- 无标题文档
查看论文信息

论文中文题名:

 基于机器学习的延安市滑坡灾害风险评价研究    

姓名:

 李卓阳    

学号:

 15389076679    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0705    

学科名称:

 理学 - 地理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 自然灾害监测与评价    

第一导师姓名:

 杨梅焕    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-06-03    

论文外文题名:

 Study on Landslide Risk Assessment in Yan'an City Based on Machine Learning    

论文中文关键词:

 滑坡 ; 机器学习 ; 危险性 ; 易损性 ; 风险性    

论文外文关键词:

 Landslide ; Machine Learning ; Hazard assessment ; Vulnerability assessment ; Risk assessment    

论文中文摘要:

滑坡作为最具破坏性的自然灾害之一,严重威胁着人类生命财产安全,并会对基础设施造成重大破坏。滑坡灾害风险评价有助于确定特定地区中发生滑坡灾害风险更大的区域,是缓解和防治滑坡灾害的有效手段。延安市位于陕西省北部,地处黄土高原丘陵沟壑区,地形复杂多样,人类活动对地表的扰动强烈,极易形成滑坡灾害。鉴于此,本文以陕西省延安市为研究区,采用随机森林、XGBoost、CatBoost和LightGBM4种集成学习算法,结合贝叶斯优化方法,开展了滑坡危险性评价;运用层次分析法和熵权法的主客观结合方法分析了滑坡易损性,建立了区域滑坡灾害风险评价体系,揭示了人类活动扰动对滑坡风险性的影响,提出了因地制宜的滑坡灾害防治建议。主要结论如下:

(1)以历史滑坡数据为基础,结合实地调查和多时相遥感数据,构建了滑坡样本数据集,分析了延安市滑坡空间和几何特征。结果表明,延安市滑坡空间分布呈现“北多南少,集聚分布”的格局,南部滑坡具有显著集聚性,北部滑坡数量多但较南部分散。并且在人类活动频繁的地区与道路、河流两侧较为集中。洛川县、延长县、志丹县、子长市和延川县滑坡数量多,密度高。此外,滑坡的几何参数,如周长、面积、最大长度和最大宽度均符合幂律分布规律。

(2)选取13个环境因素构成滑坡危险性评价因子体系,同时满足相关性与多重共线性的要求。基于DBSCAN联合缓冲区采样的负样本余弦相似度为614.36,显著优于仅缓冲区采样获得的负样本。对比各模型ROC曲线、AUC值以及混淆矩阵,结果表明Bayes-CatBoost模型为最优模型,其AUC值为0.877,假阴性率为0.17。Bayes-CatBoost模型的评价结果表明,极低、低、中、高和极高危险区的面积占比分别为33.43%、21.33%、17.59%、15.75%和11.91%。

(3)以人口密度、GDP密度、道路密度、建筑物密度和滑坡致命性作为评价指标,运用层次分析法-熵权法结合的主客观一体化方法进行滑坡灾害易损性评价,结果显示延安市滑坡灾害易损性呈现出“外围低、中心高”的环绕式空间分布。以“风险性=危险性×易损性”作为滑坡灾害风险性评价模型,结果显示延安市滑坡灾害风险性空间分布呈现出“辐射状递减”的分布特点,具体表现为区域中心风险性最高,向外围呈辐射状逐级递减。

(4)2010-2023年,延安市人类活动范围扩张,强度提升,对滑坡风险性造成不同程度的影响。受人类活动扰动的土地利用类型上的滑坡风险性,显著高于非人类活动扰动的土地利用类型上的滑坡风险性,其中建设用地上的滑坡风险性最高。在土地利用类型转变的背景下,从非人类活动扰动的土地利用类型转变为受人类活动扰动的土地利用类型上的滑坡风险性最高,反之,滑坡风险性较低。最后,本研究编制了延安市滑坡灾害风险评价分区图,并提出了因地制宜的防治建议。

论文外文摘要:

