- 无标题文档
查看论文信息

论文中文题名:

 荒漠化矿区土壤湿度遥感监测    

姓名:

 朱蓉    

学号:

 18210210073    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 定量遥感    

第一导师姓名:

 刘英    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-23    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Remote Sensing Monitoring of Soil Moisture in Desertification Mining Area    

论文中文关键词:

 荒漠化矿区 ; 方法对比 ; 新型修正土壤湿度监测指数 ; 土壤湿度反演    

论文外文关键词:

 Desertification mining area ; Method comparison ; New modified soil moisture index ; Soil moisture inversion    

论文中文摘要:

红沙泉矿区位于西北荒漠化干旱地区,水资源较匮乏、降水稀少,随着采矿活动的加剧,势必会引起矿区环境发生变化。土壤湿度作为表征矿区地表环境的指标之一,对其时空变化规律及其影响因素进行探讨显得尤为重要。本文以红沙泉矿区及周边区域为研究对象,首先基于Landsat8 OLI影像利用基于植被信息的归一化植被指数NDVI(Normalized Difference Vegetation Index, NDVI)、比值植被指数RVI(Ratio Vegetation Index, RVI)、条件植被指数VCI(Vegetation Condition Index, VCI),基于植被、温度信息的温度植被干旱指数TVDI(Temperature Vegetation Drought Index, TVDI)、条件植被温度指数VTCI(Vegetation Temperature Condition Index, VTCI),基于热红外波段的表观热惯量(Apparent thermal inertial, ATI)和条件温度指数TCI(Temperature Condition Index, TCI)以及基于反射率特征空间的垂直干旱指数PDI(Perpendicular Drought Index, PDI)、改进型垂直干旱指数MPDI(Modified Perpendicular Drought Index, MPDI)、土壤湿度监测指数SMMI(Soil Moisture Monitoring Index, SMMI)、改进型土壤湿度监测指数MSMMI(Modified Soil Moisture Monitoring Index, MSMMI)反演荒漠化地区的土壤湿度,并利用实测土壤湿度数据验证分析上述传统指数监测不同地物类型下土壤湿度的精度,评估其适用性;其次,在传统土壤湿度监测方法的基础上结合荒漠化地区特殊的地表类型特点提出适用于研究区的新型修正土壤湿度监测指数NMSMI(New Modified Soil Moisture Index, NMSMI);利用NMSMI反演不同时空分辨下的土壤湿度,并结合气象因子及实际统计资料(采矿面积、煤炭产量),基于皮尔逊相关分析、地理探测器分析了引起土壤湿度变化的驱动因素;最后,利用景观生态功能贡献率探讨了采矿对土壤湿度的影响范围。结果表明:

(1) NDVI、RVI以及VCI反映研究区的植被信息,与土壤湿度呈正比,与实测土壤湿度相关系数分别为0.445(P<0.01)、0.312和0.432(P<0.01),但由于研究区裸岩石砾地及裸地较多因而这三种植被不能单独作为监测研究区土壤湿度的指数因子;TCI与实测土壤湿度的相关性仅为0.131(P>0.01);热惯量法、SMMI、MSMMI、PDI、MPDI与实测土壤湿度的相关性分别为0.231、-0.463(P<0.01)、-0.434(P<0.01)、-0.460(P<0.01)、和-0.458(P<0.01),但这五种指标显示裸岩石砾地土壤湿度最高,与实测结果不符;VTCI、TVDI与实测土壤湿度的相关性分别为0.004和-0.004,未通过95%的显著性检验,且其显示植被区域土壤湿度低于裸岩石砾地的土壤湿度,与实测结果不符。因此,单一传统土壤湿度监测指标均不能反映研究区的土壤湿度空间分布状况。

