- 无标题文档
查看论文信息

论文中文题名:

 活性基团对煤氧化反应活性和失重特性的影响研究    

姓名:

 张静    

学号:

 18220089023    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 张玉涛    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Effect of active groups on coal oxidation reactivity and weight loss characteristics    

论文中文关键词:

 超声萃取 ; 煤自燃 ; 弱相互作用 ; 活性基团 ; 反应活性 ; 失重特性    

论文外文关键词:

 Ultrasonic Extraction ; Coal Spontaneous Combustion ; Weak Interaction ; Active Group ; Reactivity ; Weightlessness Characteristics    

论文中文摘要:

       煤自燃是影响煤矿安全生产的重大灾害之一,它不仅带来巨大的经济损失,而且带来严重的环境问题。文章采用超声萃取技术,基于量子化学理论,对导致煤自燃的主要活性基团及其对煤氧化特性的影响进行了研究,对揭示煤自燃机理和提高煤自燃防治的针对性具有重要意义。

       选用三种不同变质程度的煤样,采取荧光光谱、核磁共振、原位红外测试技术对所选煤样进行表征,分析了实验煤样的分子结构特征及所携带的关键活性基团,并利用高斯量子化学计算软件对实验所得分子结构模型进行了优化。研究结果表明,变质程度较低的HM主体结构为单芳香环、双芳香环;变质程度中等的YM主体结构为双芳香环、三芳香环结构;变质程度最高的WYM主体结构为三芳香环结构、四芳香环结构。煤样中携带的活性基团主要包括-CH2CH3、-COH、-OCH3、-COOH、-OH等。

      利用量子化学计算软件对溶剂分子结构进行了优化,采取约化密度梯度法研究了煤分子与萃取剂之间的弱相互作用,基于弱相互作用分析优选出对煤样具有良好萃取效果的萃取剂乙二胺和N-甲基吡咯烷酮(NMP)。用两种有机溶剂对三种实验煤样进行超声萃取,并利用GC-MS联用测试系统对萃取产物进行了分析。研究发现,乙二胺分子与煤分子的弱相互作用力主要表现为弱氢键、范德华作用力何位阻作用,可以有效萃取-OH、-COOH等活性基团;NMP分子与煤样分子的弱相互作用力主要表现氢键、弱氢键、范德华作用力和位阻作用,可以有效萃取-OH和含有C=O键的活性基团,而且研究发现NMP对于煤样大分子的萃取作用要优于乙二胺溶剂。

       采用电子自旋共振(ESR)和热重(TG)测试仪器,对3组原煤样和6组萃余煤样的自由基、煤样氧化失重特性和特征温度点的变化进行了分析,得到各活性基团对煤氧化特性的影响。研究发现,-OH是影响煤自燃自由基浓度最重要的基团,分子间缔合-OH对于自由基浓度的影响大于游离-OH。热重测试结果表明,游离-OH对煤样自燃过程中的水分蒸发与脱附阶段影响较大,当游离-OH增多时,临界温度T1下降,煤样水分蒸发与脱附阶段响应变短;分子内缔合-OH对干裂温度T2的影响较大,随着煤样分子内缔合-OH含量的升高,干裂温度T2逐渐降低,吸氧增重阶段变短;脂肪烃与含氧活性基团主要影响煤自燃的活性温度T3,脂肪烃和含氧活性基团的含量增加,煤样吸氧增重阶段变长,且脂肪烃对于该阶段的影响大于含氧活性集团;萃余煤样内Ar-C-O-、-COO-、-COOH等基团含量的增加能够延长萃余煤样受热分解阶段和燃烧阶段,同时导致燃烧阶段的反应更加剧烈。研究结果对阐释活性基团在煤自燃中的作用和揭示煤自燃机理具有重要意义。

论文外文摘要:

     Coal spontaneous combustion is one of the major disasters affecting coal mine safety production. It brings about not only huge economic losses, but also serious environmental problems. In this paper, ultrasonic extraction technology was used to study the effect of main active structure of coal spontaneous combustion on coal oxidation characteristics. This paper is of great significance to reveal the mechanism of coal spontaneous combustion and improve the pertinence of coal spontaneous combustion prevention.