Landslides are one of the most destructive natural disasters, which seriously threaten human life and property safety and cause significant damage to infrastructure. Landslide risk assessment helps to identify areas with a higher risk of landslide disasters in a specific region and is an effective means to mitigate and prevent landslide disasters. Yan'an City is located in the northern part of Shaanxi Province, in the hilly and gully area of the Loess Plateau. The terrain is complex and diverse, and human activities have caused strong disturbances to the surface, which is very likely to cause landslide disasters. In view of this, this paper uses four ensemble learning algorithms, random forest, XGBoost, CatBoost and LightGBM, combined with the Bayesian optimization method to carry out landslide hazard assessment; the subjective and objective combination of hierarchical analysis method and entropy weight method is used to analyze the vulnerability of landslides, establish a regional landslide risk assessment system, reveal the impact of human activity disturbance on landslide risk, and put forward landslide disaster prevention and control suggestions tailored to local conditions. The main conclusions are as follows:

(1) Based on historical landslide data and multi-temporal remote sensing data, a sample data set is constructed, and the geometric characteristics of the landslide are interpreted. Combined with the field survey, the spatial and geometric characteristics of landslides in Yan'an were analyzed. The results showed that the spatial distribution of landslides in Yan'an showed a pattern of "more in the north and less in the south, with agglomerated distribution"; they were more concentrated in areas with frequent human activities and on both sides of roads and rivers, and the geometric parameters of landslides conformed to the power law distribution law.

(2) The evaluation factor system composed of elevation, slope, aspect, curvature, stratigraphic lithology, soil type, multi-year average precipitation, NDVI, distance from water system, TWI, SPI, distance from road and land use was selected. Under the premise of meeting the requirements of correlation and multicollinearity, the cosine similarity of negative samples based on DBSCAN combined with buffer sampling was 614.36, which was significantly better than the negative samples obtained by only buffer sampling. Comparing the ROC curves, AUC values and confusion matrices of each model, the results showed that the Bayes-CatBoost model was the optimal model with an AUC value of 0.877 and a false negative rate of 0.17. The evaluation results of the Bayes-CatBoost model show that the area proportions of extremely low, low, medium, high and extremely high risk areas are 33.43%, 21.33%, 17.59%, 15.75% and 11.91% respectively.

(3) The landslide vulnerability is evaluated by using the subjective and objective integration method with population density, GDP density, road density, building density and landslide lethality as evaluation indicators. Taking "risk = hazard × vulnerability" as the risk evaluation model, the results show that the spatial distribution of landslide risk in Yan'an City presents a "radial decrease" distribution characteristic, which is specifically manifested in the highest risk in the regional center and gradually decreases toward the periphery.

(4) From 2010 to 2023, the scope of human activities in Yan'an City expanded and the intensity increased. The landslide risk of land use types disturbed by human activities is significantly higher than that of land use types disturbed by non-human activities, among which the landslide risk on construction land is the highest. In the context of land use type transformation, the landslide risk is highest when the land use type is transformed from non-human activity disturbance to human activity disturbance, and vice versa, the landslide risk is lower.

Finally, this study compiled a landslide disaster risk assessment zoning map for Yan'an City, put forward prevention and control suggestions based on local conditions, and explained the impact of human activity disturbance on landslide risk.

参考文献:

[1] Petley D. Global patterns of loss of life from landslides [J]. Geology, 2012, 40(10):927-930.

[2] 王雁林, 任超, 李永红, 等. 关于构建陕西省地质灾害防治新机制的思考 [J]. 西北大学学报(自然科学版), 2020, 50(3):403-410.

[3] Varnes D. Landslide types and processes [J]. Landslides and engineering practice, 1958, 24:20-47.

[4] Brabb E E. Innovative approaches to landslide hazard and risk mapping [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1984, 1:17-22.

[5] Guzzetti F, Reichenbach P, Cardinali M, et al. Probabilistic landslide hazard assessment at the basin scale [J]. Geomorphology, 2005, 72(1-4):272-299.

[6] Alvioli M, Loche M, Jacobs L, et al. A benchmark dataset and workflow for landslide susceptibility zonation [J]. Earth-Science Reviews, 2024:104927.

[7] Carrara A, Merenda L. Landslide inventory in northern Calabria, southern Italy [J]. Geological Society of America Bulletin, 1976, 87(8):1153-1162.

[8] Hutchinson J. Landslide hazard assessment, keynote paper:proceedings of the Landslides, Proceeding of 6th International Symposium on Landslides [C]. Christchurch: Balkema Rotterdam, 1995.

