, the relative dynamics model can simultaneously describe the mechanical and dynamic characteristics of both arms. This approach integrates the independent dynamics of the two arms into a unified expression, providing a reference for the subsequent development of control algorithms for the robot. (3) Research on the control of the dual-arm cutting robot: To address the issue of unified control difficulty caused by the dual end-effector outputs of the dual-arm cutting robot, a closed-loop error feedback controller is designed based on the robot’s relative kinematics model. The controller enables simultaneous control of the dual arms’ movement by using the relative position error of the end-effectors. Additionally, a closed-loop hybrid control system combining relative force/position is designed based on the robot’s relative dynamics model. Finally, a virtual prototype of the robot was built to validate the model. Simulation results of the relative kinematics feedback controller show that the dual-arm cutting robot can achieve simultaneous control of both arms’ movements using the relative motion between the two cutting heads as the sole variable. This enables the cutting heads’ trajectories in Cartesian space to gradually converge to the desired position. Simulation results of the relative force/position controller demonstrate that this controller can control the motion of both cutting heads simultaneously in the position layer through the relative position, and control the output forces of both cutting heads simultaneously in the force layer through the relative force. This provides a theoretical foundation and valuable reference for the control of the robot.

参考文献:

[1] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(7): 1949-1960.

[2] 徐子岳. 大断面煤巷悬臂式掘进机自动截割成巷方法研究[D]. 中国矿业大学, 2023.

[3] 马宏伟,王鹏,张旭辉,等.煤矿巷道智能掘进机器人系统关键技术研究[J].西安科技大学学报, 2020,40(5): 751-759.

[4] 张梦良. 大断面煤巷快速掘进与锚网索支护参数优化研究[D]. 中国矿业大学, 2023.

[5] 徐伟锋, 金向阳, 张丽平. 煤矿掘进机器人视觉位姿感知与控制关键技术[J]. 煤矿机械, 2022, 43 (5): 181-184.

[6] 王磊. 煤矿企业转型下的掘进机器人可靠性分析[J]. 现代商贸工业, 2023, 44 (24): 80-83.

[7] 张旭辉, 郑西利, 杨文娟, 等. 煤矿井下掘进机器人路径规划方法研究[J]. 煤田地质与勘探, 2024, 52 (4): 152-163.

[8] 刘永伟. 矿用悬臂式掘进机器人控制系统研制[D]. 西安科技大学, 2018.

[9] 张旭辉, 陈利, 马宏伟, 等. 煤矿掘进机器人虚拟仿真与远程控制系统[J]. 工矿自动化, 2016, 42 (12): 78-83.

[10] 李博, 孔令云, 毛东宸, 等. 基于ROS的双臂机器人的协同控制路径规划研究[J]. 电子制作, 2024, 32 (1): 52-55.

[11] 王玉梅, 杨洪鑫, 黄赛帅, 等. 双臂机器人的运动学分析与运动控制[J]. 工业控制计算机, 2019, 32 (8): 77-80.

[12] 梁承波, 谢峰, 刘建军, 等. 单向力传感器构成的测力底座在机器人碰撞检测中的应用[J].制造业自动化, 2024, 46(7): 51-57.

[13] Lee Seung Hyun, Lee Young Jae, Kim Dong Hwan. Extension of inverse kinematic solution for a robot to cope with joint angle constraints[J]. International Journal of Control, Automation and Systems, 2023, 21 (6): 1899-1909.

[14] Yang Shuji, Wen Hao, Hu Yunhao, et al. Coordinated motion control of a dual-arm space robot for assembling modular parts[J]. Acta Astronaut, 2020, 177(4): 627-638.

[15] Lei Maolin, Wang Ting, Yao Chen, et al. Real-time kinematics-based self-collision avoidance algorithm for dual-arm robots[J]. Applied Sciences, 2023, 10(17): 5893.

[16] 杜海龙, 胡宁宁. 基于人体运动数据的下肢机器人运动学与动力学分析[J]. 机械传动, 2022, 46(3): 128-134.

[17] Ahmed Abubaker, Ju Hehua, Yang Yang, et al. An improved unit quaternion for attitude alignment and inverse kinematic solution of the robot arm wrist[J]. Machines 2023, 11(7): 669.

[18] Jiang Zhihong, Yu Zhijian, Zhang Xiaoyang. Research on the inverse kinematic algorithm of the robot arm of the minecart[J]. Journal of Physics Conference Series 2023, 2483(1): 1-12.

[19] Li Yajun, Feng Qingchun, Zhang Yifan, et al. Intermittent stop-move motion planning for dual-Arm tomato harvesting robot in greenhouse based on deep reinforcement learning [J]. Biomimetics, 2024, 9(2): 73-80.

[20] Zhang Ziqiang, Wang Zhi, Zhou Zhenyong, et al. Omnidirectional Continuous Movement Method of Dual-Arm Robot in a Space Station.[J]. Sensors (Basel, Switzerland), 2023, 23(11): 51-59.

[21] 陈郁,徐正武,常昕琦. 基于HMS的双臂机器人运动学协调约束模型研究[J]. 计算机与数字工程,2023,51(12): 2873-2878.