       In this paper, three kinds of coal samples with different metamorphic degrees were selected to characterize the coal samples by Fluorescence Spectrum, Nuclear Magnetic Resonance and Infrared Spectroscopy. Molecular characteristics and active groups of the experimental coal samples were analyzed, and the molecular structure of the experimental coal samples was optimized by Gaussian 16W software. The results showed that the monoaromatic ring and biaromatic ring were the main structures of HM, biaromatic ring and triaryl ring were the main structures of YM, triaryl ring and tetraaromatic ring were the main structures of WYM. The main active groups of coal samples were -CH2CH3, -COH, -OCH3, -COOH, -OH, etc.

        The molecular structure of solvent was optimized by quantum chemistry calculation software, and the weak interaction between coal molecules and extractant was studied by reduced density gradient analysis method. Based on the weak interaction analysis, Ethylenediamine and NMP solvents were selected. Three kinds of experimental coal samples were extracted by two selected organic solvents, and the extracted products were analyzed by GC-MS analysis. The results show that the weak interaction between Ethylenediamine and coal molecules mainly showed weak hydrogen bond, Van Der Waals force and steric hindrance, which could effectively extract -OH and -COOH active groups. The weak interaction between NMP and coal molecules mainly showed hydrogen bond, weak hydrogen bond, Van Der Waals force and potential resistance. NMP could effectively extract -OH and active groups containing C=O bond. The extraction effect of NMP on coal macromolecules was better than that of Ethylenediamine.

        Electron Spin Resonance (ESR) and thermogravimetry (TG) experiments were used to analyze the free radicals, weight loss characteristics and characteristic temperature points of three raw coal samples and six extracted coal samples. The effects of different active groups on the oxidation characteristics of coal were obtained. Free radical experiments show that -OH was the most important active group affecting the concentration of free radicals. The effect of intermolecular association -OH on the concentration of free radical was greater than that of free -OH. The results of thermogravimetric analysis show that free -OH affected the evaporation and desorption stages of coal moisture. With the increase of free -OH, the critical temperature T1 decreased and the period of water evaporation and desorption stage became shorter. The intramolecular association -OH primarily affected the dry cracking temperature T2. As the content of intramolecular association -OH was increased, the catalytic effect of intramolecular association -OH on the reaction would lower the dry cracking temperature T2 and shorten the oxygen-absorption, weight-gain stage. With the increase of the content of aliphatic hydrocarbon and oxygen-containing active group, the period of weight-gain stage became longer. The effect of aliphatic hydrocarbon on this stage was more significant than that of oxygen-containing active group. With the increase of Ar-C-O-, -COO-, -COOH and other groups in the raffinate coal samples, both the thermal decomposition and combustion stages of the raffinate coal samples became longer, and the reaction in the combustion stage was more intense.

参考文献:

[1]Thielemann T, Schmidt S, Gerling JP. Lignite and hard coal: Energy suppliers for world needs until the year 2100 - An outlook[J]. International Journal of Coal Geology, 2007, 72(1):1-14.

[2]原煤产量报表2013-2017[R]. 国家统计局. 2020.

[3]梁运涛, 侯贤军, 罗海珠, 等.我国煤矿火灾防治现状及发展对策[J].煤炭科学技术, 2016,44(06):1-6+13.

[4]Wang H, Dlugogorski BZ, Kennedy EM. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion & Flame, 2003,134(1-2):107-117.

[5]管海宴, Van Ganderen JL.中国北方煤田自燃环境调查和研究[M].北京:煤炭工业出版社.1998.

[6]梁运涛, 罗海珠.中国煤矿火灾防治技术现状与趋势[J].煤炭学报,2008(02):126-130.

[7]Deng J, Xiao Y, Li Q, et al. Experimental studies of spontaneous combustion and anaerobic cooling of coal[J]. Fuel,2015,157(1):261-269.

[8]Parsa MR, Tsukasaki Y, Perkins EL, et al. The effect of densification on brown coal physical properties and its spontaneous combustion propensity[J]. Fuel,2017, 193(1):54-64.

[9]Hu ZX, Hu XM, Cheng WM, et al. Influence of synthetic conditions on the performance of melamine–phenol–formaldehyde resin microcapsules[J]. High Performance Polymers,2019,31(2).

[10]Hu ZX, Hu XM, Cheng WM, et al. Performance optimization of one-component polyurethane healing agent for self-healing concrete[J]. Construction and Building Materials,2018,179:151-159.

[11]Wang H, Dlugogorski BZ, Kennedy EM. Analysis of the mechanism of the low-temperature oxidation of coal[J]. Combustion & Flame,2003,134(1-2):107-117.

