- 无标题文档
查看论文信息

论文中文题名:

 配置环形弹簧自复位阻尼器的钢框架抗震性能研究    

姓名:

 赵宵震    

学号:

 21204228157    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 土木工程防灾减灾理论与技术    

第一导师姓名:

 马尤苏夫    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Study on the seismic performance of steel frame with annular spring self-centering damper    

论文中文关键词:

 环形弹簧自复位阻尼器 ; 钢框架 ; ABAQUS ; OpenSees ; 自复位能力    

论文外文关键词:

 Ring spring self resetting damper ; Steel frame ; ABAQUS ; OpenSees ; Self resetting ability    

论文中文摘要:

地震是破坏性极强的突发自然灾害,它不仅严重毁坏建筑物,还可能引发火灾、爆炸、海啸等次生灾害,成为建筑物面临的最严重自然灾害之一。在地震中,传统建筑主要依靠自身的强度、刚度和塑性来抵抗地震和耗散能量,但这常常导致结构构件的屈服或破坏。因此,提高建筑结构的抗震性能,减少地震造成的损害,是工程界和学术界持续关注和研究的重要课题。针对传统框架结构的这些缺点,自复位钢框架能有效地改善这些缺点。本文设计了一种新型环形弹簧自复位阻尼器,并将其应用于钢框架结构中。通过对该环形弹簧自复位阻尼器钢框架进行静力和动力时程分析,评估了其抗震和自复位性能。研究内容包括:

(1)介绍了环形弹簧自复位阻尼器的基本构造和安装顺序。通过有限元分析软件ABAQUS对环形弹簧自复位阻尼器进行了精细化建模,新型环形弹簧自复位阻尼器的滞回曲线呈“旗帜形”,表明环形弹簧自复位阻尼器具有良好的自复位能力。对影响其力学性能的设计参数进行了分析,研究了环簧组预压力、环簧组个数和环簧外环直径对环形弹簧自复位阻尼器滞回曲线和自复位性能的影响。

(2)提出了OpenSees中环形弹簧自复位阻尼器采用两种材料叠加的简化建模方法,对比不同环形弹簧预压力、环簧组数量和环簧外环直径下环形弹簧自复位阻尼器OpenSees模拟结果和ABAQUS模拟结果,表明OpenSees和ABAQUS模拟所得的环形弹簧自复位阻尼器滞回曲线基本吻合。通过调整OpenSees中的相应材料参数,可实现对不同设计尺寸的环形弹簧自复位阻尼器力学性能的精确模拟。

(3)利用OpenSees建立了一个配置环形弹簧自复位阻尼器的6层钢框架结构模型,对其进行静力分析。分析结果表明该结构满足抗震变形和承载力要求。该结构在低周往复加载下的基底剪力-顶点位移滞回曲线呈“旗帜形”,表明结构具有良好的自复位能力。各层环形弹簧自复位阻尼器的轴力-变形滞回曲线表明各层的阻尼器均起到了提供可恢复能力的作用。

(4)对配置环形弹簧自复位阻尼器的钢框架进行了动力时程分析,通过验算得出自复位钢框架在多遇地震和罕遇地震下都满足规范要求且能保持可恢复能力。表明配置环形弹簧自复位阻尼器的钢框架在具有良好抗震性能的基础上可实现自复位能力。

论文外文摘要:

Earthquakes, as highly destructive sudden natural disasters, not only severely damage structures but can also trigger secondary disasters such as fires, explosions, and tsunamis, making them one of the most severe natural threats to buildings. Traditional buildings primarily rely on their inherent strength, stiffness, and ductility to resist seismic forces and dissipate energy, which often leads to the yielding or failure of structural components. Therefore, enhancing the seismic performance of building structures and reducing the damage caused by earthquakes is a significant and ongoing area of concern and research within both the engineering and academic communities. To address the shortcomings of conventional frame structures, self-centering steel frames can effectively mitigate these issues. This paper introduces a novel circular spring self-centering damper and integrates it into steel frame structures. The seismic and self-centering performance of the steel frame equipped with the circular spring self-centering damper is evaluated through both static and dynamic time-history analyses. The research encompasses the following aspects:

(1) The basic configuration and installation sequence of the novel circular spring self-centering damper are explained. A detailed finite element model of the damper is constructed using the ABAQUS software, which reveals a "flag-shaped" hysteresis curve, indicating the damper's excellent self-centering capability. Additionally, the influence of key parameters, such as the pre-stress force of the spring group, the number of spring groups, and the outer diameter of the circular spring, on the hysteresis curve and self-centering performance of the damper is analyzed using ABAQUS.