(2)鉴于传统土壤湿度监测指数不能单独正确反映裸岩石砾地土壤湿度状况,但研究区裸岩石砾地面积较大,因而,本研究考虑综合构建适用于研究区的土壤湿度遥感监测模型——新型修正土壤湿度监测指数NMSMI(New Modified Soil Moisture Index, NMSMI)。本研究首先构建裸岩石砾地指数NGLI(New Gravel Land Index, NGLI),用来有效的提取研究区的裸岩石砾地及露天采坑,该指数与实测土壤湿度呈负相关(R2=0.261, P<0.01),虽相关系数较低,但一定程度上能反映研究区的土壤湿度,其次,通过分析结合传统土壤湿度监测指数SMMI、NDVI,基于线性加权的方法利用SMMI、NDVI、NGLI三种指标综合构建NMSMI,经验证,该指数与实测土壤湿度呈负相关(R2=0.534, P<0.01),反演结果在空间分布上与实测土壤湿度相符。

(3)基于NMSMI指数对研究区的土壤湿度进行反演,得到NMSMI年均值呈波动递增趋势,增长率为0.0007/year。结合人为因子及自然因子,矿井尺度上经皮尔逊相关分析以及地理探测器分析,得出影响红沙泉矿井NMSMI变化的因子主要分两个阶段,2003年-2010年主要为地表温度(r=0.813, P<0.01)、气压(r=-0.750, P<0.05)和降水(r=-0.541, P<0.05)等自然因子;2011年采矿活动开始,NMSMI受到自然与人为因子的共同影响,其中,自然因子主要有地表温度(r=0.785, P<0.01)、气压(r=-0.736, P<0.01)及降水(r=-0.702, P<0.05);人为因子主要受采矿面积(r=0.986, P<0.01)及煤炭产量(r=0.725, P<0.05)的影响。最后利用景观生态功能贡献率模型分别确定了红沙泉矿区采矿活动对2011年、2014年、2017年、2019年以及2020年的土壤湿度的影响范围,最终确定其影响范围为距离采坑2.5km处。

论文外文摘要:

