论文中文题名: | 基于SVM-IDS融合算法的消防救援人员效能评估 |
姓名: | |
学号: | 22220226081 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 城市公共安全 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-24 |
论文答辩日期: | 2025-05-30 |
论文外文题名: | Evaluation of firefighters' working efficiency based on SVM-IDS fusion algorithm |
论文中文关键词: | |
论文外文关键词: | Firefighter ; Dempster-Shafer evidence theory ; Support vector machine (SVM) ; Working efficiency assessment ; Multi-source information fusion |
论文中文摘要: |
“全灾种、大应急”背景下消防救援场景复杂多变,消防救援人员在高温环境下长时间进行救援面临巨大的体力、心理和认知水平负担,严重威胁消防救援人员的生命安全。针对消防救援人员效能评估难以定量的问题,构建基于多源信息融合的“生理-心理”的消防救援人员效能评估模型,为保障消防救援人员生命安全与科学救援提供模型算法支撑。 本文在支持向量机-DS证据理论(SVM-DS)融合算法的基础上对算法进行优化。特别是,通过SVM后验概率转换和距离函数加权优化证据权重,根据决策规则输出最终消防救援人员效能评估结果,建立基于SVM-IDS的消防救援人员效能评估模型,并通过文献数据进行模型精度验证;随后,结合14名健康受试者(年龄24.36±1.98岁,BMI 24.11±1.32)在人工气候室(温度25℃/35℃±0.5℃,湿度60%±5%)的交叉实验设计,通过可穿戴传感器同步采集核心温度、皮肤温度、心率等参数,解析时间-参数交互作用对生理心理的复合影响并进行安全工作时间预测;最后,采用定性与定量相结合的方法,系统解析高温环境下救援人员作业效能变化规律及其敏感性影响因素。 研究结果如下:1)模型案例验证表明,SVM-IDS模型对消防救援人员生理应激指数和心理疲劳的预测准确率较原SVM-DS模型分别提升68.58%和19%,综合评估MAPE值为13.89%;2)实验结果表明,穿戴个人防护装备的受试者生理参数较对照组呈极显著差异(p<0.001),高温环境下在30分钟时受试者各工况生理指标均呈现显著变化;3)模型实验验证表明,定性表征(准确率94.10%)与定量表征(准确率73.11%)效能评估性能较原SVM-DS模型分别提升9.1%和3.63%,其中定量实验中实时自我效能感量表信度优异(α>0.99);通过决策树分类实现动态分级,定性数据驱动下输出:高效能[0-0.456]、低效能(0.456-1]二级分类,定量数据驱动下扩展为:高效能[0-0.015]、中效能(0.015-0.943]、低效能(0.943-1])三级分类。 本研究揭示了热应激与心理负荷的动态耦合机制,提出了基于SVM-IDS融合的救援人员效能评估模型,并通过分级阈值与敏感性主导因子的精准定位,为个体化防护装备热管理优化、智能指挥系统实时决策提供了可量化依据。研究成果为实现科学救援和提升灾害应对能力提供理论基础数据,更为“全灾种、大应急”背景下应急救援效能的科学化、精准化评估提供了理论支撑,未来可进一步拓展至多灾种耦合场景的动态风险评估与跨部门协同响应实践。 |
论文外文摘要: |
To address the evolving complexity of firefighting rescue scenarios under the “All-hazards, all-emergency” framework, firefighters operating in prolonged high-temperature environments were imposed to significant physiological, psychological, and cognitive burdens, resulting in severe risks to safety and health. To resolve the challenge of quantitatively evaluating firefighter working efficiency, a “physiological-psychological” efficiency assessment model based on multi-source information fusion was developed, providing algorithmic support for ensuring rescuer safety and enabling scientific rescue operations. Based on the Support Vector Machine-Dempster-Shafer (SVM-DS) evidence theory fusion algorithm, optimization was performed. Specifically, posterior probabilities generated by SVM were converted into Basic Probability Assignment functions, and evidence weights were refined through distance function-based weighting. Final working efficiency evaluation results were derived using decision rules, establishing an SVM-Improved Dempster-Shafer (SVM-IDS) model, with model accuracy validated against literature data. Subsequently, a crossover experimental design involving 14 healthy participants (age: 24.36±1.98 years, BMI: 24.11±1.32) was implemented in an artificial climate chamber (temperature: 25°C/35°C±0.5°C, humidity: 60%±5%). Core temperature, skin temperature, and heart rate parameters were synchronously collected via wearable sensors to analyze time-parameter interactions and predict safe working durations under thermal stress. Finally, a hybrid qualitative-quantitative approach was adopted to systematically decode degradation patterns of working efficiency and identify sensitivity-dominant factors in high-temperature environments. The results showed the following: 1) To validate model performance, the SVM-IDS model was demonstrated to improve prediction accuracy for physiological stress indices and psychological fatigue by 68.58% and 19%, respectively, compared to the original SVM-DS model, achieving a comprehensive mean absolute percentage error of 13.89%; 2) To assess physiological impacts, statistically significant differences (p<0.001) in parameters were observed between participants wearing personal protective equipment (PPE) and controls, with marked physiological deviations detected across all conditions at 30-minute intervals under high temperatures. 