(2) A comparison of the OpenSees and ABAQUS simulation results for the circular spring self-centering damper under different pre-stress forces, spring group numbers, and outer diameters of the circular spring shows that the hysteresis curves obtained from both simulations are essentially consistent. This suggests that the self-centering material superposition method in OpenSees can be used for parameter setting of the circular spring self-centering damper.

(3) A six-story steel frame with the circular spring self-centering damper is modeled using OpenSees and subjected to static analysis, which shows that the structure meets the requirements for seismic deformation and load capacity. Dynamic low-cycle loading analysis of the six-story steel frame with the damper reveals a "flag-shaped" hysteresis curve, demonstrating the structure's good self-centering ability. The hysteresis curves of the self-centering dampers on each floor are presented, highlighting their crucial role in the recoverable capacity of the structure.

(4) Dynamic time-history analysis of the steel frame equipped with circular spring self-centering dampers is conducted, and it is verified that the self-centering frame meets the code requirements and maintains recoverability under both frequent and rare earthquakes. This indicates that the steel frame with the circular spring self-centering damper not only possesses good seismic performance but also achieves self-centering capability.

参考文献:

[1] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念—可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7): 941-948.

[2] Priestley M J N, Tao J. Seismic response of precast prestressed concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38(1): 58-69.

[3] MacRae G A, Priestley M J N. Precast post-tensioned ungrouted concrete beam-column sub-assemblage tests[R]. Report No. SSRP-94/10, Department of Applied Mechanics and Engineering Sciences, University of California, San Diego, 1994.

[4] Stanton J, Stone W, Cheok G S. A hybrid reinforced precast frame for seismic regions[J]. PCI Journal, 1993, 42(2): 20-32.

[5] Priestley M J N, MacRae G A. Seismic tests of precast beam-to-column joint sub-assemblages with nbonded tendons[J]. PCI Journal, 1996, 41(1): 64-81.

[6] El-Sheikh M T, Sause R, Pessiki S, Lu L W. Seismic behavior and design of unbonded post-tensioned precast concrete frames[J]. PCI Journal, 1999, 44 (3): 54-71.

[7] Morgen B G, Kurama Y C. Seismic design of friction-damped precast concrete frame structures[J]. Journal of Structural Engineering, 2007, 133(11): 1501-1511.

[8] Ye L P, Qazi A U, Wang X L. Passive auto adaptive seismic resistant structures and their development[C]. Proc. of the Eighth International Symposium on Structural Engineering for Young Experts, Xi’an, China, 2004: 303-309.

[9] 张鑫, 韦合, 叶列平. 高强钢筋配筋混凝土框架结构抗震性能的试验研究[J]. 土木工程学报, 2009, 42(5): 74-78.

[10] 韩建平, 陈军. 无黏结后张预制混凝土梁柱自复位装置基本力学特性分析[J]. 地震工程与工程 振动, 2013, 3(6): 47-52.

[11] 吕西林, 崔晔, 刘兢兢. 自复位钢筋混凝土框架结构振动台试验研究[J]. 建筑结构学报, 2014, 35(1): 19-26.

[12] 高文俊, 吕西林. 自复位钢筋混凝土框架振动台试验的数值模拟[J]. 结构工程师, 2014, 30(1): 13-19.

[13] 蔡小宁, 孟少平, 孙巍巍. 自复位预制框架边装置组件受力性能试验研究[J]. 工程力学, 2014, 31(3): 160-167.

[14] 蔡小宁, 孟少平. 半刚性对预应力自复位框架结构的抗震性能影响分析[J]. 工程抗震与加固改造, 2015, 37(1): 16-21.