[12]Yan Z, Wang D, He R, et al. Microstructural characteristics of Shengli lignite during low-temperature oxidation and promotion effect of iron species[J]. Fuel,2019, 255(1):115830.1-115830.9.

[13]Zhou L, Dai G, Qin R, et al. Low-temperature oxidation characteristics of bituminous coal with different gas contents: a case study[J]. Energy Sources Part A Recovery Utilization and Environmental Effects,2019(5):1-14.

[14]Zhong X, Kan L, Xin H, et al. Thermal effects and active group differentiation of low-rank coal during low-temperature oxidation under vacuum drying after water immersion[J]. Fuel, 2019, 236(15):1204-1212.

[15]Zhang YT, Liu YR, Shi XQ, Yang CP, et al. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature[J]. Fuel,2018,233:68-76.

[16]Kong B, Li Z, Wang E, et al. An experimental study for characterization the process of coal oxidation and spontaneous combustion by electromagnetic radiation technique[J]. Process Safety and Environmental Protection,2018,119:285-294.

[17]Li J, Li Z, Yang Y, et al. Examination of CO, CO2 and Active Sites Formation during Isothermal Pyrolysis of Coal at Low Temperatures[J]. Energy,2019,185:28-38.

[18]Lv HF, Deng J, Li Da J, et al. Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process[J]. Energy,2021,227.

[19]Zhai XW, Song BB, Wang B, et al. Study on the Effect and Mechanism of Water Immersion on the Characteristic Temperature during Coal Low-Temperature Oxidation[J]. Natural Resources Research,2021(prepublish).

[20]Cheng XJ, Shi L, Liu QY, et al. Heat effects of pyrolysis of 15 acid washed coals in a DSC/TGA-MS system[J]. Fuel,2020,268.

[21]Chao JK, Chu TX, YuMG, et al. An experimental study on the oxidation kinetics characterization of broken coal under stress loading[J]. Fuel,2020(prepublish).

[22]Shi XQ, Zhang YT, Chen XK, et al. Effects of thermal boundary conditions on spontaneous combustion of coal under temperature-programmed conditions[J]. Fuel,2021,295.

[23]Shi XQ, Zhang YT, Chen XK, et al. Numerical study on the oxidation reaction characteristics of coal under temperature-programmed conditions[J]. Fuel Processing Technology,2020(prepublish).

[24]Xu Q, Yang S, X Hu, et al. Low-temperature oxidation of free radicals and functional groups in coal during the extraction of coalbed methane[J]. Fuel,2019, 239(1):429-436.

[25]Duzyol S, Sensogut C, Luo K. Investigation of the Thermal Improvement and the Kinetic Analysis of the Enriched Coal[J]. Journal of Combustion,2018,2018:1-10.

[26]王彩萍, 邓军, 王凯.不同煤阶煤氧化过程活性基团的红外光谱特征研究[J].西安科技大学学报,2016,36(03):320-323.

[27]Zhang YT, Li YQ, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology[J]. Journal of Thermal Analysis & Calorimetry,2017,131(3):1-12.

[28]黄庠永, 姜秀民, 张超群, 等.颗粒粒径对煤表面羟基官能团的影响[J].燃烧科学与技术,2009,15(05):457-460.

[29]Liu H, Wang F. Thermal characteristics and kinetic analysis of coal-oxygen reaction under the condition of inert gas[J]. International Journal of Coal Preparation and Utilization, 2019:1-17.

[30]Riesser B, Starsinic M, Squires E, et al. Determination of aromatic and aliphatic CH groups in coal by FT-i.r.: 2. Studies of coals and vitrinite concentrates[J]. Fuel,1984, 63(9):1253-1261.

[31]Li J, Li Z, Yang Y, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel Processing Technology,2018, 171:350-360.

[32]Zhang YT, Yang CP, Li YQ, et al. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion[J]. Fuel,2019,242:297-294.

[33]Li JH, Li Z, Yang Y, et al. Examination of CO, CO2 and Active Sites Formation during Isothermal Pyrolysis of Coal at Low Temperatures[J]. Energy,2019,185:28-38.

[34]Xu Q, Yang SY, Yang WM, et al. Effect of particle size and low-temperature secondary oxidation on the active groups in coal structures[J]. Process Safety and Environmental Protection,2021,149:334-344.

