- 无标题文档
查看论文信息

论文中文题名:

 改进蛇算法优化的支持向量机入侵检测模型    

姓名:

 陈柯宇    

学号:

 21301221005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 网络安全    

第一导师姓名:

 张仲华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Support Vector Machine Intrusion Detection Model Based on Improved Snake Algorithm Optimization    

论文中文关键词:

 入侵检测 ; 蛇算法 ; 支持向量机 ; 混沌映射 ; 莱维飞行 ; 参数优化    

论文外文关键词:

 Intrusion detection ; Snake algorithm ; Support vector machine ; Ratio test ; Chaos mapping ; Levy flight ; Parameter optimization    

论文中文摘要:

计算机与互联网的发展改变了各计算机独立计算的模式,便利了人民群众生活的同

时,也使得网络环境日益复杂,恶性网络攻击事件时有发生,网络信息安全事关国家安

全和社会稳定,急需一个可靠的入侵检测系统筛查未经允许访问计算机系统的数据。面

临日益变化的攻击手段与严峻的网络安全现状,传统的入侵检测手段已经逐渐落后于时

代,难以应对如今不断进化的网络攻击技术,因此越来越多的学者选择将机器学习算法

与入侵检测系统结合,构建更加智能的检测系统。

本文以经典的网络入侵数据集 NSL-KDD 为研究基础,首先使用随机森林算法对其

进行降维处理,提取部分处理后的数据分别构建了 K 最近邻(KNN)模型,BP 神经网络

模型,支持向量机(SVM)模型对样本数据进行分类。结果表明:支持向量机模型的整体

分类准确率相较于另外两个模型分别提高了 6.2%到 13.6%,误报率和漏报率相对于其

他两种模型大幅降低,该模型对样本数据量较少的攻击类型也有一定的分类能力。

其次针对蛇算法在求解某些优化问题时存在全局搜索收敛速度较慢,易陷入局部最

优的问题,本文提出一种基于混沌映射和莱维飞行方法改进的 Chao-LSO 算法,引入混

沌映射方法取代常规的均匀分布随机数生成法生成初始种群,增强初始种群的随机性和

遍历性;引入莱维飞行算法使雄性种群发生变异,增强雄性种群在全局搜索步骤的移动

效率。选取 CEC2005 上的 8 个基准函数及 CEC2017 上的四个复杂函数进行数值实验,

结果表明相较于改进前的 SO 算法,GA 算法以及 PSO 算法,Chao-LSO 算法具有更快

的收敛速度与更强的寻优性能。

最后设计了一种基于改进蛇算法(Chao-LSO)优化支持向量机参数进行入侵数据

检测的 Chao-LSO-SVM 模型。分别使用 Chao-LSO 算法,SSA 算法和 PSO 算法寻找支

持向量机的最优超参数组合,建立三种算法的优化模型并对 NSL-KDD 数据集进行入侵

检测实验。实验结果表明 Chao-LSO-SVM 模型对测试集进行分类时,三次实验平均准

确率为 95.67%,与 SSA-SVM,PSO-SVM 模型测试集分类结果相比分别提高了 5.11%,

9.42%。此外,Chao-LSO-SVM 模型对 DDoS 攻击与 Probe 攻击的子类进行分类时,测

试集分类准确率分别为 99%,98.5%,该模型对同类型的不同攻击也有较好的分类性

能。

论文外文摘要:

The development of computers and the Internet has changed the mode of independent

computing of computers, facilitated people's lives, and also made the network environment

increasingly complex. Malignant network attacks occur from time to time. Network

information security is related to national security and social stability. Designing a reliable

intrusion detection system to screen unauthorized access to computer system data is an

important and urgent problem in the field of network security. Faced with ever-changing attack

methods and a severe network security situation, traditional intrusion detection methods have

gradually fallen behind the times, making it difficult to cope with the constantly changing

network environment and evolving network attack technologies. Therefore, more and more

scholars choose to combine machine learning algorithms with intrusion detection systems to

build more intelligent detection systems.

This article is based on the classic network intrusion dataset NSL-KDD. Firstly, the

random forest algorithm is used to reduce its dimensionality, and part of the processed data is

extracted to construct KNN model, BP neural network model, and support vector machine

model to classify the sample data. The results show that the overall classification accuracy of

the support vector machine model is improved by 6.2% to 13.6% compared to the other two

models, and the false alarm rate and false alarm rate of the sample data are significantly

reduced compared to the other two models. It also has certain classification ability for attack

types with small sample data.