[15] 蔡小宁, 孟少平. 预应力自复位预制框架中装置试验研究[J]. 建筑科学, 2016, 32(1): 76-80.

[16] 蔡小宁, 程先春, 孟少平. 自复位预应力预制框架静力弹塑性分析[J]. 建筑结构, 2015, 45(8): 25-29.

[17] 刘家亮, 徐福泉. 预应力混凝土框架自复位装置的抗剪性能试验研究[J]. 建筑科学, 2016, 32(5): 64-70.

[18] Kurama Y, Sause R, Pessiki S, Lu L W. Lateral load behavior and seismic design of unbonded post-tensioned precast concrete walls[J]. ACI Structural Journal, 1999, 96(4): 622-633.

[19] Kurama Y C. Seismic design of unbonded post-tensioned precast concrete walls with supplemental viscous damping[J]. ACI Structural Journal, 2000, 97(4): 648-658.

[20] AaletiS, Sritharan S. A simplified analysis method for characterizing unbonded post-tensioned precast wall systems[J]. Engineering Structures, 2009, 31(12): 2966-2975.

[21] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(3), 331-354.

[22] Henry R S, Sritharan S, Ingham J M. Finite element analysis of the PreWEC self-centering concrete wall system [J]. Engineering Structure, 2016, 115: 28-41.

[23] Tweigden K M, Henry R S. Experimental response and bilinear approximation of steel plate O-connector dissipaters [J]. Structures, 2015, 3: 261-71.

[24] 马昕, 吕西林. 软钢阻尼器对自复位剪力墙性能影响研究[J]. 结构工程师, 2013, 29(4): 63-69.

[25] 胡晓斌, 贺慧高. 往复荷载作用下自复位墙受力机理研究[J]. 工程力学, 2013, 30(11): 202-206.

[26] 胡晓斌, 贺慧高, 彭真, 曹文清. 往复荷载作用下自复位墙滞回性能研究[J]. 建筑结构学报, 2013, 34(11): 18-23.

[27] 徐基磊, 李启才, 经聪, 朱晓蓉. 利用缝钢板剪力墙耗能的自复位体系研究[J]. 苏州科技学院学报(工程技术版), 2014, 27(3): 27-33.

[28] 经聪, 李启才. 利用蝴蝶形钢板剪力墙耗能的自复位结构体系研究[J]. 苏州科技学院学报(工程技术版), 2014, 27(1): 44-50.

[29] 党像梁, 吕西林, 周颖. 底部开水平缝预应力自复位剪力墙试验设计及结果分析[J]. 地震工程与工程振动, 2014, 34(6): 103-112.

[30] 党像梁, 吕西林, 钱江, 蒋欢军. 自复位预应力剪力墙抗震性能实体和平面单元有限元分析[J]. 建筑结构学报, 2014, 35(5): 17-24.

[31] 赵军, 赵奇, 陈纪伟. CFRP 筋钢筋混凝土剪力墙自复位性能试验研究[J]. 土木建筑与环境工程, 2016, 38(3): 18-24.

[32] RiclesJ M, Sause R, Garlock MM, Zhao C. Posttensioned seismic-resistant connections for steel frames[J]. ASCE Journal of Structural Engineering, 2001, 127(2): 113-121.

[33] Ricles J M, Sause R, Peng S W, Lu L W. Experimental evaluation of earthquake resistant post-tensioned steel connections[J]. Journal of Structural Engineering, 2002, 128(7): 850-859.

[34] Garlock M M, Ricles J M, Sause, R. Cyclic load tests and analysis of bolted top-and-seat angle connections[J]. Journal of Structural Engineering, 2003, 129(12), 1615-1625.

[35] Rojas P, Ricles J M, Sause R. Seismic performance of post-tensioned steel moment resisting frames with friction devices[J]. Journal of Structural Engineering, 2005, 131(4): 529-540.

[36] Garlock M M, Sause R, Ricles J M. Behavior and design of post-tensioned steel frame systems[J]. Journal of Structural Engineering, 2007, 133(3): 239-399.

