- 无标题文档
查看论文信息

论文中文题名:

 金属丝网对玉米淀粉粉尘泄爆火焰传播的影响研究    

姓名:

 芦俊杰    

学号:

 20220226138    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 气体与粉尘爆炸防控    

第一导师姓名:

 程方明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Study on the influence of wire mesh on vented flame propagation of cornstarch dust explosion    

论文中文关键词:

 粉尘爆炸 ; 粉尘泄爆 ; 火焰特性 ; 金属丝网 ; 阻火 ; 无焰泄爆机理    

论文外文关键词:

 Dust explosion ; Dust explosion venting ; Flame characteristic ; Fire-resistance ; Flameless venting mechanism    

论文中文摘要:

当大量的可燃性粉尘悬浮在有限空间中,若存在点火源则会引发粉尘爆炸事故。粉尘爆炸事故属于常见的事故类型,其破坏力强、危害大。因此,粉尘爆炸防护技术一直是研究热点。无焰泄爆技术作为可燃粉尘爆燃防控的措施之一,在有效降低粉尘爆炸危险性的同时也具有一定的经济性。但由于粉尘爆燃过程的复杂性,有关无焰泄爆技术的研究多为宏观分析,无焰泄爆技术的机理的研究还需深入。基于此,以玉米淀粉粉尘作为研究性粉尘,金属丝网作为阻火材料,自主搭建粉尘泄爆与无焰泄爆实验平台,开展金属丝网对玉米淀粉粉尘泄爆火焰传播的影响研究,揭示粉尘泄爆火焰特性和无焰泄爆机理,为工业生产过程中的无焰泄爆技术提供指导。

基于自主搭建的粉尘泄爆与无焰泄爆实验平台,本文通过探究由实验所获取火焰图像、爆炸压力以及火焰温度等基础数据,对不同开启压力条件下的粉尘泄爆火焰特性与金属丝网抑制粉尘泄爆火焰传播的过程进行分析,最后对无焰泄爆机理进行研究。研究结果表明:粉尘泄爆火焰在传播过程中火焰形态演化过程为锥形射流火焰→湍流膨胀火焰→弱湍流火焰,开启压力的增加会使得锥形射流火焰形态的维持时间变短。安装金属丝网后,火焰形态演化过程并未改变,但随着安装金属丝网层数或目数的增加锥形射流火焰的维持时间变短。粉尘泄爆火焰在传播过程中,爆炸反应容器内部会出现明显的压力振荡现象。安装金属丝网后,无焰泄爆装置内部的压力振荡强度会被抑制。此外,研究发现压力振荡现象会增强粉尘爆燃火焰的火焰不稳定性,对燃烧反应起到促进作用,进而影响金属丝网的阻火效果。同时,在压力振荡的影响下火焰传播表现出波动振荡的变化特征。

通过对粉尘爆炸泄压火焰抑制机理的研究,将其总结如下:粉尘泄爆火焰传播与阻火结构接触前,装置的抑爆行为表现为对爆炸压力波的抑制以及降低压力振荡对火焰不稳定性的促进作用;当粉尘爆燃火焰与阻火结构接触后,装置则是以淬熄异相燃烧的火焰为主。无焰泄爆机理的核心是对爆炸压力波的抑制以及对异相燃烧火焰的淬熄。

论文外文摘要:

When a large amount of combustible dust is suspended in a confined space, the presence of an ignition source can lead to a dust explosion. Dust explosion is a common type of accident which has occurred in recent years. It is hazardous and has destructive power. Therefore, dust explosion protection technology has been a hot issue for researchers. Flameless venting technology, which is taken as one of the measures to prevent and control the explosion of combustible dust, can effectively reduce the risk of dust explosion, and it also has a certain economic efficiency. However, due to the complexity of the dust deflagration process, the research on flameless venting technology is mostly macroscopically investigated. The research about the mechanism of flameless venting technology needs to be further analyzed. For the purpose of analyzing the characteristic of vented flame, revealing the mechanism of flameless venting and providing guidance for flameless venting technology, an experimental system for dust explosion venting and flameless venting is established. In this experiment, the corn starch dust is the research dust and wire mesh is the fire-resistant material.