Hongshaquan mining area is located in a desertified and arid area in the northwest, which water resources and precipitation are scarce. With the intensification of mining activities, it is bound to cause environmental changes in the mining area. As one of the indicators that characterize the surface environment of mining areas, soil moisture is particularly important to discuss its temporal and spatial changes and its influencing factors. This paper takes the Hongshaquan mining area and surrounding areas as the research object. Firstly, based on the Landsat8 OLI image, use the NDVI(Normalized Difference Vegetation Index,NDVI), RVI(Ratio Vegetation Index ,RVI) and VCI(Conditional Vegetation Index,VCI), based on vegetation and temperature information such as TVDI(Temperature Vegetation Drought Index,TVDI) and VTCI(Conditional Vegetation Temperature Index,VTCI), based on thermal infrared bands such as ATI(Apparent thermal inertial,ATI) and TCI(Temperature Condition Index, TCI), as well as based on the reflectivity feature space such as PDI (Perpendicular Drought Index, PDI), MPDI(Modified Perpendicular Drought Index, MPDI), SMMI (Soil Moisture Monitoring Index, SMMI), MSMMI (Modified Soil Moisture Monitoring Index, MSMMI) to retrieves the soil moisture in desertified areas, and use the measured soil moisture data to verify and analyze the accuracy of the above-mentioned traditional index to monitor soil moisture under different types of ground features, and evaluate its applicability; secondly, on the basis of traditional soil moisture monitoring methods, combined with the characteristics of special land types in desertified areas, a New Modified Soil Monitoring Index(NMSMI) suitable for the study area is proposed; Using NMSMI to retrieve soil moisture under different temporal and spatial resolutions, combined with meteorological factors and actual statistical data (mining area, coal production), based on Pearson correlation analysis and geographic detectors to analyze the driving factors that cause soil moisture changes; Finally, use the contribution rate of landscape ecological function discusses the range of influence of mining on soil moisture. The result shows as follow:
(1)NDVI, RVI, and VCI reflect the vegetation information in the study area, which is directly proportional to the soil moisture, and the correlation coefficients with the measured soil moisture are 0.445 (P<0.01), 0.312 and 0.432 (P<0.01), but due to there are many bare rocky gravel and bare land in the study area, so these three types of vegetation cannot be used as a single factor to monitor the soil moisture in the study area; The correlation between TCI and the measured soil moisture is only 0.131 (P>0.01); The correlations between Thermal Inertia method, SMMI, MSMMI, PDI, MPDI and the measured soil moisture are 0.231, -0.463(P<0.01), -0.434(P<0.01), -0.460(P<0.01) and -0.458(P<0.01), but these five indicators show that the soil moisture of bare rock and gravel land is the highest, which is inconsistent with the measured results; The correlations between VTCI, TVDI and the measured soil moisture are 0.004 and -0.004, respectively, failing the 95% significance test, and they show that the soil moisture in the vegetation area is lower than that of the bare rock gravel, which is inconsistent with the measured results. Therefore, a single traditional soil moisture monitoring index cannot reflect the spatial distribution of soil moisture in the study area.
(2)In view of the fact that the traditional soil moisture monitoring index cannot accurately reflect the soil moisture status of bare rock and gravel land alone, but the area of bare rock and gravel land in the study area is large, this study considers the comprehensive construction of a soil moisture remote sensing monitoring model suitable for the study area—  —NMSMI (New Modified Soil Moisture Index, NMSMI). This study first constructed the New Gravel Land Index (NGLI), which is used to effectively extract the bare rock and gravel land and open pits in the study area. The index is negatively correlated with the measured soil moisture (R2=0.261, P<0.01). Although the correlation coefficient is low, it can reflect the soil moisture in the study area to a certain extent. Secondly, by analyzing and combining with the traditional soil moisture monitoring index SMMI, NDVI, based on the linear weighting method, using SMMI, NDVI and NGLI to comprehensively construct NMSMI, it is verified the index is negatively correlated with the measured soil moisture (R2=0.534, P<0.01), and the spatial distribution of the inversion result is consistent with the measured soil moisture.
(3)Based on the NMSMI index, the soil moisture in the study area was inverted, and the annual average value of NMSMI showed a fluctuating and increasing trend, with a growth rate of 0.0007/year. Combining man-made factors and natural factors, Pearson correlation analysis and geographic detector analysis on the mine scale, it is concluded that the factors affecting the changes of the Hongshaquan Mine’s NMSMI are mainly divided into two stages. From 2003 to 2010, it is mainly the surface temperature (r=0.813), P<0.01), air pressure (r=-0.750, P<0.05) and precipitation (r=-0.541, P<0.05); Mining activities started in 2011, NMSMI was affected by both natural and man-made factors. Among them, natural factors mainly   include surface temperature (r=0.785, P<0.01),air pressure (r=-0.736, P<0.01) and precipitation (r=-0.702, P<0.05); Anthropogenic factors are mainly affected by mining area (r= 0.986, P<0.01) and coal production (r=0.725, P<0.05). Finally, using the landscape ecological function contribution rate model to determine the impact of mining activities in the Hongshaquan mining area on the soil moisture in 2011, 2014, 2017, 2019 and 2020, and finally determine the impact range to be 2.5km from the pit Place.

 

参考文献:

[1] 樊磊. 基于多源数据的土壤水分估算及森林火灾风险评估应用[D]. 北京:中国科学院大学, 2017.

[2] 何连, 秦其明, 任华忠, 等. 利用多时相Sentinel-1 SAR数据反演农田地表土壤水分[J]. 农业工程学报, 2016, 32(3):142-148.

[3] 何志斌, 赵文智, 方静. 黑河中游地区植被生态需水量估算[J]. 生态学报, 2005, 25(4):705-710.

[4] 钱鸣高. 对中国煤炭工业发展的思考[J].中国煤炭, 2005, 31(6):4-9.

[5] 李雯雯. 基于多源监测数据的采煤沉陷区土壤湿度变化研究[D]. 西安:西安科技大学, 2020.

[6] 杨辉. 徐州大刘煤矿矿区土地复垦研究[D]. 济南:山东师范大学, 2020.

[7] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8):1751-1757.

[8] 杨超越. 红沙泉露天矿边坡稳定性分析[D]. 鞍山:辽宁科技大学, 2018.

[9] 李俊刚, 闫庆武, 熊集兵, 等. 贵州省煤矿区植被指数变化及其影响因子分析[J]. 生态与农村环境学报, 2016, 32(3):374-378.