[37] 潘振华, 潘鹏, 邱法维, 叶列平, 钱稼茹. 具有自复位能力的钢结构体系研究[J]. 土木工程学报, 2010, 43(S1): 403-410.

[38] 张帅. 半刚性自复位钢框架的数值模拟和分析[D]. 广州:华南理工大学硕士学位论文, 2010.

[39] 蒋成良, 李启才. 钢绞线预应力的改变对自复位钢框架性能影响[J]. 苏州科技学院学报, 2013, 26(3): 28-31.

[40] 张艳霞, 叶吉健, 赵微, 李瑞, 刘学春. 自复位平面钢框架推覆分析[J]. 地震研究, 2014, 37(3): 476-483.

[41] 张艳霞, 叶吉健, 杨凡, 陈媛媛. 自复位钢框架结构抗震性能动力时程分析[J]. 土木工程学报, 2015, 48(7): 30-40.

[42] 韩建平, 刘生文. 低周往复荷载作用下自复位钢框架抗震性能研究[J]. 世界地震工程, 2015, 31(3): 10-16.

[43] 史三元, 王帅, 王鹏飞, 白佳楠. 自复位梁腹板耗能钢框架装置抗震性能分析[J]. 河北工程大学学报, 2015, 32(1): 1-4.

[44] 周星宇, 李启才, 纪瑞, 韩平. 自复位率对可控摇摆自复位钢框架抗震性能的影响[J]. 苏州科技学院学报(工程技术版), 2015, 28(4): 30-36.

[45] 赵凯, 方有珍, 杨永龙. 新型 PEC 柱-钢梁摩擦耗能部分自复位装置抗震性能数值模拟[J]. 工程抗震与加固改造, 2016, 38(3): 97-105.

[46] 方有珍, 赵凯, 陈赟, 杨永龙. 新型 PEC 柱-钢梁中装置摩擦耗能型部分自复位连接抗震性能试验研究[J]. 土木工程学报,2016, 49(4): 22-30.

[47] Sause R, Ricles J M, Roke D, Seo C Y, Lee K S. Design of self-centering steel concentrically-braced frames[C]. Proc. of 4th International Conference on Earthquake Engineering, Taipei, China, 2006, Paper No. 122.

[48] Tremblay R, Lacerte M, Christopoulos C. Seismic response of multistory buildings with self-centering energy dissipative steel braces[J]. Journal of Structural Engineering, 2008, 134(1):108-120.

[49] Tremblay R, Poirier L P, Bouaanani N, Leclerc M, Rene V, Fronteddu L, Rivest S. Innovative viscously damped rocking braced steel frames[C]. Proc. of the 14th World Conference on Earthquake Engineering, Beijing, China, 2008.

[50] Christopoulos C, Tremblay R, Kim H Jetal. Self-centering energy dissipative bracing system for the seismic resistance of structures: development and validation[J]. Journal of Structural Engineering, 2008, 134(1): 96-107.

[51] Mehdei K, David A R, Qindan H. Seismic performance assessment of self-centering dual systems with different configurations[J]. Structures, 2016, 5: 88-100.

[52] C. X. Qiu, S. Y. Zhu. Performance-based seismic design of self-centering steel frames with SMA-based braces[J]. Engineering Structures, 2017, 130: 67-82.

[53] C. X. Qiu, J. Qi, C. Chen. Energy-based seismic design methodology of smabfs using hysteretic energy spectrum[J]. Journal of Structural Engineering, 2020, 146(2): 04019207.

[54] C. X. Qiu, S. Y. Zhu. Enhance seismic performance of self-centering concentrically braced frames by using hybrid systems[J]. Bulletin of Earthquake Engineering, 2020, 18: 3995-4015.

[55] C. X. Qiu, C. Fang, D. Liang, et al. Behavior and application of self-centering dampers equipped with buckling-restrained SMA bars[J]. Smart Materials and Structures, 2020, 29(3): 035009.

[56] L. H. Xu, J. L. Liu, Z. X. Li. Behavior and design considerations of steel plate shear wall with self-centering energy dissipation braces[J]. Thin-Walled Structures, 2018, 132: 629-641.