Secondly, in response to the problem of slow global search convergence speed and easy

falling into local optima when solving certain optimization problems in the snake algorithm,

this paper proposes an improved Chao-LSO algorithm based on chaotic mapping and Levi's

flight method, which introduces chaotic mapping method to replace the conventional uniform

distribution random number generation method to generate the initial population, enhancing

the randomness and traversal of the initial population; Introducing the Levy flight algorithm tomutate the male population and enhance its mobility efficiency in the global search step. Eight

benchmark functions on CEC2005 and four complex functions on CEC2017 were selected for

numerical experiments. The results showed that compared to the pre improved SO algorithm,

GA algorithm, and PSO algorithm, Chao-LSO algorithm has faster convergence speed and

stronger optimization performance.

Finally, a Chao-LSO-SVM model based on the Improved Snake Algorithm (Chao-LSO)

was designed to optimize support vector machine parameters for intrusion data detection. Use

Chao-LSO algorithm, SSA algorithm, and PSO algorithm to find the optimal hyperparameter

combination for support vector machines, establish optimization models for the three

algorithms, and conduct intrusion detection experiments on the NSL-KDD dataset. The

experimental results show that the Chao-LSO-SVM model has an average accuracy of 95.67%

in three experiments when classifying the test set. Compared with SSA-SVM and PSO-SVM

models, the classification results of the test set have improved by 5.11% and 9.42%,

respectively. In addition, when the Chao-LSO-SVM model classifies the subclasses of DDoS

attacks and Probe attacks, the classification accuracy of the test set is 99% and 98.5%,

respectively. This model also has good classification performance for different attacks of the

same type.

参考文献:

[1] 中 国 互 联 网 信 息 中 心 . 第 50 次 中 国 互 联 网 发 展 状 况 调 查

[EB/OL].https://cnnic.cn/n4/2022/0916/c38-10594.html,2022

[2] 中 国 信 息 安 全 评 测 中 心 .2022 上 半 年 网 络 安 全 漏 洞 态 势 观 察

[EB/OL].http://www.itsec.gov.cn/zxxw/202209/P020220902118368141314.pdf,2022

[3] 蒋建春,马恒太,等.网络安全入侵检测:研究综述[J].软件学报,2000,11(11):1460-1465.

[4] R. Sommer and V. Paxson, "Outside the Closed World: On Using Machine Learning for

Network Intrusion Detection," 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 2010, pp. 305-316, doi: 10.1109/SP.2010.25.

[5] 谢澳归. 基于机器学习的入侵检测技术研究[J]. 信息与电脑, 2022, 34(08): 218-220. 张然,刘敏,张启坤,等.基于SOABP神经网络的网络安全态势预测算法研究[J].微

电子学与计算机,2020,37(6):62-65.

[6] 王思敏, 王恒. 基于深度学习的入侵检测技术[J]. 网络安全技术与应用, 2021(11):

10-11.

[7] 李辉.基于支持向量机的网络入侵检测[J].计算机研究与发展,2003,40(6):799-807.

[8] 沈昌祥,张焕国,冯登国,等.信息安全综述[J].中国科学,2007,37(2):129-150. [9] Anderson J P. Computer Security Threat Monitoring and Surveillance[J].Technical Report

James P.Anderson Company,1980.

[10]Denning D. E. An Intrusion-Detection Model[J]. IEEE Transactions on Software Engineering, 1987,13(2): 222-232.

[11]Heberlein L T,Dias G V,Levitt K N, et al.A Network Security Monitor[C]//Proceedings.1990 IEEE Computer Society Sympoisum on Research in Security and Privacy.IEEE 1990:296-304.

[12]Lippmann R, Fried D J, Graf I, Haines J W, Kendall K R& Zissman M A. Evalu

ating intrusion detection systems: The 1998 DARPA off-line intrusion detection ev

aluation[J]. In DARPA Information Survivability Conference and Exposition, 2000. DISCEX'00. IEEE,2000,Proceedings (Vol. 2, pp. 12-26).

[13]Ryan J, Lin M J, Miikkulainen R.Intrusion detection with neural networks[C]//Advances

in neural information processing systems.1998:943-949.

[14]Mukkamala S, Janoski G, Sung A.Intrusion detection using neural networks and support

vector machines[C]//Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02(Cat.No.02CH37290).IEEE 2002,2:1702-1707. 53

[15]Javaid A, Niyaz Q, Sun W, et al.A deep learning approach for network intrusion detection system[C]//Proceedings of 9th EAI International Conference on Bio-inspired Information and Communications Technologies.ICST,2016:21-26.

[16]Ye N, Zhang Y& Borror C M. Robustness of the Markov-chain model for cyber-attack

detection[J]. IEEE Transactions on Reliability,2004,53(1):116-123.