[9] Carrara A. Multivariate models for landslide hazard evaluation [J]. Journal of the International Association for Mathematical Geology, 1983, 15:403-426.

[10] Carrara A, Pugliese Carratelli E, Merenda L. Computer-based data bank and statistical analysis of slope instability phenomena; Computer-based data bank and statistical analysis of slope instability phenomena [J]. Geological Society of America Bulletin, 1977, 21(2):187-222.

[11] Carrara A, Catalano E, Reali C, et al. Digital terrain analysis for land evaluation [J]. Geologica Applicata e Idrogeologica, 1978, 13:69-127.

[12] M.Rice R, 朱兴昌. 森林能减少滑坡危险 [J]. 水土保持科技情报, 1986, (3):12-16.

[13] Huang F, Cao Z, Guo J, et al. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping [J]. Catena, 2020, 191:104580.

[14] Leoni G, Barchiesi F, Catallo F, et al. GIS methodology to assess landslide susceptibility: application to a river catchment of Central Italy [J]. Journal of maps, 2009, 5(1):87-93.

[15] Wislocki A, Bentley S. An expert system for landslide hazard and risk assessment [J]. Computers & Structures, 1991, 40(1):169-172.

[16] 张艳玲, 南征兵, 周平根. 利用证据权法实现滑坡易发性区划 [J]. 水文地质工程地质, 2012, 39(2):121-125.

[17] 吴帅, 崔玉龙, 鲍鹏鹏, 等. 基于GIS和CF模型的2018年日本北海道Mw6.6地震滑坡危险性评价 [J]. 黑龙江工程学院学报, 2022, 36(2):7-12.

[18] 王潇, 姚海鹏, 阮岳军, 等. 基于证据权法的区域滑坡易发性评价——以桑植县巴东组红层区为例 [J]. 地下水, 2024, 46(5):215-218+287.

[19] Alsabhan A H, Singh K, Sharma A, et al. Landslide susceptibility assessment in the Himalayan range based along Kasauli–Parwanoo road corridor using weight of evidence, information value, and frequency ratio [J]. Journal of King Saud University-Science, 2022, 34(2):101759.

[20] 申晨明, 魏云魈, 夏洋洋, 等. 基于信息量法的山南市贡嘎县滑坡易发性评价 [J]. 西藏科技, 2024, 46(9):14-24.

[21] 徐佳敏, 李鹏飞, 马俊杰, 等. 大熊猫国家公园成都片区滑坡易发性评价 [J]. 国家公园(中英文), 2024, 2(4):246-259.

[22] Sonker I, Tripathi J N. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya [J]. Quaternary Science Advances, 2022, 8:100067.

[23] 吴兴贵, 王宇栋, 王蓝婷, 等. 加权信息量模型在云南澜沧县滑坡危险性评价中的应用 [J]. 中国地质灾害与防治学报, 2024, 35(3):119-128.

[24] 徐胜华, 刘纪平, 王想红, 等. 熵指数融入支持向量机的滑坡灾害易发性评价方法——以陕西省为例 [J]. 武汉大学学报(信息科学版), 2020, 45(8):1214-1222.

[25] Catani F, Lagomarsino D, Segoni S, et al. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues [J]. Natural Hazards and Earth System Sciences, 2013, 13(11):2815-2831.

[26] 刘帅, 王涛, 曹佳文, 等. 基于优化随机森林模型的降雨群发滑坡易发性评价——以西秦岭极端降雨事件为例 [J]. 地质通报, 2024, 43(6):958-970.

[27] Huang Y, Zhao L. Review on landslide susceptibility mapping using support vector machines [J]. Catena, 2018, 165:520-529.

[28] 何万才, 赵俊三, 林伊琳, 等. 基于证据权和支持向量机模型的威信县滑坡易发性评价 [J]. 科学技术与工程, 2023, 23(15):6350-6360.

[29] Lombardo L, Mai P M. Presenting logistic regression-based landslide susceptibility results [J]. Engineering geology, 2018, 244:14-24.

[30] 朱路路, 崔玉龙. 基于逻辑回归模型的凉山州滑坡易发性评价 [J]. 山西建筑, 2024, 50(5):71-73+97.