Based on the self-established experimental system, the data of flame image, the data of explosion overpressure and the data of flame temperature were obtained. Then, the characteristic of vented flame under different working condition is analyzed, the fire-resistant process of wire mesh is studied and the mechanism of flameless venting is revealed. The results show that the flame shape evolution process of vented flame is conical jet flame → turbulent expansion flame → weak turbulent flame. When the static activation overpressure is elevated, the duration time of conical jet flame will decrease. Meanwhile, the flame shape process doesn’t change when the wire mesh was installed. The duration time of conical jet flame will also decrease when the number of mesh or layers of wire mesh increases. During the propagation of the vented flame, overpressure oscillation will appear in the vent duct. When the wire mesh is installed, the overpressure oscillation inside the flameless venting device is suppressed. In addition, the overpressure oscillation will enhance the instability of flame, promote the combustion reaction and then influence the fire-resistant process of wire mesh. Meanwhile, under the influence of overpressure oscillation, the flame propagation shows the characteristic of fluctuation.

Through the study of the flameless venting mechanism, it can be summarized as follows: before the vented flame contacts with the fire-resistant structure, the explosion suppression behaviours of the flameless venting device are characterized by the suppression of pressure wave and the reduction of flame instability caused by overpressure oscillation; When the vented flame contacts with the wire mesh, the device mainly quenches the heterogeneous combustion flame. The keys of flame venting mechanism are the suppression of explosion shock wave and the quenching of heterogeneous combustion flame.

参考文献:

[1] Eckhoff R K. Dust Explosions in the Process Industries [M]. Amsterdam: Gulf Professional Publishing, 2003, 580-646.

[2] U.S. chemical safety and hazard investigation board. AL. Solutions, Inc., New Cumberland, WV Metal Dust Explosion and Fire [EB/OL]. [2010-10-9]. http//www.csb.gov/assets//19/final_case_study7. 151.

[3] 于洪闯. 碳粉爆炸及泄放特性研究[D].大连理工大学,2021.

[4] 多英全,刘垚楠,胡馨升. 2009–2013年我国粉尘爆炸事故统计分析研究[J]. 中国安全生产科学技术, 2015, 2(11): 186-190.

[5] 张海洲, 齐志高. 粉爆之灾, 警钟长鸣“2.24”淀粉粉尘爆炸事故的原因、过程及教训[J]. 粮食流通技术, 2010, 15(2): 24−28.

[6] 富士康成都公司车间爆炸造成3死15伤[J].电脑爱好者, 2011(12): 8.

[7] 张志文. 粉尘爆炸导管泄爆特性实验研究[D].北京石油化工学院,2021.

[8] 安监总局通报江苏如皋致8死9伤粉尘爆炸事故. 中国政府网. https://www.gov.cn/xinwen/2014-05/07/content_2674189.htm.

[9] 刘玲玲. 对“昆山粉尘”爆炸事故分析研究[J].民营科技, 2017(07): 262-265.

[10] 靳鑫, 李思琦, 王新华, 刘云鹤, 蒋漳河. 由台湾新北“6.27”粉尘爆炸事故探讨彩跑粉爆炸特性及事故原因分析[J]. 消防界(电子版), 2016(05): 37.

[11] 张亮. 收受贿赂放弃监管一声巨响锒铛入狱——深圳市光明新区公明精艺星五金加工厂“4·29”较大爆炸事故分析[J].吉林劳动保护, 2017(04): 37-39.

[12] 郝建斌. 燃烧与爆炸学[M]. 北京: 中国石化出版社, 2012.

[13] 赵衡阳. 气体和粉尘爆炸原理[M]. 北京: 北京理工大学出版社, 1996.

[14] 田甜, 喻健良. 铝粉与黑索金粉尘爆炸特性的对比实验研究[J]. 辽宁化工, 2006, 35(1): 3-5.

[15] 胡晓芳, 王晓南. 工业粉尘惰化抑爆技术研究[J]. 科技风, 2019(04): 123.

[16] Zhou J H, Jiang H P, Zhou Y H, Gao W. Flame suppression of 100 nm PMMA dust explosion by KHCO3 with different particle size [J]. Process Safety and Environmental Protection, 2019, 132: 303-312.

[17] Dounia O, Vermorel O, Poinsot T. Theoretical analysis and simulation of methane/air flame inhibition by sodium bicarbonate particles [J]. Combust and Flame, 2018, 193: 313–326.

[18] Gan B, Li B, Jiang H, Bi M S, Gao W. Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives [J]. Journal of Hazardous Materials, 2018, 351: 346-355.

[19] Jiang H P, Bi M S, Peng Q K, Gao W. Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4 [J]. Renewable Energy, 2020, 147: 2016-2055.

[20] Wang Y, Lin C D, Qi Y Q, Pei B, Wang L Y, Ji W T. Suppression of polyethylene dust explosion by sodium bicarbonate [J]. Powder Technology, 2020, 367: 206-212.

[21] Jiang H P, Bi M S, Gao W, Gan B, Zhang D W, Zhang Q. Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions [J]. Journal of Hazardous Materials, 2018, 344: 902-912.