[17]Liu W, Wang X& Wang D. An efficient intrusion detection model based on SVM and

feature reduction[J]. Procedia Computer Science,2016, 91:407-415.

[18]Lakhina A, Crovella M & Diot C. Diagnosing network-wide traffic anomalies[J]. In

Proceedings of the 2004 conference on Applications, technologies, architectures, and

protocols for computer communications,2004, (pp. 219-230). [19]Qian Y, Li Y, Yu X. Intrusion detection method based on multi-label and semi-supervised

learning[J].Computer Science,2015,42(2):134-136.

[20]沈焱萍.基于群智能算法优化的入侵检测模型研究[D].北京:北京邮电大学网络空间

安全学院,2021.

[21]李志, 张峰宇, 冯登国, 孟晓峰. 基于深度学习的网络入侵检测研究[J].计算机科学, 2016,43(10), 214-218.

[22]张忠庆, 郭亮, 陈振伟, 巩皓明.融合主机和网络检测的概念漂移处理算法研究[J]. 计算机研究与发展, 2017,54(4), 923-935.

[23]Montazeri G N, Masoudi S, Shamsollahi M,et al.Coupled Hidden Markov Model Baesd

Method for Apnea Bradycardia Detection[J].IEEE Journal of Biomedical &Health

Informatics,2015:1-1.

[24]Abadeh M S, Habibi J, Lucas C. Intrusion detection using a fuzzy genetics-based learning

algorithm[J].Journal of Network & Computer Applications,2007,30(1):414-418. [25]Toosi A N, Kahani M. A new approach to intrusion detection based on an evolutionary soft computing model using neuro-fuzzy classfiers[J].Computer Communications,2007,30(10):2201-2212.

[26]Onotu P, Day D, Rodrigues M A. Accurate shellcode recognition from network traffic data

using artificial neural nets[C]//2015 IEEE 28th Canadian Conference on Electrical and

Computer Engineering(CCECE),Halifax,NS,2015:355-360.

[27]Cortes C, Vapnik V. Support-Vector Networks[J]. Machine Learning, 1995,20(3):273-297.

[28]Li J, Wang Y & Yang B. SVM hyper-parameter optimization using covariance matrix adapted evolutionary strategy[J]. Expert Systems with Applications,2018,114:241-259.

[29]Zhao Z, Gao J&Wang L.Optimization of SVM parameters for energy consumption prediction[J]. Journal of Cleaner Production, 2016,112: 2116-2125. 54

[30]Khan M A, Naqvi H A, Khattak H A&Maqsood M. Optimal selection of parameters for support vector machines, based on nature-inspired algorithms: solution to high dimensional problems[J]. Neural Processing Letters,2018,48(1): 279-303.

[31]Ak R, Kaya M I&Tilgen S.Parameter optimization of support vector machine using

artificial bee colony algorithm and its application to estimation problems[J]. Soft

Computing, 2019,23(2): 557-573.

[32]Shahzad F, Yao Y&Amin S U. Deep learning with tucker decomposition for multimodal malware classification[J]. IEEE Access,2019,7:78442-78450.

[33]Wang G, Hao J, Ma J & Jiang H A. Comparative assessment of ensemble learning for

credit scoring[J]. Expert Systems with Applications, 2018,93: 93-50.

[34]Yin C, Zhu Y, Fei J & He X.A Deep Learning Approach for Intrusion Detection Using

Recurrent Neural Networks[J]. IEEE Access,2017,5: 21954-21961.

[35]Han H, Xu W, Pei Z&Li L.Intrusion Detection in the Era of Big Data: Algorithms

Techniques and Comparative Analysis[J]. Information Science, 2019:468-468. [36]Hashim F A,Hussien A G.Snake Optimizer: A novel meta-heuristic optimization

algorithm[J].Knowledge-Based Systems,2022:242.

[37]Guo G, Wang H, Bell D, Bi Y & Greer K. KNN model-based approach in classification. OTM Confederated International Conferences[J].On the Move to Meaningful Internet

Systems,2003:986-996.

[38]Rumelhart D.E, Hinton G E & Williams R J.Learning representations by back-propagating

errors[J]. Nature, 1986,323(6088):533-536.

[39]Schmidhuber J.Deep learning in neural networks: An overview[J]. Neural Networks, 2015,61:85-117.

[40]任勋益, 王汝传, 谢永娟. 基于支持向量机和最小二乘支持向量机的入侵检测比较

[J]. 计算机科学, 2008, 35(10): 83-85.

[41]Wainer J, Fonseca P. How to tune the RBF SVM hyperparameters? An empirical

evaluation of 18 search algorithms[J]. Artificial Intelligence Review, 2021, 54(6): 4771- 4797.