[31] Shi N, Li Y, Wen L, et al. Rapid prediction of landslide dam stability considering the missing data using XGBoost algorithm [J]. Landslides, 2022, 19(12):2951-2963.

[32] 曾韬睿, 王林峰, 张俞, 等. 基于CatBoost-SHAP模型的滑坡易发性建模及可解释性 [J]. 中国地质灾害与防治学报, 2024, 35(1):37-50.

[33] 郑德凤, 高敏, 闫成林, 等. 基于卷积神经网络的滑坡易发性评价:以辽南仙人洞国家级自然保护区为例 [J]. 地球科学, 2024, 49(5):1654-1664.

[34] Dou J, Yamagishi H, Pourghasemi H R, et al. An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan [J]. Natural Hazards, 2015, 78:1749-1776.

[35] Bao S, Liu J, Wang L, et al. Application of transformer models to landslide susceptibility mapping [J]. Sensors, 2022, 22(23):9104.

[36] Goetz J N, Brenning A, Petschko H, et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling [J]. Computers & Geosciences, 2015, 81:1-11.

[37] 朱浩, 李书, 史超, 等. 基于INF-Logistic回归耦合模型的云阳县迁建区滑坡易发性评价 [J]. 中国水运(下半月), 2024, 24(10):36-38.

[38] 孙才, 铁永波, 宁志杰, 等. 基于频率比-支持向量机耦合模型的四川省喜德县滑坡易发性评价 [J]. 沉积与特提斯地质, 2024, 44(3):547-559.

[39] 杨柳. 基于TRIGRS物理模型与随机森林耦合的台风暴雨滑坡易发性评价 [D]. 淮南: 安徽理工大学, 2024.

[40] Pham B T, Nguyen-Thoi T, Qi C, et al. Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping [J]. Catena, 2020, 195:104805.

[41] Rossi M, Guzzetti F, Reichenbach P, et al. Optimal landslide susceptibility zonation based on multiple forecasts [J]. Geomorphology, 2010, 114(3):129-142.

[42] 唐学武, 刘耕, 邵磊, 等. 基于CF-BPNN耦合模型的益湛铁路沿线滑坡危险性评价 [J]. 地质科学, 2024, 59(5):1470-1486.

[43] Yan G, Lu D, Li S, et al. Optimizing slope unit-based landslide susceptibility mapping using the priority-flood flow direction algorithm [J]. Catena, 2024, 235:107657.

[44] Li B, Han L, Li L. Construction of ecological security pattern in combination with landslide sensitivity: A case study of Yan’an City, China [J]. Journal of Environmental Management, 2024, 366:121765.

[45] 田垚, 周少伟, 阮征, 等. 陕西省志丹县地质灾害风险调查评价研究 [J]. 水利水电快报, 2023, 44(9):35-44.

[46] Dou J, Yunus A P, Merghadi A, et al. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning [J]. Science of the total environment, 2020, 720:137320.

[47] Gu T, Li J, Wang M, et al. Study on landslide susceptibility mapping with different factor screening methods and random forest models [J]. PLoS one, 2023, 18(10):e0292897.

[48] 毕结昂, 徐佩华, 宋盛渊, 等. 基于信息量-逻辑回归耦合模型的玛纳斯河流域地质灾害易发性评价 [J]. 工程地质学报, 2022, 30(5):1549-1560.

[49] 许嘉慧, 张虹, 文海家, 等. 基于逻辑回归的巫山县滑坡易发性区划研究 [J]. 重庆师范大学学报(自然科学版), 2021, 38(2):48-56.

[50] Chen W, Panahi M, Pourghasemi H R. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling [J]. Catena, 2017, 157:310-324.

[51] Kavzoglu T, Sahin E K, Colkesen I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression [J]. Landslides, 2014, 11:425-439.

[52] Qin Z, Zhou X, Li M, et al. Landslide susceptibility mapping based on resampling method and FR-CNN: A case study of Changdu [J]. Land, 2023, 12(6):1213.

[53] Sun D, Wu X, Wen H, et al. A LightGBM-based landslide susceptibility model considering the uncertainty of non-landslide samples [J]. Geomatics, Natural Hazards and Risk, 2023, 14(1):2213807.