[10] 刘巍.干旱区露天煤矿扬尘排放特征及其对周边植物的影响[D]. 乌鲁木齐:新疆大学, 2017.

[11] 古力扎提•艾买提. 基于RS和GIS准东荒漠露天煤矿区景观格局变化及生态服务价值分析[D]. 乌鲁木齐: 新疆大学, 2017.

[12] 冯志敏, 邢文渊, 肖继东,等. 遥感监测土壤湿度综述及其在新疆的应用展望[J]. 测绘科学, 2008(5):94-96.

[13] 汪潇, 张增祥, 赵晓丽,等. 遥感监测土壤水分研究综述[J]. 土壤学报, 2007, 44(1):157-163.

[14] Salmi E F., Karakus M, Nazem M. Assessing the effects of rock mass gradual deterioration on the long-term stability of abandoned mine workings and the mechanisms of post-mining subsidence – A case study of Castle Fields mine[J].Tunnelling and Underground Space Technology,2019,88:169-185.

[15] 胡振琪, 龙精华, 王新静. 论煤矿区生态环境的自修复、自然修复和人工修复[J]. 煤炭学报, 2014, 39(8):1751-1757.

[16] 周逍峰. 基于机器学习的土壤湿度反演研究[D]. 武汉:华中师范大学, 2020.

[17] 王琦. 基于Sentinel-1A和Landsat-8的土壤水分反演[D]. 成都:成都理工大学, 2018.

[18] 潘宁, 王帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13):4615-4626.

[19] Bowers S, Hanks R. Reflection of radiant energy from soil[J]. Soil Science, 1965, 100(2): 130-138.

[20] Kahle A B, Gillespie A R, Goetz A F H. Thermal inertia imaging: A new geologic mapping tool[J]. Geophysical Research Letters, 1976. 3(1): 26-28.

[21] Price J C. Thermal inertia mapping: A new view of the Earth[J]. Journal of Geophysical Research, 1977, 82(18):2582-2590.

[22] Schmer F A. Wearner H D. Remote Sensing techniques for evaluation of soil water condition[J] Trans Amer Sor Agri Eng, 1974, 17(2): 310-314.

[23] Blanchard M B. Greely R, Geotteleman R. Use of visible, near infrared and thermal infrared remote sensing to study soil moisture[J]. Proceeding of the Ninth International Symposium on Remote Sensing of Environment. 1974, 1(1): 693-900.

[24] Watson K, Rowen C, Offield T. Application of thermal modeling in geologic interpretation of images[J]. Remote Sensing of Environment, 1971, 3(1):2017-2041.

[25] Pratt D A, Ellyett C D. The thermal inertia approach to mapping of soil moisture and geology[J]. Remote Sensing of Environment, 1979, 8(2):151-168.

[26] Liu Z, Zhao L, Peng Y, et al. Improving Estimation of Soil Moisture Content Using a Modified Soil Thermal Inertia Model[J]. Remote Sensing, 2020, 12(11):1719-1742.

[27] Jackson R D, Slater P N, Pinter P J. Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres[J]. Remote Sensing of Environment, 1983, 13(3):187-208.

[28] 侯光雷, 张洪岩, 郭笑怡. 长白山区植被生长季NDVI时空变化及其对气候因子敏感性[J]. 地理科学进展, 2012, 31(3):285-292.

[29] 崔林丽, 史军, 杨引明, 等.中国东部植被NDVI对气温和降水的旬响应特征[J]. 地理学报, 2009, 64(7):850-860.

[30] Schell J A. Monitoring vegetation systems in the Great Plains with ERTS[J].Nasa Special Publication, 1973, 1(1):351-309.

[31] 宋扬, 房世波, 梁瀚月,等. 基于MODIS数据的农业干旱遥感指数对比和应用[J]. 国土资源遥感, 2017, 29(2): 215-220.

[32] Kogan F, Sullivan J. Development of global drought-watch system using NOAA/AVHRR data[J]. Advances in Space Research, 1993, 13(5):219-222.

[33] Sun H, Chen Y H, Sun H Q. Comparisons and classification system of typical remote sensing indexes for agricultural drought[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(14):147-154.

