- 无标题文档
查看论文信息

论文中文题名:

 直流无刷电机驱动芯片设计    

姓名:

 冯丹    

学号:

 18206038028    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 080903    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 微电子学与固体电子学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 微电子学与固体电子学    

研究方向:

 集成电路分析与设计    

第一导师姓名:

 徐大林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-24    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Design of DC Brushless Motor Driver Chip    

论文中文关键词:

 直流无刷电机驱动芯片 ; H桥 ; 钳位栅源电压 ; 开关管驱动模块    

论文外文关键词:

 DC brushless motor driver chip ; H-bridge ; Clamp gate-source voltage ; Switch tube driver module    

论文中文摘要:

随着电机技术及电力电子技术的共同发展和进步,效率高、寿命长、调速稳定性好的直流无刷电机被广泛应用于运输工具、医疗设备、家用电器等各个领域。在驱动直流无刷电机方面,直流无刷电机驱动芯片与基于RISC微处理器的驱动系统相比实时性更好,且较基于DSP的驱动系统具有外围电路简单,成本低等优势。因此,设计一款直流无刷电机驱动芯片极具研究意义和实际应用价值。

通过分析H桥上臂选择PMOS/NMOS的区别,考虑应用场合及成本等因素,针对小功率直流无刷电机选择PMOS作为H桥的上臂,采用可钳位栅源电压的PMOS快速驱动电路保证功率管栅源两端具有合适的电压,可防止PMOS击穿,提高了安全性,加快了PMOS的开关速度。通过对H桥电路的工作模式进行分析,得出了可有效降低驱动芯片功耗的开关次序,实现了功率管的零电压开通。根据得出的开关次序,设计了一种由左右侧控制电路、上下臂驱动电路组成的开关管驱动模块,满足了H桥上、下臂功率管驱动电压的要求,设定了死区时间防止功率管损坏。为保证H桥及开关驱动模块的稳定工作,进一步分析并设计了相关辅助模块:采用辅助电源模块为芯片内部数字逻辑与低压模拟电路提供稳定电压;采用正反馈差动放大电路和共源级放大电路两级结构设计迟滞比较器,通过设置阈值电压得到精确的电机转子位置信息。通过对电源反接保护与过温保护模块进行设计,提升驱动芯片的安全性能。综合上述模块,设计了一款直流无刷电机驱动芯片。

基于nuvoton 0.6μm BCD 仿真模型文件,采用Hspice软件对直流无刷电机驱动芯片的内部模块及整体电路进行仿真分析,结果验证了所设计电路的正确性与可行性。最后,基于nuvoton 0.6μm BCD设计规则文件对整体电路进行版图设计,通过了DRC、LVS,验证了直流无刷电机驱动芯片版图的正确性。

论文外文摘要:

With the common development and progress of motor technology and power electronics technology, brushless DC motors with high efficiency, long-lived, and well speed regulation stability are widely used in various fields, including transportation, medical equipment, household appliances, etc. In terms of driving the DC brushless motor, the drive chip dedicated to the DC brushless motor has better real-time performance than the RISC microprocessor drive system, compared to the DSP drive system, it has the advantages of simple peripheral circuit and low cost. Therefore, the design of a brushless DC motor drive chip is of great research significance and practical application value.

By analyzing the difference between choosing PMOS/NMOS for the upper arm of the H-bridge. Considering some factors such as application and cost, PMOS is selected as the upper arm of the H-bridge for low-power brushless DC motors. The PMOS fast drive circuit that can clamp the gate-source voltage ensures that the gate source of the power tube has an appropriate voltage, which can prevent PMOS breakdown, improve safety, and speed up the switching speed of the PMOS. By analyzing the working mode of the H-bridge, the switching sequence that can effectively reduce the power consumption of the drive chip is determined, and the zero-voltage turn-on of the power tube is realized. According to the switching sequence of the H bridge power tube, a switch tube drive module composed of left and right side control circuit and upper and lower arm drive circuit is designed, which can meet the drive voltage requirements of the upper and lower arm power tubes of the H-bridge, and by setting the dead time to prevent damage to the power tube. In order to ensure the normal and stable operation of the H-bridge and switch drive circuit, the related auxiliary modules are further analyzed and designed. An auxiliary power module is designed to provide stable power supply for the internal digital logic circuits and low-voltage analog circuits of the chip. The hysteresis comparator with a two-stage structure of a positive feedback differential amplifier circuit and a common source amplifier circuit is designed. By setting the threshold voltage, accurate motor rotor position information can be obtained. By designing the power supply reverse connection protection and over-temperature protection modules, the safety performance of the driver chip is improved. Based on the above modules, a brushless DC motor driver chip is designed.