[22] Bu Y J, Li C, Amytte P, Yuan W B, Yuan C M, Li G. Moderation of Al dust explosions by micro- and nano-sized Al2O3 powder [J]. Journal of Hazardous Materials, 2020, 381, 120968.

[23] Ma X S, Meng X B, Li Z Y, Wang Z, Yan K. Study of the influence of melamine polyphosphate and aluminum hydroxide on the flame propagation and explosion overpressure of aluminum magnesium alloy dust [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104291.

[24] Zhou J H, Li B, Ma D Q, Jiang H P, Gan B, Bi M S, Gao,W. Suppression of nano-polymethyl methacrylate dust explosions by ABC powder [J]. Process Safety and Environmental Protection, 2019, 122: 144-152.

[25] Luo Z M, Wang T, Tian Z, Cheng F M, Deng J, Zhang Y. Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder. Journal of Loss Prevention in the Process Industries, 2014, 30, 17-23.

[26] Xu W, Jiang Y. Combustion Inhibition of Aluminum–Methane–Air Flames by Fine NaCl Particles, Energies, 2018, 11: 3147.

[27] 刘天奇.微米级玉米粉尘爆炸压力特性及抑爆实验研究[J]. 消防科学与技术, 2019, 38(10): 1345-1349.

[28] 李好,张锬,杜兵,等. 充氮环境下淀粉爆炸特性的实验研究 [J]. 消防科学与技术, 2016, 35(2): 166-170.

[29] Yang J, Li Y H, Yu Y, Zhang Q W, Zheng L J, Suo Y F, Jiang J C. Experimental investigation of the inerting effect of CO2 on explosion characteristics of micron-size Acrylate Copolymer dust [J]. Journal of Loss Prevention in the Process Industries, 2019 62: 10397.

[30] 张金锋, 刘鑫. 氮气惰化抑制 7-氨基头孢烷酸粉尘爆炸试验研究[J]. 安全与环境学报, 2016, 16(3): 42-45

[31] 钟英鹏.镁粉爆炸特性实验研究及其危险性评价[D]. 沈阳:东北大学, 2008.

[32] 苑春苗.惰化条件下镁粉爆炸性参数的理论与实验研究[D]. 沈阳:东北大学, 2009:4-5.

[33] 喻健良, 闫兴清. 高静态动作压力下粉尘爆炸泄放标准的可靠性[J]. 东北大学学报(自然科学版), 2015, 36(9): 1316-1320.

[34] Pang L, Zhang Z W, Cui S Q, Sun S H. Experimental study of the venting characteristics of dust explosion through a vent duct [J]. Journal of Loss Prevention in the Process Industries, 2020, 65:104144.

[35] Cheng F M, Chang Z C, Luo Z M, Liu C C, Li H T, Wang T. Numerical study on premixing characteristics and explosion process of starch in a vertical pipe under turbulent flow[J]. Journal of Loss Prevention in the Process Industries,2020,68(prepublish).

[36] Holbrow P,Andrews S,Lunn G A. Dust explosions in interconnected vented vessels [J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 91-103.

[37] Holbrow P, Tyldesley A. Simple devices to prevent dust explosion propagation in charge chutes and pipes [J]. Journal of Loss Prevention in the Process Industries, 2003, 16: 333-340.

[38] 王健. 粮食粉尘爆炸的实验研究与数值模拟[D].沈阳:东北大学, 2010.

[39] Ji W T, Yu J L, Yu X Z, Yan X Q. Experimental investigation into the vented hybrid mixture explosions of lycopodium dust and methane [J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 102-111.

[40] Mahuthannan A M, Damazo J S, Kwon E. Roberts W L Lacoste D A. Effect of propagation speed on the quenching of methane, propane and ethylene premixed flames between parallel flat plates [J]. Fuel, 2019, 256: 115870.

[41] Spalding B B. A Theory of a Thermal model of Inflammable Limits and Flame Quenching [J]. Proc. Roy. Soc. London. 1957. A240: 80-100.

[42] Dai H, Wang X, Chen X, Nan X, Hu Y, He S, Yuan B, Zhao Q, Dong Z, Yang P. Suppression characteristics of double-layer wire mesh on wheat dust flame [J]. POWDER TECHNOL, 2020, 360: 231-240.

[43] API RP2210-2000. Flame arresters for vents of tanks storing petroleum products[S].

[44] API RP 2028-2002. Flame arresters in piping systems[S].

[45] ANSI/UL 525-2008. Standard for safety for flame arresters[S].

[46] ISO 16852-2008. Flame arresters performance requirements, test methods and limits for use[S].

[47] SHT 3413-1999. 石油化工石油气管道阻火器选用、检验及验收[S].