[34] Ghulam A, Qin Q, Zhan Z. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6): 1045–1052.

[35] Jackson P D, Pinter P J. Detection of water stress in wheat by measurement of reflected solar and emitted thermal IR radiation [J]. Spectral signatures of objects in remote sensing, 1981, 1(1):399 – 406.

[36] Radha A V, George B A. Estimation of root-zone soil moisture using crop water stress index (CWSI) in agricultural fields[J]. GIScience & Remote Sensing, 2021. 1(1):1-14.

[37] Kogan F N. Remote sensing of weather impacts on vegetation in non-homogeneous areas[J]. International Journal of Remote Sensing, 1990, 11(8):1405-1419.

[38] Amani M, Salehi B, Mahdavi S, et al. Temperature-Vegetation-soil Moisture Dryness Index(TVMDI)[J]. Remote Sen-sing of Environment, 2017, 19(7):1-14.

[39] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(3):213-224.

[40] Shi S, Yao F, Zhang J, et al. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia[J]. IEEE Access, 2020, 8(99): 30050-30059.

[41] Przedziecki K, Zawadzki J. Modification of the Land Surface Temperature–Vegetation Index Triangle Method for soil moisture condition estimation by using SYNOP reports[J]. Ecological Indicators, 2020, 119(1):1-19.

[42] 李梦云. 基于VSDI指数的土壤湿度遥感降尺度研究——以吉林省西部为例[D].长春:东北师范大学, 2014.

[43] Liu L, Yang X, Gong F, et al. The Novel Microwave Temperature Vegetation Drought Index(MTVDI) Captures Canopy Seasonality across Amazonian Tropical Evergreen Forests[J]. Remote Sensing, 2021, 13(3):339-347.

[44] Njoku E G, Li L. Retrieval of land surface parameters using passive microwave measurements at 6-8 GHz[J]. IEEE Trans Geoscience Remote Sensing, 1999,37(1): 79-93.

[45] Weimann A, Schonermark M V, Schumann A, et al. Soil moisture estimation with ERS-1 SAR data in the East-German loess soil area[J]. International Journal of Remote Sensing, 1998, 19(2):237-243.

[46] Natsagdorj E, Renchin T, Maeyer P D, et al. Spatial Distribution of Soil Moisture in Mongolia Using SMAP and MODIS Satellite Data: A Time Series Model (2010–2025)[J]. Remote Sensing, 2021, 13(3):1-14.

[47] 余桥. 土壤湿度不同遥感方法的对比分析[D]. 沈阳 东北大学, 2013.

[48] 余涛, 田国良. 热惯量法在监测土壤表层水分变化中的研究[J]. 遥感学报, 1997, 1(1):24-31.

[49] 隋洪智, 田国良, 李付琴. 农田蒸散双层模型及其在干旱遥感监测中的应用[J]. 遥感学报, 1997, 1(3):1-7.

[50] 刘兴文, 冯勇进. 应用热惯量编制土壤水分图及土壤水分探测效果[J]. 1987, 24(3):272-279.

[51] 杨东旭, 邢立新, 潘军等. 吉林中部地区土壤水分遥感反演与应用[J]. 2013, 13(3):1671-1815.

[52] 王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报(信息科学版), 2001, 26(5):412-418.

[53] Zhao H, Li Y, Chen X, et al. Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index[J]. Theoretical and Applied Climatology, 2021, 143(19):1-18.

[54] 马尚谦, 张勃, 张佳琦等, 标准化降水蒸散指数在华北平原的适用性分析[J]. 中国农业资源与区划, 2020, 41(2):235-245.

[55] Wei W, Pang S, Wang X, et al. Temperature Vegetation Precipitation Dryness Index (TVPDI)-based dryness-wetness monitoring in China[J]. Remote Sensing of Environment, 2020, 248(1):111-957.

[56] Ghualm A, Qin Q M, Zhang Z M. Designing of the perpendicular drought index[J]. Environmental Geology, 2007, 52(6):1045-1052.

[57] 杨学斌, 秦其明, 姚云军,等. PDI与MPDI在内蒙古干旱监测中的应用和比较[J]. 武汉大学学报(信息科学版), 2011(2):195-198.