Based on the nuvoton 0.6μm BCD simulation model file, the Hspice is used to simulate and analyze the internal modules and the overall circuit of the DC brushless motor driver chip. The correctness and feasibility of the designed circuit are verified by simulation results. Finally, the nuvoton 0.6μm BCD process is used to design the layout of the overall circuit. The layout is verified by DRC and LVS. The results verify the correctness of the DC brushless motor driver chip and layout.

参考文献:

[1] 薛一哲. 基于TMS320F2812的无刷直流电机控制方案设计[J]. 航空计算技术, 2020, 50(05): 127-129.

[2] 范贤稳. 无刷直流电机驱动电路的设计[J]. 中国设备工程, 2020, 36(17): 94-95.

[3] Ramachandran R, Ganeshaperumal D, Subathra B. Closed-Loop Control of BLDC Motor in Electric Vehicle Applications[C]//IEEE. International Conference on Clean Energy and Energy Efficient Electronics Circuit for Sustainable Development, 2019: 1-5.

[4] Derammelaere S, Haemers M, De-Viaene J, et al. A Quantitative Comparison between BLDC, PMSM, Brushed DC and Stepping Motor Technologies[C]//IEEE. International Conference on Electrical Machines and Systems, 2016: 1-5.

[5] 陆可, 蔡广瀚, 向南辉, 等. 基于电压矢量注入的无刷直流电机换相转矩脉动抑制方法[J/OL]. 中国电机工程学报, 2020: 1-11.

[6] 边春元, 邢海洋, 李晓霞, 等. 基于速度变化率的无位置传感器无刷直流电机风力发电系统换相误差补偿策略[J/OL]. 电工技术学报, 2021: 1-9.

[7] De A, Stewart-Height A, Koditschek D E. Task-Based Control and Design of A BLDC Actuator for Robotics[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2393-2400.

[8] 周兴达, 蒋永恒, 王帅, 等. 基于FPGA的无人机BLDC电调模块设计与实现[J]. 电子设计工程, 2019, 27(03): 169-172+177.

[9] 段凯原, 胡利民, 陈彦勇, 等. 微小型UUV无刷直流电机驱动控制系统[J]. 电机与控制应用, 2020, 47(04): 35-39.

[10] 程时兵, 王炜. 基于DSP的无刷直流电机位置伺服系统设计[J]. 电子设计工程, 2016, 24(05): 110-112.

[11] Tariq Mohd, Bhattacharya T K, Varshney Nidhi, et al. Fast Response Antiwindup PI Speed Controller of Brushless DC Motor Drive: Modeling, simulation and implementation on DSP [J]. Journal of Electrical Systems and Information Technology, 2016, 3(1):1-13.

[12] 温嘉斌, 麻宸伟. 无刷直流电机模糊PI控制系统设计[J]. 电机与控制学报, 2016, 20(03): 102-108.

[13] 董军, 石教英, 马小虎. RISC技术特点与优缺点[J]. 计算机与现代化, 1995(4): 7-12.

[14] 张金玲, 苏海军, 傅正财. 基于ARM的无位置传感器BLDCM控制系统设计[J]. 电气自动化, 2017, 39(06): 85-87+90.

[15] Ctibor J, Vorel P, Knobloch J, et al. BLDC Motor Control with Cascade Structure Utilizing ARM MCU[C]//IEEE. International Conference on Electrical Drives & Power Electronics, 2019: 61-65.

[16] 赵影, 王欣宇. Cortex-M3的直流无刷电机控制系统的设计[J]. 单片机与嵌入式系统应用, 2012, 12(07): 77-79.

[17] 傅贵武, 王宇华. 基于TI C2000系列DSP的无刷直流电机无位置传感器驱动控制系统设计[J]. 电机与控制应用, 2019, 46(07): 82-88.

[18] Chen G. Y, Perng J. PI Speed Controller Design Based on GA with Time Delay for BLDC Motor Using DSP[C]//IEEE. International Conference on Mechatronics and Automation, 2017: 1174-1179.

[19] Wu H, Wen M, Wong C. Speed Control of BLDC Motors Using Hall Effect Sensors Based on DSP[C]//IEEE. International Conference on System Science and Engineering, 2016: 1-4.

[20] 李珂, 吴波, 华梦琪, 等. 基于自加速技术的双向电平转换电路设计[J]. 固体电子学研究与进展, 2020, 40(04): 287-290+310.

[21] 余瑞容, 张启东. 一种应用于高压电机驱动的电平移位电路[J]. 电子科技, 2019, 32(12): 11-16.

[22] Sakurai N, Hakutou T, Yura M. Highly Reliable 1200-V P-Type MOSFET for Level-Shift Circuit Used in Driver IC[C]//IEEE. International Power Electronics Conference, 2014: 2297-2301.

[23] Zhou Z, Rong J, Cao J, et al. A Fully Integrated Floating Gate Driver with Adaptive Gate Drive Technique for High-Voltage Applications[C]//IEEE. International Midwest Symposium on Circuits and Systems, 2018: 109-112.