[54] 周萍, 邓辉, 张文江, 等. 基于信息量模型和机器学习方法的滑坡易发性评价研究——以四川理县为例 [J]. 地理科学, 2022, 42(9):1665-1675.

[55] Huang F, Cao Z, Jiang S-H, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model [J]. Landslides, 2020, 17:2919-2930.

[56] Liang Z, Wang C, Khan K U J. Application and comparison of different ensemble learning machines combining with a novel sampling strategy for shallow landslide susceptibility mapping [J]. Stochastic Environmental Research and Risk Assessment, 2021, 35:1243-1256.

[57] Zhao Y, Wang R, Jiang Y, et al. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China [J]. Engineering geology, 2019, 259:105147.

[58] Shirzadi A, Solaimani K, Roshan M H, et al. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution [J]. Catena, 2019, 178:172-188.

[59] 黄发明, 陈佳武, 唐志鹏, 等. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性 [J]. 岩石力学与工程学报, 2021, 40(6):1155-1169.

[60] Lombardo L, Cama M, Conoscenti C, et al. Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy) [J]. Natural Hazards, 2015, 79:1621-1648.

[61] Van Westen C, Van Asch T W, Soeters R. Landslide hazard and risk zonation—why is it still so difficult? [J]. Bulletin of Engineering Geology and the Environment, 2006, 65:167-184.

[62] Sameen M I, Pradhan B, Lee S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment [J]. Catena, 2020, 186:104249.

[63] Zhang W, Wu C, Zhong H, et al. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization [J]. Geoscience Frontiers, 2021, 12(1):469-477.

[64] Wang X, Huang F, Cheng Y. Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting [J]. Measurement, 2014, 58:147-153.

[65] 张潇远, 苏巧梅, 赵财胜, 等. 一种利用贝叶斯算法优化XGBoost的滑坡易发性评价方法 [J]. 测绘科学, 2023, 48(6):140-150.

[66] 张军以, 丁悦凯, 孙德亮. 基于不同样本比例与超参数优化的滑坡易发性评价——以重庆市武隆区为例 [J]. 重庆师范大学学报(自然科学版), 2022, 39(5):47-57.

[67] Daviran M, Shamekhi M, Ghezelbash R, et al. Landslide susceptibility prediction using artificial neural networks, SVMs and random forest: hyperparameters tuning by genetic optimization algorithm [J]. International Journal of Environmental Science and Technology, 2023, 20(1):259-276.

[68] Kavzoglu T, Teke A. Advanced hyperparameter optimization for improved spatial prediction of shallow landslides using extreme gradient boosting (XGBoost) [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(5):201.

[69] 陈阳. 基于GIS与机器学习的吉林省泥石流风险性评价 [D]. 长春: 吉林大学, 2021.

[70] 张晓东. 基于遥感和GIS的宁夏盐池县地质灾害风险评价研究 [D]. 北京: 中国地质大学, 2018.

[71] 刘希林. 泥石流风险评价中若干问题的探讨 [J]. 山地学报, 2000, 18(4):5.

[72] Fell R. Landslide risk assessment and acceptable risk [J]. Canadian Geotechnical Journal, 1994, 31(2):261-272.

[73] Mejía-Navarro M, Wohl E E, Oaks S D. Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado [M]. Geomorphology and Natural Hazards. Elsevier. 1994: 331-354.

[74] Guo Z, Chen L, Gui L, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model [J]. Landslides, 2020, 17(3):567-583.

[75] Westgate K N. Some definitions of disaster [M]. Some definitions of disaster. 1976: 65-65.

[76] Reese S, Bradley B A, Bind J, et al. Empirical building fragilities from observed damage in the 2009 South Pacific tsunami [J]. Earth-Science Reviews, 2011, 107(1-2):156-173.

[77] Maskrey A. Disaster Mitigation: A community based approach [M]. Oxfam GB, 1989.

[78] 马寅生, 张业成, 张春山, 等. 地质灾害风险评价的理论与方法 [J]. 地质力学学报, 2004, 10(1):7-18.

[79] Hewitt K. Interpretations of calamity: From the viewpoint of human ecology [M]. Routledge, 2019.