[58] Ghulam A, Qin Q M, Teyip T, et al. Modified perpendicular drought index (MPDI): a real-time drought monitoring method[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62(2):150-164.

[59] 聂艳, 贾付生, 朱亚星等. 基于高分一号影像的江汉平原表层土壤湿度指数反演研究[J]. 江流域资源于环境.2018.27(5):1124-1131.

[60] 刘焕军, 张柏, 宋开山,等. 基于室内光谱反射率的土壤线影响因素分析[J]. 遥感学报, 2008,12(1):119-127.

[61] 刘英.神东矿区地表植被与土壤湿度遥感监测研究[D]. 北京. 中国矿业大学(北京), 2013.

[62] 刘英, 鲁杨, 李遥,等. 关中平原干旱遥感监测指数对比和应用研究[J]. 干旱地区农业研究, 2018, 36(6):207-213.

[63] Liu Y, Li Y, Lu Y, et al. Comparison and Application of MPDI and MSMMI for Drought Monitoring in Desert Mining Area[C]// 2018.

[64] 陈全, 周忠发, 王玲玉,等. 基于多时相Sentinel-1 SAR数据的喀斯特石漠化区地表土壤水分反演研究[J]. 红外与毫米波学报, 2020, 39(5): 96-104.

[65] 赵建辉, 张蓓, 李宁,等. 基于Sentinel-1/2遥感数据的冬小麦覆盖地表土壤水分协同反演[J]. 电子与信息学报, 43(1):1-8.

[66] 王树果, 李新, 韩旭军, 等.利用多时相ASAR数据反演黑河流域中游地表土壤水分[J]. 009, 24(5):582-587.

[67] 林利斌, 鲍艳松, 左泉, 等. 基于Sentinel-1与FY-3C数据反演植被覆盖地表土壤水分[J]. 遥感技术与应用, 2018, 33(4):750-758.

[68] Shrestha R K, Lal R. Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio[J]. Plant and soil, 2008, 306(2):249-260.

[69] Philip A, Townsend D P, Helmers C C K, et al. Changes in the extent of surface mining and reclamation in the central Appalachians using a 1976-2016 Landsat time series[J]. Remote Sensing of Environgment, 2009, 113(1):72-73.

[70] Rocha R D S, Monteiro V F, Santos C R C D, et al. Effect of the implantation of lequeme species and soil conditions on the recovery of pebble mining area[J]. Land Degradation&Development, 2020, 32(4):1695-1705.

[71] Greassidis S, Trinh Q V, Bromme K. Waterminer a regional spatio-temporal approach to wate reuse management in mining areas in Viernam[J]. Journal of water reuse and desalination,2020, 10(4):527-534.

[72] Gangopadhyay P K, Lahiri-Dutt K, Saha K. Application of remote sensing to identify coalfires in the Raniganj Coalbelt, India[J]. International Journal of Applied Earth Observations & Geoinformation, 2006, 8(3):188-195.

[73] Charou E, Stefouli M, D Dimitrakopoulos, et al. Using Remote Sensing to Assess Impact of Mining Activities on Land and Water Resources[J]. Mine Water & the Environment, 2010, 29(1):45-52.

[74] 赵菲菲, 包妮沙, 吴立新,等. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.

[75] Bian Z, Lei S, Inyang H I, et al. Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining[J]. Environmental Geology, 2009, 57(1):131-142.

[76] 李惠娣, 杨琦, 聂振龙, 等. 土壤结构变化对包气带土壤水分参数的影响及环境效应[J]. 水土保持学报, 2002, 16(6):100-103.

[77] 马保东, 吴立新, 刘英, 等. 于MODIS的神东矿区土壤湿度变化监测[J]. 科技导报2011, 29(35):43-49.

[78] 刘英, 吴立新, 马保东, 等. 神东矿区土壤湿度遥感监测与双抛物线型NDVI-Ts特征空间[J]. 科技导报, 2011, 29(35):37-46.

[79] 王晓雪. 遥感技术在露天矿土壤湿度反演中的应用[J].2018, 29(10):20-21.