[22] 蒙磊,李铁军,李勇斌,等. 面向板材安装的双臂机器人设计与分析[J]. 制造业自动化, 2022, 44(9): 58-63.

[23] 李逃昌.农业轮式移动机器人自适应滑模路径跟踪控制[J].中国机械工程, 2018, 29(5): 579-584.

[24] Liu Peng, Zhou Haochen, Qiao Xinzhou, et al. On the relative kinematics and control of dual-Arm cutting robots for a coal mine[J]. Actuators, 2024, 13(5): 157-183.

[25] Wang Xuanyin, Ding Yuanming. Method for workspace calculation of 6R serial manipulator based on surface enveloping and overlaying[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(5): 556-562.

[26] Zeng Qingliang, Zhou Guangyu, Shi Jifei, et al. Robot workspace optimization based on Monte Carlo method and multi island genetic algorithm[J]. Mechanics, 2022, 28(4): 308-316.

[27] Li Jinghang, Zhao Zhigang, Zhang Shaohui, et al. Dynamics and workspace analysis of a multi-robot collaborative towing system with floating base[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 4727-4735.

[28] Catalin Boanta. C. Brisan. Estimation of the kinematics and workspace of a robot using artificial neural networks[J]. Sensors (Basel) 2022, 22(21): 8356.

[29] Xu Zhenbang, Zhao Zhiyuan, He Shuai, et al. Improvement of Monte Carlo method for robot workspace solution and volume calculation[J]. Optics and Precision Engineering, 2018, 26(11): 2703-2713.

[30] 邹成文, 陶平. 多机械臂协作空间分析与仿真[J]. 机械传动, 2022, 46(2):78-84.

[31] 赖啸,李鑫伟,梁文滔. 高精度协作式码垛机器人工作空间工艺优化[J]. 科学技术创新, 2022, 23(22): 188-191.

[32] 赵东捷,卜泳,杜兆才,等. 一种机器人工作空间优化分析的数学方法[J]. 装备制造技术, 2023, 17(4): 11-15.

[33] 张洪鑫,于阳,徐振邦,等. 手持式显微外科手术机器人设计与仿真研究[J]. 计算机仿真,2022,39(11):443-447.

[34] Li Tao, Zeng Quan, Li Jinbiao, et al. An adaptive control method and learning strategy for ultrasound-guided puncture robot[J]. Electronics, 2024, 13(3): 580.

[35] Li Jing, Lu Ninghe, Ma Zehui, et al. Motion performance study of 2upr-1rps/2r hybrid robot based on kinematics, dynamics and stiffness modeling[J]. Journal of Mechanisms and Robotics, 2023, 16(6): 1-30.

[36] Alvaro Caballero, Manuel Bejar, Angel Rodriguez-Castaño, et al. Motion planning with dynamics awareness for long reach manipulation in aerial robotic systems with two arms[J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 52-60.

[37] Shen Haoyu, Liu Yanli, Wu Hongtao. High effective inverse dynamics modelling for dual-arm robot[J]. AIP Conference Proceedings, 2018, 1967(1): 4-61.

[38] Wang Jian, Wang Jian, Zhou Lili, et al. Dynamic Modeling and Cooperative Process Simulation in Cooperative Dual-Arm Robot Based on Adams [J]. Journal of Physics: Conference Series, 2020, 1621 (1): 12-41.

[39] 万正海, 李锻能, 王冲, 等.移动机器人机械臂运动分析及轨迹规划[J]. 机床与液压, 2019, 47(23): 56-60.

[40] Sun Shuwen, Song Chenyu, Wang Bo, et al. Research on dynamic parameter identification and collision detection method for cooperative robots[J]. Industrial Robot the international journal of robotics research and application, 2023, 50(3) :224-240.

[41] Chen Gang, Wang Peng, Wang Zhenyu, et al. Modeling of swimming posture dynamics for a beaver-like robot[J]. Ocean Engineering, 2023, 279(1): 1-20.

[42] 程靖,陈力.空间机器人双臂捕获航天器后姿态管理、辅助对接操作一体化 ELM 神经网络控制[J]. 机器人, 2017, 39(5): 724-732.

[43] 刘佳,刘荣.双臂协调机械手动力学建模的新方法[J].北京航空航大学学报, 2016, 42(9): 1903-1910.

[44] Jamisola Rodrigo S, Ibikunle Frank Ayo. Investigating task prioritization and holistic coordination using relative jacobian for combined 3-arm cooperating parallel manipulators[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 20(1): 117-123.

[45] 董楸煌, 陈力, 李海芸, 等. 双臂空间机器人捕获目标的力/位协调控制[J]. 系统仿真学报, 2017, 29 (02): 424-429.

[46] 吴俊. 六自由度双臂机器人动力学分析与运动控制[J]. 软件,2017,38(03):128-132.

[47] 张建华,许晓林,刘璇,等. 双臂协调机器人相对动力学建模[J]. 机械工程学报, 2019, 55(3): 34-42.