[35]Zhao JY, Wang T, Deng J, et al. Microcharacteristic analysis of CH4 emissions under different conditions during coal spontaneous combustion with high-temperature oxidation and in situ FTIR[J]. Energy,2020,209(prepublish).

[36]Xiong YK, Jin LJ, Yang H, et al. Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation[J]. Fuel Processing Technology,2020,210.

[37]Zhou CS, Zhang YL, Wang JF, et al. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. International Journal of Coal Geology,2017,171:212-222.

[38]Wang CP, Xiao Y, Li QW, et al. Free radicals, apparent activation energy, and functional groups during low-temperature oxidation of Jurassic coal in Northern Shaanxi[J]. International Journal of Mining Science and Technology,2018,28(3):469-475.

[39]Zhong XX, Dou GL, Xin HH, et al. Study on Low-Temperature Oxidation Process of Low Rank Coal by In Situ FTIR[J]. Advanced Materials Research,2013,2262:469-475.

[40]Wang K, Deng J, Zhang YN, et al. Kinetics and mechanisms of coal oxidation mass gain phenomenon by TG-FTIR and in situ IR analysis[J]. Springer Netherlands,2018,132(1):591-598.

[41]石婷, 邓军, 王小芳, 等.煤自燃初期的反应机理研究[J].燃料化学学报, 2004(06):652-657.

[42]王继仁, 陈启文, 邓存宝, 等.煤自燃生成甲烷的反应机理[J].煤炭学报,2009, 34(12):1660-1664.

[43]王继仁, 邓汉忠, 邓存宝, 等.煤自燃生成一氧化碳和水的反应机理研究[J].计算机与应用化学, 2008(08):935-940.

[44]王继仁, 陈启文, 邓存宝, 等.煤自燃生成甲烷的反应机理[J].煤炭学报,2009, 34(12):1660-1664.

[45]邓存宝, 王继仁, 张俭, 等.煤自燃生成乙烯反应机理[J].煤炭学报,2008(03):299-303.

[46]Wang J, Han YZ, Chen BZ, et al. Mechanisms of methane generation from anthracite at low temperatures: Insights from quantum chemistry calculations[J]. International Journal of Hydrogen Energy,2017,42(30):1-8.

[47]邓存宝, 王继仁, 邓汉忠, 等.氧在煤表面-CH2-NH2基团上的化学吸附[J].煤炭学报, 2009,34(09):1234-1238.

[48]王继仁, 赵庆福, 邓存宝, 等.煤表面对多种气体分子混合吸附的微观机理[J].计算机与应用化学,2008(04):390-394.

[49]邓存宝, 王继仁, 叶兵, 等.煤表面对单氧分子的物理吸附机理[J].中国矿业大学学报, 2008(02):171-175.

[50]邓存宝, 邓汉忠, 王继仁, 等.煤表面含P侧链基团对氧分子的物理吸附机理[J].煤炭转化, 2008(01):1-5.

[51]邓汉忠, 王继仁, 邓存宝. O2在-CH2-CH2OH基团上的化学吸附[J].煤炭转化, 2007(04):29-33.

[52]Florez E, Montoya A, Chamorro E, et al. Molecular modeling approach to coal spontaneous combustion[R]. Cairns, Australia, 12th International Conference on Coal Science, 2003.

[53]Li L, Fan H, Hu H. Distribution of hydroxyl group in coal structure: A theoretical investigation[J]. Fuel,2017,189:195-202.

[54]Qu Z, Sun F, Gao J, et al. A new insight into the role of coal adsorbed water in low-temperature oxidation: Enhanced ·OH radical generation[J]. Combustion and Flame, 2019,208:27-36.

[55]Wang DM, Xin HH, Qi XY, et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame,2016,163:447-460.

[56]Qi XY, Xue HB, Xin HH, et al. Reaction pathways of hydroxyl groups during coal spontaneous combustion[J]. Canadian Journal of Chemistry,2016,94(5):494-500.

[57]GB/T 482-2008.煤层煤样采取方法[S].北京:中国标准出版社,2008.

[58]GB/T 474-2008.煤样的制备方法[S]. 北京:中国标准出版社,2008.

[59]吉昂, 陶光仪, 卓尚军, 等.X射线荧光光谱分析[M].科学出版社, 2003.

[60]Fuchs W, Sandhoff AG. Theory of Coal Pyrolysis[J]. Cambridge University Press, 2002,34(5):567-571.