[57] L. H. Xu, J. L. Liu, Z. X. Li. Cyclic behaviors of steel plate shear wall with self-centering energy dissipation braces[J]. Journal of Constructional Steel Research, 2019, 153: 19-30.

[58] X. W. Fan, L. H. Xu, Z. X. Li. Seismic performance evaluation of steel frames with pre-pressed spring self-centering braces[J]. Journal of Constructional Steel Research, 2019, 162: 105761.

[59] L. H. Xu, X. W. Fan, Z. X. Li. Seismic assessment of buildings with prepressed spring self-centering energy dissipation braces[J]. Journal of Structural Engineering, 2020, 146(2): 04019190.

[60] X. S. Xie, L. H. Xu, Z. X. Li. Hysteretic model and experimental validation of a variable damping self-centering brace[J]. Journal of Constructional Steel Research, 2020, 167: 105965.

[61] X. S. Xie, L. H. Xu, Z. X. Li. Modeling of magnetorheological self-centering brace [J]. Journal of Structural Engineering, 2020, 146(1): 04019112.

[62] L. H. Xu, X. S. Xie, Z. X. Li. Seismic behavior and design approach of variable-damping self-centering braced frame[J]. Journal of Structural Engineering, 2021, 147(6): 05021001.

[63] 宋子文. 自复位耗能支撑结构的地震响应分析[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2010.

[64] 郑锦铜, 颜嘉毅. 具自复位功能的同心斜撑构架耐震行为研究[J]. 土木工程学报, 2012, 45(S2): 207-211.

[65] 刘璐, 吴斌, 李伟, 赵俊贤. 一种新型自复位防屈曲支撑的拟静力试验[J]. 东南大学学报(自然科学版), 2012, 42(3): 536-541.

[66] 刘璐, 吴斌. 自复位防屈曲支撑钢框架减震效果分析[J]. 建筑结构学报, 2016, 37(4): 93-101.

[67] 曾鹏, 陈泉, 王春林, 孟少平. 全钢自复位屈曲约束支撑理论与数值分析[J]. 土木工程学报, 2013, 46(S1): 19-24.

[68] 胡丹, 周臻, 苗建义, 王维影. 自复位摩擦耗能支撑框架的抗震性能分析[J]. 土木工程与管理学报, 2014, 31(3): 28-33.

[69] 何小辉, 武振宇, 温四清,董卫国. 自复位支撑框架体系的抗震性能分析[J]. 工程抗震与加固改造, 2014, 36(1): 76-79.

[70] 谭燕秋, 王朋飞, 霍立超, 王帅. 自复位防屈曲支撑钢框架的抗震性能分析[J]. 河北工程大学学报(自然科学版), 2014, 31(4): 1-4.

[71] 王涛, 黄俊奎, 孟丽岩, 许国山, 王贞, 丁勇. 弹簧式自复位防屈曲支撑的抗震性能[J]. 黑龙 江科技大学学报, 2015, 25(5): 557-564.

[72] 刘文渊, 孙国华, 冷捷. 新型自复位 Y 型偏心支撑钢框架结构的滞回性能[J]. 工程抗震与加固 改造, 2015, 37(6): 51-57.

[73] 冷捷, 刘文渊. 自复位 K 型偏心支撑钢框架结构滞回性能[J]. 土木工程与管理学报, 2016, 33(3): 73-79.

[74] Feng W, Fang C, Wang W. Behavior and design of top flange-rotated self-centering steel connections equipped with SMA ring springdampers[J].Journal of Constructional Steel Research, 2019, 159 315-329.

[75] GB50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.

[76] 叶亮. 自复位阻尼器耗能减震结构的性能设计方法及地震易损性分析[D]. 华南理工大学, 2018.

[77] GB50017-2017, 钢结构设计标准[S]. 北京: 中国计划出版社, 2017.

[78] GB50009-2012, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2012.

[79] FEMA P-58-1, Seismic Performance Assessment of Buildings: Volume1-Methodology[S]. Washington, D.C.: Federal Emergency Management Agency, 2018.

中图分类号:

 TU391    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式