[48] Jing Xin, Gao Haibo, Wang Yaobing, et al. Cooperative compliance control of the dual-arm manipulators with elastic joints[J]. Journal of Mechanical Science and Technology, 2021, 35(12): 5689-5697.

[49] 艾海平,陈力. 空间机器人双臂捕获航天器操作的力/位置控制[J]. 哈尔滨工程大学学报,2020,41(12):1847-1853.

[50] Zhang Fuhai, Qu Jiadi, Liu He, et al. A pose/force symmetric coordination method for a redundant dual-arm robot[J]. Assembly Automation, 2018, 38 (5): 678-688.

[51] Yutaka Ueno, Natsuki Miyata, Natsuki Yamanobe, et al. Simulating dual-arm robot motions to avoid collision by rigid body dynamics for laboratory bench work[J]. Artificial Life and Robotics, 2022, 28(17) :137-145.

[52] Jiang Yiming, Wang Yaonan, Miao Zhiqiang, et al. Composite-learning-based adaptive neural control for dual-arm robots with relative motion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(3):1010-1021.

[53] Jiang Wei, Yan Yu, Yu Lianqing, et al. Research on dual-arm coordination motion control strategy for power cable mobile robot[J]. Transactions of the Institute of Measurement and Control, 2019, 41(1): 3235-3247.

[54] Sun Fuchun, Chen Yang, Wu Yangyang, et al. Motion planning and cooperative manipulation for mobile robots with dual arms[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6(6): 1345-1356.

[55] Zhang Hui, Zhu Yongfei, Liu Xuefei, et al. Motion performance study of 2upr-1rps/2r hybrid robot based on kinematics, dynamics and stiffness modeling[J]. Journal of Mechanisms and Robotics, 2023, 16(6): 1-30.

[56] Cheng Jing, Chen Li. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite[J]. Acta Mechanica Sinica, 2016, 48(4), 832-842.

[57] 李贺立, 杨冬, 杨德志,等. 基于阻抗控制的双臂机器人协调搬运方法研究[J]. 机床与液压, 2017, 45(21): 64-67.

[58] 刘江文, 徐敏. 双臂机器人动力学建模与伺服系统控制[J]. 机械设计与制造, 2019, 17(11): 256-260.

[59] 杨帅, 薛岚. 基于阻抗控制的双臂机器人关节限制规避仿真研究[J]. 中国工程机械学报, 2020, 18(3): 195-198.

[60] 韩昌,周浩,高俊. 主从遥操作下双臂机器人的阻抗控制策略研究[J]. 小型微型计算机系统, 2024, 45(3): 636-640.

[61] 李洋,冯适意,朱德良,等. 面向移乘护理的冗余双臂机器人行为安全控制[J]. 机械工程学报, 2023, 59(9): 76-89.

[62] 马宏伟,王鹏,张旭辉,等. 煤矿巷道智能掘进机器人系统关键技术研究[J]. 西安科技大学学报, 2020, 40(5): 751-759.

[63] 华洪涛,马宏伟,毛清华,等. 基于捷联惯导和推移油缸信息融合的智能掘进机器人位姿测量方法[J]. 煤炭工程, 2021, 53(11): 140-145.

[64] 高佳晨,马宏伟,王川伟,薛旭升,姚阳. 煤矿巷道掘进锚网运输机器人结构设计及运动规划[J]. 煤炭工程, 2021, 53(11): 175-180.

[65] 葛连正,陈健,李瑞峰.移动机器人的仿人双臂运动学研究[J]. 华中科技大学学报(自然科学版), 2011, 39(2): 1-4.

[66] 蔡自兴. 机器人学基础[M]. 机械工业出版社, 2009.

[67] Lewis C L, Maciejewski A A. Trajectory generation for cooperating robots[C]// IEEE International Conference on Systems Engineering. IEEE, 2012: 300-303.

[68] Sbol I. A primer for the Monte Carlo method[M]. CRC Press, 1994.

[69] 韩建海. 工业机器人 [M]. 华中科技大学出版社, 2019.

[70] Jamisola Rodrigo S, Roberts Rodney G. A more compact expression of relative Jacobian based on individual manipulator Jacobians[J].Robotics and Autonomous Systems, 2014, 63(1): 158-164.

[71] 战强. 机器人学——机构、运动学、动力学及运动规划 [M]. 清华大学出版社, 2019.

[72] 兰虎. 工业机器人技术及应用 [M]. 机械工业出版社, 2020.

[73] 曹海蕊, 顾晓勤, 梁瑞仕. 冗余机械臂的加权广义逆避障算法研究[J]. 机械科学与技术, 2018, 37(9): 1313-1318.

[74] 赵京, 么学宾, 张雷. 利用加权广义逆矩阵减小协调机械臂容错操作时的关节速度突变[J]. 机械科学与技术, 2005(7): 757-760.

[75] 黄亚楼,卢桂章.多机械臂抓取物的内力不变性[J]. 机器人, 1997(2): 7-12.

[76] 陈安军. 双臂机器人抓持工件的力分解[J]. 机械科学与技术, 2002(2): 258-260.

中图分类号:

 TP242.2    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式