[80] Glade T. Vulnerability assessment in landslide risk analysis [J]. Erde, 2003, 134(2):123-146.

[81] Fuchs S, Keiler M, Ortlepp R, et al. Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: Challenges and the way forward [J]. Journal of Hydrology, 2019, 575:587-595.

[82] Papathoma-Köhle M, Gems B, Sturm M, et al. Matrices, curves and indicators: A review of approaches to assess physical vulnerability to debris flows [J]. Earth-Science Reviews, 2017, 171:272-288.

[83] Luo H Y, Zhang L M, Zhang L L, et al. Vulnerability of buildings to landslides: The state of the art and future needs [J]. Earth-Science Reviews, 2023, 238:104329.

[84] Blaikie P, Cannon T, Davis I, et al. At risk: natural hazards, people's vulnerability and disasters [M]. Routledge, 2014.

[85] 姜彤, 许朋柱. 自然灾害研究中的社会易损性评价 [J]. 中国科学院院刊, 1996, (3):186-191.

[86] Burton C, Betts R, Jones C, et al. Will fire danger be reduced by using Solar Radiation Management to limit global warming to 1.5° C compared to 2.0° C? [J]. Geophysical Research Letters, 2018, 45(8):3644-3652.

[87] Pollock W, Wartman J. Human Vulnerability to Landslides [J]. GeoHealth, 2020, 4(10):e2020GH000287.

[88] Guadagno L. Human Mobility in the Sendai Framework for Disaster Risk Reduction [J]. International Journal of Disaster Risk Science, 2016, 7(1):30-40.

[89] 王永利, 丁俊, 王德伟, 等. 四川康定城地质灾害社会经济易损性分区评价 [J]. 沉积与特提斯地质, 2006, (2):88-91.

[90] 成永刚. 近二十年来国内滑坡研究的现状及动态 [J]. 地质灾害与环境保护, 2003, (4):1-5.

[91] 乔建平. 应用统计方法航片判译茅台地区滑坡 [C]. 重庆: 地震出版社, 1991.

[92] 唐川, 刘洪江. 泥石流堆积扇危险度分区定量评价研究 [J]. 土壤侵蚀与水土保持学报, 1997, 3(3):63-70.

[93] 张业成, 张春山, 张梁. 中国地质灾害系统层次分析与综合灾度计算 [J]. 中国地质科学院院报, 1993, (Z1):139-154.

[94] Althuwaynee O F, Pradhan B, Lee S. Application of an evidential belief function model in landslide susceptibility mapping [J]. Computers & Geosciences, 2012, 44:120-135.

[95] He R, Zhang W, Dou J, et al. Application of artificial intelligence in three aspects of landslide risk assessment: A comprehensive review [J]. Rock Mechanics Bulletin, 2024, 3(4):100144.

[96] 李水平. 西气东输管道沿线环境地质灾害风险性评价研究 [D]. 成都: 西南交通大学, 2008.

[97] 孙冉, 王成都, 夏哲兵, 等. 基于AHP-信息量法的费县地质灾害风险评价 [J]. 环境科学与技术, 2015, 38(S1):430-435.

[98] 王晟, 张珂, 晁丽君, 等. 基于集合模拟的汉江上游洪水与滑坡灾害风险评估 [J]. 水资源保护, 2023, 39(6):70-76.

[99] 李冠宇, 李鹏, 郭敏, 等. 基于聚类分析法的地质灾害风险评价——以韩城市为例 [J]. 科学技术与工程, 2021, 21(25):10629-10638.

[100] 李得立, 李小磊, 罗德江, 等. 基于地貌单元与灰关联分析的地质灾害风险性评价 [J]. 地质灾害与环境保护, 2018, 29(4):26-31.

[101] Chen W, Li Y. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models [J]. Catena, 2020, 195:104777.

[102] Xu S, Zhang M, Ma Y, et al. Multiclassification method of landslide risk assessment in consideration of disaster levels: a case study of Xianyang City, Shaanxi Province [J]. ISPRS International Journal of Geo-Information, 2021, 10(10):646.

[103] Wen H, Liu L, Zhang J, et al. A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines [J]. Journal of Environmental Management, 2023, 342:118177.