[80] 马威, 陈登魁, 杨娜,等. 时序双极化SAR开采沉陷区土壤水分估计[J]. 遥感学报, 2018, 22(003):521-534.

[81] 赵鑫, 王萍, 马力. 基于遥感数据的矿区土壤湿度信息提取及影响因素分析[J]. 中国科技论文, 2019, 14(9):991-997.

[82] 吴敏宁, 李喆, 何政伟,等. 基于GIS和RS的自贡市长山盐矿区生态环境评价[J]. 物探化探计算技术, 2011, 33(2):222-226.

[83] 汤伏全, 李雯雯, 谷金, 等. 黄土矿区开采沉陷引起的土壤湿度变化特征研究[J]. 土壤通报, 2019, 302(5):137:142.

[84] 侯莉琴, 张锦. 基于TVDI的沁水煤田地表土壤水分时空演变分析[J]. 水土保持研究, 2017(3):178-185.

[85] 徐良骥, 刘悦, 谌芳,等. 基于GNSS-R技术的矿区复垦地土壤湿度反演方法研究[J]. 煤炭科学技术, 2020, 48(4):129-135.

[86] 王尚义, 牛俊杰, 朱炜歆,等. 晋西北矿区、非矿区不同植被下土壤水分特征[J]. 干旱区研究, 2013, 30(6):986-991.

[87] 先涛. 基于Nir-Red二维光谱特征空间的采矿区土壤含水量反演与分析[D]. 西安 长安大学, 2016.

[88] 夏楠. 准东矿区生态环境遥感监测及生态质量评价模型研究[D]. 乌鲁木齐, 新疆大学, 2018.

[89] 魏珍. 基于Landsat ETM遥感数据的大柳塔煤炭开发区土壤水分信息提取. 西安, 长安大学, 2010.

[90] 王忠鑫, 刘家纯, 贺永军,等. 红沙泉一号露天煤矿首采区及拉沟位置方案优化[J]. 露天采矿技术, 2012, 1(1):1-4.

[91] 齐述华, 李贵才, 王长耀, 等. MODIS数据产品进行全国干旱监测的研究[J]. 水科学进展, 2005, 16(1):56 - 61.

[92] 李晓英, 吴淑君, 王颖, 等. 淮河流域陆地水储量与干旱指标分析[J]. 水资源保护, 2020, 36(06):80-85.

[93] Kongan F N. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research. 1995, 15(1):91-100.

[94] 田鑫, 李瑞平, 王思楠, 等. 基于VSWI和TVDI差异的河套灌区沈乌灌域耕地灌溉面积的遥感监测[J]. 灌溉排水学报, 2020, 39(8):129-135.

[95] 闫娜娜. 基于遥感指数的旱情检测方法研究[D]. 北京, 中国科学研究院, 2005.

[96] 杨东旭. 吉林中部土壤湿度遥感研究与应用[D]. 长春, 吉林大学. 2013.

[97] 赵敏. 云南省遥感干旱综合监测及风险评估[D]. 昆明, 云南大学, 2018.

[98] 叶宗裕. 关于多指标综合评价中指标正向化和无量纲化方法的选择[J]. 浙江统计, 2003(4):24-25.

[99] Wang J F, Li X X, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107–127.

[100] 高鹏文, 阿里木江•卡斯木, 赵永玉, 等. 1988-2018年哈密绿洲植被覆盖度时空变化及其驱动力[J]. 水土保持通报, 2020, 40(6):273-280.

[101] 汪洋, 杨丹, 闵捷, 等. 山地高密度城市热岛效应的多约束因子格局分析与定量探测——重庆都市区案例研究[J]. 地理研究, 2021, 40(3): 856-868.

[102] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(001): 116-134.

[103] 吴振华. 基于3S集成技术的半干旱草原区大型露天煤炭基地景观格局优化研究[D]. 北京, 北京大学, 2020.

[104] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692.

[105] 闫凤飞. 基于Flourier分析的煤炭开采对植被的影响范围研究[D]. 北京, 中国地质大学, 2020.

中图分类号:

 P237    

开放日期:

 2023-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式