[42]Rigatti S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39.

43]Kokash N. An introduction to heuristic algorithms[J]. Department of Informatics and

Telecommunications, 2005: 1-8.

[44]Guo Y, Yang D, Zhang Y, et al. Online estimation of SOH for lithium-ion battery based on

SSA-Elman neural network[J]. Protection and Control of Modern Power Systems, 2022, 7(3): 1-17. 55

参考文献

[45]SSA-based Compiler Design[M]. Springer Nature, 2022.Marini F, Walczak B. Particle

swarm optimization (PSO). A tutorial[J]. Chemometrics and Intelligent Laboratory

Systems, 2015, 149: 153-165.

[46]Tavallaee M, Bagheri E, Lu W& Ghorbani A A. A detailed analysis of the KDD CUP 99 data set[J]. In Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), 2009: 1-6.

[47]Stolfo S J, Fan W, Lee W, Prodromidis A&Chan P K. Cost-based modeling for fraud and

intrusion detection: Results from the JAM project[J]. In DARPA Information

Survivability Conference and Exposition, Proceedings Vol. 2,2000: 130-144. [48]Lee W,Stolfo S J. Data mining approaches for intrusion detection[J]. In Proceedings of the

7th USENIX Security Symposium,2000:79-94.

[49]沈晶磊,虞慧群,范贵生,等.基于随机森林算法的推荐系统的设计与实现[J].计算机科

学,2017,44(11):164-167+186.

[50]Guo G, Wang H, Bell D, et al. KNN model-based approach in classification[C]//On The

Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM

Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings. Springer Berlin Heidelberg, 2003: 986- 996.

[51]NIU Xiaotai. 基于KNN算法和10折交叉验证法的支持向量选取算法[J]. 华中师范大

学学报(自然科学版), 2014, 48(3): 335-338.

[52]Li J, Cheng J, Shi J, et al. Brief introduction of back propagation (BP) neural network algorithm and its improvement[C]//Advances in Computer Science and Information Engineering: Volume 2. Springer Berlin Heidelberg, 2012: 553-558.

[53]Huang S, Cai N, Pacheco P P, et al. Applications of support vector machine (SVM)

learning in cancer genomics[J]. Cancer genomics & proteomics, 2018, 15(1): 41-51.

[54]Patle A, Chouhan D S. SVM kernel functions for classification[C]//2013 International

conference on advances in technology and engineering (ICATE). IEEE, 2013: 1-9. [55]Syarif I, Prugel-Bennett A, Wills G. SVM parameter optimization using grid search and

genetic algorithm to improve classification performance[J]. TELKOMNIKA

(Telecommunication Computing Electronics and Control), 2016, 14(4): 1502-1509. [56]Masuda N, Aihara K. Cryptosystems with discretized chaotic maps[J]. Ieee transactions

on circuits and systems i: fundamental theory and applications, 2002, 49(1): 28-40. [57]Carroll T L. Adaptive chaotic maps for identification of complex targets[J]. IET Radar, Sonar & Navigation, 2008, 2(4): 256-262. 56

[58]Kanso A, Smaoui N. Logistic chaotic maps for binary numbers generations[J]. Chaos, Solitons & Fractals, 2009, 40(5): 2557-2568.

[59]Barthelemy P, Bertolotti J, Wiersma D S. A Lévy flight for light[J]. Nature, 2008, 453(7194): 495-498.

[60]Dubkov A A, Spagnolo B, Uchaikin V V. Lévy flight superdiffusion: an introduction[J]. International Journal of Bifurcation and Chaos, 2008, 18(09): 2649-2672.

[61]李彦苍, 徐培东. 基于自适应步长和莱维飞行策略的改进狼群算法[J]. 重庆大学学

报, 2023: 80-95.

[62]García S, Molina D, Lozano M, et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special

session on real parameter optimization[J]. Journal of Heuristics, 2009, 15: 617-644. [63]Agushaka J O, Akinola O, Ezugwu A E, et al. Advanced dwarf mongoose optimization for

solving CEC 2011 and CEC 2017 benchmark problems[J]. Plos one, 2022, 17(11):

e0275346.

[64]Tao Z, Huiling L, Wenwen W, et al. SSA-SVM based feature selection and parameter

optimization in hospitalization expense modeling[J]. Applied soft computing, 2019, 75: 323-332.

[65]Ardjani F, Sadouni K, Benyettou M. Optimization of SVM multiclass by particle swarm (PSO-SVM)[C]//2010 2nd International Workshop on Database Technology and Applications. IEEE, 2010: 1-4.

中图分类号:

 TN915.08    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式