[104] Arrogante-Funes P, Bruzón A G, Arrogante-Funes F, et al. Integration of vulnerability and hazard factors for landslide risk assessment [J]. International journal of environmental research public health, 2021, 18(22):11987.

[105] Zhao Z, Chen J, Xu K, et al. A spatial case-based reasoning method for regional landslide risk assessment [J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102:102381.

[106] 王钦军, 陈玉, 蔺启忠, 等. 矿山地质灾害遥感监测方法及成因分析——以北京房山区史家营煤矿为例 [J]. 中国地质灾害与防治学报, 2011, 22(1):75-79.

[107] 李超瑞, 汤明高, 周剑, 等. 乌东德水电站库区滑坡发育分布及蓄水响应规律 [J]. 水利水电技术(中英文), 2025:1-16.

[108] 张东明, 李剑锋, 田贵维, 等. 基于GIS和RS的重庆市滑坡遥感解译 [J]. 自然灾害学报, 2011, 20(2):56-61.

[109] 王玉峰, 钱嘉贞, 程谦恭, 等. 喜马拉雅山区重大滑坡灾害空间分布特征研究 [J]. 中国铁路, 2024, (10):10-20.

[110] Shouzhang P. 1-km monthly precipitation dataset for China (1901-2023) [DS]. 2024,

[111] Zhao N, Liu Y, Cao G, et al. Forecasting China's GDP at the pixel level using nighttime lights time series and population images [J]. GIScience & Remote Sensing, 2017, 54(3):407-425.

[112] 邱海军, 崔鹏, 胡胜, 等. 陕北黄土高原不同地貌类型区黄土滑坡频率分布 [J]. 地球科学, 2016, 41(2):343-350.

[113] Hergarten S. The concept of event-size-dependent exhaustion and its application to paraglacial rockslides [J]. Natural Hazards and Earth System Sciences, 2023, 23(9):3051-3063.

[114] Guzzetti F, Malamud B D, Turcotte D L, et al. Power-law correlations of landslide areas in central Italy [J]. Earth and Planetary Science Letters, 2002, 195(3):169-183.

[115] Graber A, Santi P. Power law models for rockfall frequency-magnitude distributions: review and identification of factors that influence the scaling exponent [J]. Geomorphology, 2022, 418:108463.

[116] Qiu H, Su L, Tang B, et al. The effect of location and geometric properties of landslides caused by rainstorms and earthquakes [J]. Earth Surface Processes and Landforms, 2024, 49(7):2067-2079.

[117] Brunetti M T, Guzzetti F, Cardinali M, et al. Analysis of a new geomorphological inventory of landslides in Valles Marineris, Mars [J]. Earth and Planetary Science Letters, 2014, 405:156-168.

[118] 胡胜, 邱海军, 王宁练, 等. 地形对黄土高原滑坡的影响 [J]. 地理学报, 2021, 76(11):2697-2709.

[119] 胡胜. 黄土高原滑坡空间格局及其对地貌演化的影响 [D]. 西安: 西北大学, 2019.

[120] Mandelbrot B B, Evertsz C J, Gutzwiller M C. Fractals and chaos: the Mandelbrot set and beyond [M]. Springer, 2004.

[121] Yong C, Jinlong D, Fei G, et al. Review of landslide susceptibility assessment based on knowledge mapping [J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(9):2399-2417.

[122] Ma S, Shao X, Xu C. Landslide Susceptibility Mapping in Terms of the Slope-Unit or Raster-Unit, Which is Better? [J]. Journal of Earth Science, 2023, 34(2):386-397.

[123] 鲍帅, 刘纪平, 王亮. 联合DBSCAN聚类采样和SVM分类的滑坡易发性评价 [J]. 震灾防御技术, 2021, 16(4):625-636.

[124] Lewis J. Development in disaster-prone places [M]. Practical Action, 1999.

[125] Li Z, Yang M, Qiu H, et al. Spatiotemporal patterns of non-seismic fatal landslides in China from 2010 to 2022 [J]. Landslides, 2025, 22(1):221-233.

[126] 苏沉. 黄河中上游宁夏南部山区环境地质灾害风险评价研究 [D]. 西安: 长安大学, 2023.

中图分类号:

 P954    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式