3) To refine classification accuracy, qualitative characterization (94.10%) and quantitative characterization (73.11%) exhibited improvements of 9.1% and 3.63%, respectively, over the original SVM-DS model. Real-time self-efficacy scales demonstrated exceptional reliability (α>0.99). To enable dynamic efficiency grading, decision tree classification defined two-tier qualitative levels (high [0–0.456], low (0.456–1]) and three-tier quantitative categories (high [0–0.015], medium (0.015–0.943], low (0.943–1]). To elucidate mechanisms, the dynamic coupling between thermal stress and psychological load was revealed. An SVM-IDS-integrated assessment framework was proposed to guide practical applications, with quantifiable thresholds and sensitivity-dominant factors established to optimize personalized PPE thermal management and support intelligent command systems. To advance scientific rescue practices, theoretical foundations were provided for enhancing disaster response capabilities and achieving precision efficiency evaluation under the “All-hazards, all-emergency” paradigm. To extend future research, dynamic risk assessment in multi-hazard coupling scenarios and cross-departmental collaborative response systems are recommended. |
参考文献: |
[1] 山西消防. 2023年全国消防共接报处置各类警情213万余起, 营救和疏散人员39.5万人 [EB/OL]. 澎湃新闻, 2024-01-07. [2] 戴越. 国家消防救援局: 上半年全国接报火灾55万起, 死亡959人 [EB/OL]. 澎湃新闻, 2023-07-18. [3] 曾文甫. 国家消防救援局, 今年全国共接报火灾45万起、亡947人 [EB/OL]. 国家消防救援局, 2024-05-30. [4] 陈观秋. 2023年上半年全国日均火灾超3000起 消防救援装备行业深度调研 [EB/OL]. 国家消防救援局, 2024-04-05. [5] 战训处. 2023年已有13名消防员牺牲,均龄28岁 [EB/OL]. 消防员之家V, 2023-12-28. [6] 曹刚. 国家消防局年度预算公布:人均工资福利等支出约19万元!人均被装购置约5138元! [EB/OL]. 消防员之家V, 2024-04-07. [29] TADJBAKHSH S. Human Security: Concepts and Implications [M]. London: Routledge, 2007: 150-156. [51] 张志. 多传感器信息融合及其应用研究 [D]. 西安: 西安电子科技大学, 2017. [52] WALTZ E. Multisensor Data Fusion [M]. Boston: Artech House, 1990:8. [70] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式 [J]. 电子学报, 2000, 28(8): 117. [71] 邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法 [J]. 红外与毫米波学报, 2004, 23(1): 27-32. [75] 张钰曼, 吴海淼, 侯红娟. 基于 DS 证据理论和模糊理论的工业机器人健康状态评估 [J]. 机床与液压, 2022, 50(8): 198-203. [77] 周志华. 《机器学习》 [J]. 中国民商, 2016, 21(3): 93. [85] 李小珍, 蒋银芬, 刘励军, 等. 重度烧伤患者核心温度的监测 [J]. 江苏医药, 2016, 42(4): 460-461. [87] 全军热射病防治专家组. 军事训练防治中暑/热射病降温方法专家共识 [J]. 解放军医学杂志, 2023, 48(8): 871-878. [88] 杨杰, 王倩, 贺治超, 等. 基于环境与生理参数的应急救援人员作业效能评估 [J]. 消防科学与技术, 2024, 43(12): 1745-1752. [89] 全刘辉, 李玉香, 澹台梦阳, 等. 基于无线通信的视觉识别自动救生系统的设计 [J]. 电脑知识与技术, 2024, 20(9): 96-98. [91] 杨三军, 王昆, 高笛, 等. 应急救援人群高强度功能训练的应用效果与作用机制研究进展 [J]. 体育科学, 2023, 43(3): 58-68. [93] 张丹, 徐新洁, 刘希东, 等. 某轻卡乘员舱热舒适性分析 [J]. 汽车工程学报, 2020, 10(6): 448-457. [95] 章明超, 邹佳庆, 周健, 等. 汽车驾驶员热感觉预测及其影响因素分析 [J]. 建筑热能通风空调, 2022, 41(8): 37-41. [101] 李志伟, 曹乐. 基于SVM-DS证据理论融合决策的故障诊断方法 [J]. 噪声与振动控制, 2023, 43(05): 148-153. [109] 关爱科, 杨杰. 基于 SVM-DS 融合算法的消防员效能评估方法[J]. 消防科学与技术, 2024, 43(12): 1772-1777. [124] 蔡毅, 邢岩, 胡丹. 敏感性分析综述 [J]. 北京师范大学学报(自然科学版), 2008, 44(1): 9-16. |
中图分类号: | X924 |
开放日期: | 2025-06-25 |