[48] GB 5908-2005. 石油储罐阻火器[S].

[49] AQ3001-2005. 汽车加油(气)站、轻质燃油和液化石油气汽车罐车用阻隔防爆储罐技术要求[S].

[50] GB/T 13347-2010. 石油气体管道阻火器[S].

[51] 周凯元. 波纹板阻火器对爆燃火焰淬熄作用的实验研究[J]. 中国科学技术大学学报. 1997, 27(24): 449-454.

[52] 周凯元, 李宗芬. 丙烷-空气爆燃火焰通过平行板狭缝时的淬熄研究[J]. 爆炸与冲击. 1997, 17(2): 111-118.

[53] 周凯元. 气体爆燃火焰在狭缝中的淬熄[J]. 火灾科学. 1998, 8(1): 22-33.

[54] 喻健良,孟伟,王雅杰. 评价多层丝网结构阻火性能的试验研究[J]. 含能材料. 2005, 6(13): 416-420.

[55] 陈鹏, 杨永波, 郭实龙. 金属丝网对甲烷/空气预混火焰传播影响的研究[J]. 中国安全科学学报. 2014, 24(7): 33-36.

[56] Jin K Q, Duan Q L, Chen J Y, Liew K M, Gong L, Sun J H. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct [J]. International Journal of Hydrogen Energy, 2017, 42(21): 14809-14820.

[57] Cui Y Y, Wang Z R, Zhou K B, Ma L S, Liu M H, Jiang J C. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 69-77.

[58] Sun J H, Zhao Y, Wei C R, Xie S, Huang D H. The comparative experimental study of the porous materials suppressing the gas explosion [J], Procedia Engineering, 2011, 26: 954-960.

[59] Chen X, Qi Z, Dai H, Yin S, He S, Zhang Y, Wang X, Yuan B. Effect of metal mesh on the flame propagation characteristics of wheat starch dust [J]. Journal of Loss Prevention in the Process Industries, 2018, 55: 107-112.

[60] Hackert C L. Effects of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts [J]. Combustion and Flame. 1998, 112: 73-84.

[61] Wen X, Su T, Liu Z, Xie M, Wang F, Liu Z. Numerical Investigation on Porous Media Quenching Behaviors of Premixed Deflagrating Flame using RANS/LES Model [J]. Journal of Thermal Science, 2019, 28: 780-788.

[62] Cheng F M, Chang Z C, Luo Z M, Liu C C, Wang T, He C X. Large eddy simulation and experimental study on the effect of wire mesh on flame behaviours of methane/air explosions in a semi-confined pipe. Journal of Loss Prevention in the Process Industries, 2020, 68: 104258.

[63] 程方明, 常助川, 史合, 白磊, 罗振敏, 张安邦, 杨勇. 金属丝网对甲烷/空气预混火焰管道内传播的影响[J].中国安全生产科学技术, 2020, 16(01):135-140.

[64] Holbrow, P, Hawksworth, S J, Tyldesley, A. Thermal radiation from vented dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2000, 13: 467-476.

[65] Holbrow P. Dust explosion venting of small vessels and flameless venting [J]. Process Safety and Environmental Protection, 2013, 91: 183-190.

[66] Taveau, J. Correlations for blast effects from vented dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2010, 23: 15-29.

[67] Going, J. E, Chatrathi, K. Efficiency of flameless venting devices [J]. Process Safety Progress, 2003, 22: 33-42.

[68] Barton, J. Dust explosion prevention and protection a practical guide, Institution of Chemical Engineers, Rugby, U. K & Gulf Professional Publishing, Butterworth-Heinemann, 2002, USA.

[69] Grossel, S. S. Design and operating practices for safe conveying of particulate solids [J]. Journal of Loss Prevention in the Process Industries, 2012, 25: 848-852.

[70] Jef SNOEYS. Advances in dust explosion protection techniques: flameless venting [J]. International Symposium on Safety Science and Technology, 2012, in china.

[71] Jenny Chao, Sergey B. Dorofeev. Evaluating the overall efficiency of a flameless venting device for dust explosions [J]. Journal of Loss Prevention in the Process Industries. 2015, 36: 63-71.

[72] 赵益. 多孔材料抑制瓦斯爆炸的实验研究[D].黑龙江科技学院,2012.

[73] Kordylewski W, Wach J. influence of ducting on the explosion pressure[J]. Combustion and Flame. 1986, 66(1): 77-79.

[74] McCann D J, Thomas G O, Edwards D H. Gas dynamics of vented explosions Part I: experimental studies[J]. Combustion and Flame. 1985, 59(2): 233-250.

中图分类号:

 X932    

开放日期:

 2025-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式