[61]Given PH . Structure of Bituminous Coals: Evidence from Distribution of Hydrogen[J]. Nature,1959,184(4691):980-981.

[62]Wiser WH. Conversion of Bituminous Coal to Liquids and Gases: Chemistry and Representative Processes[J]. Magnetic Resonance,1984:325-350.

[63]Shinn JH. From coal to single-stage and two-stage products: A reactive model of coal structure[J]. Fuel,1984,63(9):1187-1196.

[64]徐金钩,王尊宝.荧光分析法(第三版)[M].科学出版社(北京),2006, ISBN:7-03-017295-7.

[65]张鹏, 刘海峰, 岳宗宇, 等.不同环数芳香烃激光诱导荧光光谱研究[J].光谱学与光谱分析,2015,35(06):1592-1596.

[66]Sun R, Zobel R, Neubauer R, et al. Analysis of gas-phase polycyclic aromatic hydrocarbon mixtures by laser-induced fluorescence[J].Optics & Lasers in Engineering, 2010,48(12):1231-1237.

[67]杨明杰, 高明阳, 高殿福, 等.含油岩石的荧光特征研究[J].矿物岩石,1998(03):107-112.

[68]钟建华.泥炭、软褐煤中的腐殖质的荧光光谱研究[J].光谱学与光谱分析,1997(04):101-104.

[69]钟宁宁, 曾庆平.煤系芳烃的可见荧光特性及其地质意义[J].石油与天然气地质,1990(04):402-411.

[70]Trewhella MJ, Poplett I, Grint A. Structure of Green River oil shale kerogen: Determination using solid state 13C-NMR spectroscopy[J]. Fuel,1986,65(4):541-546.

[71]Tian L, Chen FY. Multiwfn: A multifunctional wavefunction analyzer[J].Journal of Computational Chemistry,2012,33(5):580-592.

[72]Wang JJ, Song YD, Wang QT. Theoretical study of electronic and nonlinear optical properties of Janus all-cis-1,2,3,4,5,6-hexafluorocyclohexane derivative with an extended π conjugation[J]. Theoretical Chemistry Accounts,2019,139(1):4.

[73]Xie YuJ, Du N, Yu SP, et al. Unraveling the structure-dependent radiative and non-radiative decays in (CdSe)13 clusters through first-principles calculations[J]. Journal of Physical Chemistry C,2019,123(50):30714-30722.

[74]Liu Y, Zhang S, Gou R, et al. Theoretical study on the intermolecular interactions between energetic oxidizer and pyrazine-1,4 -dioxide[J]. Materials Today Communications,2020,12:1-22.

[75]Zhou HJ, Zhao W, Shi LW, et al. Analysis of the structures and interactions between CL-20 and its formers[J]. Journal of Molecular Structure,2020,1207.

[76]黄遥. 煤自燃活性官能团萃取及其氧化放热特性研究[D].西安科技大学, 2018.

[77]Johnson ER, Keinan S, Mori-Sanchez P, et al. Revealing noncovalent interactions[J]. Journal of the American Chemical Society,2010,132(18):6498.

[78]Yu B, Pletka CC, Iwahara JJ. Quantifying and visualizing weak interactions between anions and proteins[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(2).

[79]Priv.-Doz. Dr. Dieter C, Dr. Elfi K. Chemical Bonds without Bonding Electron Density -Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? [J]Angewandte Chemie,1984,23(8):627–628.

[80]王德明.煤氧化动力学理论及应用[M],北京:科学出版社,2012.pp:43-44.

[81]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996(03):111-114.

[82]李增华,位爱竹,杨永良.煤炭自燃自由基反应的电子自旋共振实验研究[J].中国矿业大学学报,2006(05):576-580.

[83]肖旸,马砺,王振平,等.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007(05):73-76.

[84]邓军,杨俊义,张玉涛,等.贫氧条件下煤自燃特性的热重-红外实验研究[J].煤矿安全,2017,48(04):24-28.

[85]Marisamy M, Tomoaki N, Kunio Y. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis[J]. Applied Energy,2009,87(1):141-148.

[86]朱川,罗陨飞,张宇宏,等.煤燃烧特征温度与变质程度的关系[J].动力工程学报,2015,35(06):445-450.

[87]Wang CP, Wang FY, Yang QR, Liang RG. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion[J]. Biomass and Bioenergy,2008,33(1):50-56.

中图分类号:

 TD752.2    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式