[24] 袁题训, 董升亮, 耿丙群, 等. 无刷直流电机的保护电路[J]. 现代电子技术, 2011, 34(24): 41-44.

[25] JeHwan Lee, HanGuean Jang, SangChul Shin, et al. Over Temperature Protection in Power Module for Hybrid and Electric Vehicle[C]//IEEE. Transportation Electrification Conference and Expo, 2016: 432-435.

[26] 张明星, 朱铁柱, 王良坤. 一种用于马达驱动芯片的新型过温保护电路[J]. 电子器件, 2015, 38(02): 373-376.

[27] 张波, 罗小蓉. 功率集成电路设计技术[M]. 北京: 科学出版社, 2020.

[28] Lee W, Lu H, Liao Y, et al. Chip Design of Three-Phase BLDC Motor Brake Driver IC[C]//IEEE. Conference on Electron Devices and Solid-State Circuits, 2007: 497-500.

[29] De Smedt V, Thoné J, Wens M. A 650 V, 3 A Three-Phase Fully-Integrated BLDC Motor Driver with Charge Pump and Level Shifters[C]//IEEE. European Solid-State Circuits Conference, 2016: 277-280.

[30] 宋金荣. 调速的直流无刷电机驱动芯片的设计与实现[D]. 大连: 大连理工大学, 2014.

[31] 刘振国. 一种无刷直流电机驱动芯片设计[D]. 成都: 电子科技大学, 2018.

[32] 严鼎, 孙伟锋, 祝靖, 等. GaN功率器件预驱动芯片设计与封装集成[J]. 电源学报, 2019, 17(03): 64-71.

[33] 王强, 唐朝垠, 王天施, 等. 用于无刷直流电机驱动的谐振极软开关逆变器[J]. 电机与控制学报, 2017, 21(06): 59-65.

[34] 李光学, 孙宇伟, 徐志书, 等. 基于限流保护的高功率智能驱动模块设计[J]. 电子技术与软件工程, 2019, 26(13): 92-93.

[35] Suh B S. et al. A New Compact SMD-Type Intelligent Power Module for Motor Drive Applications[C]//IEEE. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, 2019: 1-6.

[36] Vogler B, Herzer R, Mayya I, et al. Integrated SOI Gate Driver for 1200V SiC-FET Switches[C]//IEEE. International Symposium on Power Semiconductor Devices and ICs, 2016: 447-450.

[37] Disney D, Letavic T, Trajkovic T, et al. High-Voltage Integrated Circuits: History, State of the Art, and Future Prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 659-673.

[38] 伍志刚, 凌荣堂. SOI技术——21世纪的硅集成技术[J]. 微电子学, 2001, 31(01): 1-5.

[39] Helou A. E. et al. High-Resolution Thermoreflectance Imaging Investigation of Self-Heating in AlGaN/GaN HEMTs on Si, SiC, and Diamond Substrates[J]. IEEE Transactions on Electron Devices, 2020, 67(12): 5415-5420.

[40] 刘翔, 刘尚. 宽禁带半导体行业深度: SiC与GaN的兴起与未来[J]. 变频器世界, 2019, 23(11): 41-48.

[41] 周德金, 何宁业, 宁仁霞, 等.GaN HEMT栅驱动技术研究进展[J]. 电子与封装, 2021, 21(02): 41-52.

[42] JONES E A, WANG F F, COSTINETT D. Review of Commercial Gan Power Devices and GaN-Based Converter Design Challenges[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(3): 707-719.

[43] 冯旭东, 胡黎, 张宣, 等. GaN功率器件栅驱动电路技术综述[J]. 微电子学, 2020, 50(02): 207-213.

[44] Sawachan H, Liutanakul P, Wiwatcharagoses N, A Simple Dead-Time Compensation Technique for Single-Phase Full-Bridge PWM Rectifier[C]//IEEE. International Electrical Engineering Congress, 2017: 1-4.

[45] Andreini A, Contiero C, Galbiati P. A New Integrated Silicon Gate Technology Combining Bipolar Linear, CMOS Logic, and DMOS Power Parts[J]. IEEE Transactions on Electron Devices, 1986, 33(12): 2025-2030.

[46] 杨银堂, 朱海刚. BCD集成电路技术的研究与进展[J]. 微电子学, 2006, 36(03): 315-319.

[47] Murray A F J, Lane W A. Optimization of Interconnection-Induced Breakdown Voltage in Junction Isolated IC's Using Biased Polysilicon Field Plates[J]. IEEE Transactions on Electron Devices, 1997, 44(1): 185-189.

[48] 陆学斌. 集成电路版图设计[M]. 北京: 北京大学出版社, 2012.

中图分类号:

 TN433    

开放日期:

 2024-04-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式