论文中文题名: | 基于卷积神经网络的无人机异常信号检测方法研究 |
姓名: | |
学号: | 19308207002 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085211 |
学科名称: | 工学 - 工程 - 计算机技术 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 深度学习与异常检测 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-07 |
论文外文题名: | Abnormal Signal Detection Methods of UAVs Based on Convolutional Neural Networks |
论文中文关键词: | |
论文外文关键词: | UAV security threat ; False spoofing attacks ; ADS-B signals ; Abnormal signals detection ; Double Shortcuts Zero-Bias ResNet ; Bimodal perception |
论文中文摘要: |
无人机由于体积小、成本低、灵活性高、机动性强等特点,已广泛应用于军用和民用领域。在军用领域,无人机主要执行危险性较高的任务,并带来了巨大的军事效益;在民用领域,无人机主要协助人们进行农业管理、电力巡检和地质勘查等工作。然而,在无人机应用范围不断扩大的同时,其面临的各类安全威胁也逐渐增多。其中,虚假欺骗攻击就是无人机面临的一种典型的网络安全威胁。 |
论文外文摘要: |
Unmanned Aerial Vehicles (UAVs) have been widely used in military and civilian fields due to their small size, low cost, high flexibility, and strong maneuverability. In the military fields, UAVs are mainly used for missions with high risk, bringing substantial military benefits. UAVs mainly assist people in daily tasks in the civilian feilds, such as farmland irrigation, urban management, and geological exploration. However, various security threats gradually increase by continuously expanding the scopes of UAVs' applications. Among all the security threats, false spoofing attack is a typical network threat faced by UAVs. At present, several solutions for solving the false spoofing attacks suffered by UAVs have been proposed at home and abroad. However, when detecting abnormal signals in false spoofing attacks of UAVs using deep learning, it is challenging to classify abnormal signals of UAVs due to similar data characteristics of abnormal signals and normal signals. Meanwhile, the collected signals of UAVs will be affected by interference, making it more challenging to classify abnormal signals for UAVs, thus affecting the detection accuracy of abnormal signals for UAVs. This thesis proposes abnormal signal detection methods for UAVs based on Convolutional Neural Networks to solve the problem. The main contents of this thesis are as follows: (1) In order to solve the problem that the detection accuracy of abnormal signal for UAVs is affected by the similar appearance and characteristics of normal signals data and abnormal signals data for UAVs, which makes it more challenging to classify abnormal signals. Therefore, this thesis proposes an abnormal signals detection method of UAVs based on Double Shortcuts Zero-Bias ResNet. First, the signals of UAVs are preprocessed by removing random noise, normalization, and Fourier transforms, then the frequency domain signals are obtained. Second, a new Double Shortcut Residual Network is constructed to extract characteristics of UAVs signals in the frequency domain. Finally, through the fusion of the Zero-Bias Fully Connected layer and the original Fully Connected layer, the network structure of the last layer of the Double Shortcuts ResNet model is optimized to obtain the final Double Shortcuts Zero-Bias ResNet, so as to improve the correlation degree of between the Fully Connected layer and Softmax layer. Simulation results indicate that when the data of ADS-B signals for UAVs set with good data quality is used, the proposed method can improve the detection accuracy compared with the existing abnormal signal detection methods. (2) In real scenes, there is inevitably a large amount of random noise in the collected UAV signals, which leads to interference of original signals of UAVs, thus affecting the detection accuracy of abnormal signals for UAVs. This thesis proposes an optimization detection method of abnormal signals of UAVs based on bimodal perception. First, the collected UAV signals are modally transformed to generate waveform images. Second, the Double Shortcuts Zero-Bias ResNet is used to extract bimodal features from the waveform image modal data and frequency domain signal modal data of original signals for UAVs. Then, the Bag-Stack ensemble fusion method is used to fuse the classification results of different modal data to alleviate the interference of random noise to the original signal of UAVs and improve the detection accuracy of abnormal signals on UAVs. Simulation results indicate that when the original ADS-B signal data set of UAVs with random noise is used, the proposed method can improve the detection accuracy compared with the existing abnormal signal detection methods. To sum up, the development and completion of this thesis have a particular theoretical significance and practical value for detecting abnormal signals of UAVs. |
参考文献: |
[1] 何道敬, 杜晓, 乔银荣, 朱耀康, 樊强, 罗旺. 无人机信息安全研究综述[J]. 计算机学报, 2019, 42(5): 1076–1094. [4] 王泽洋. 基于LSTM的无人机异常检测方法研究[D]. 黑龙江: 哈尔滨工业大学, 2018. [21] 王文益, 吴庆. 利用改进型AlexNet的ADS-B欺骗式干扰检测[J]. 信号处理, 2020, 36(5): 741–747. [23] 刘逸, 倪育德, 方姝, 崔瑞云, 王琳琳. 基于TDOA/TSOA的ADS-B虚假信号检测技术研究[J]. 现代导航, 2015, 6(2): 95–101. [26] 丁建立, 邹云开, 王静, 王怀超. 基于深度学习的ADS-B异常数据检测模型[J]. 航空学报, 2019, 40(12): 167–177. [44] 吴庆. 基于深度学习的ADS-B欺骗式干扰检测[D]. 天津: 中国民航大学, 2020. [46] 何梦林. 无人机的故障诊断与容错控制研究[D]. 贵阳: 贵州大学, 2015. [47] 王泽洋. 基于LSTM的无人机异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [49] 吴飘. 基于深度学习的时序数据异常检测检测算法研究[D]. 大连: 大连理工大学, 2021. [53] 马晗, 唐柔冰, 张义, 张巧灵. 语音识别研究综述[J]. 计算机系统应用, 2022, 31(1): 1–10. [54] 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445–1465. [55] 徐雄. 采用改进型AlexNet的辐射源目标个体识别方法[J]. 电讯技术, 2018, 58(6): 625–630. [56] 韩萍, 孙丹丹. 特征选择与深度学习相结合的极化SAR图像分类[J]. 信号处理, 2019, 35(6): 972–978. [57] 翁琳天然, 彭进霖, 何远, 钟都都, 彭建华, 峁旋宇. 基于深度残差网络的ADS-B信号辐射源个体识别[J]. 航空兵器, 2021, 28: 1–8. [60] 甄士博. 基于ADS-B技术的多无人机航迹规划算法研究[D]. 石家庄: 河北科技大学, 2018. [61] 360独角兽安全团队. 无线电安全攻防大揭秘[M]. 北京:电子工业出版社, 2016: 78–88. [63] 刘冰, 李瑞麟, 封举富. 深度度量学习综述[J]. 智能系统学报, 2019, 14(06): 1064–1072. [64] 王华军, 修乃华. 支持向量机损失函数分析[J]. 数学进展, 2021, 50(6): 801–828. [66] 史加荣, 王丹, 尚凡华, 张鹤于. 随机梯度下降算法研究进展[J]. 自动化学报, 2021, 47(9): 2103–2119. [67] 李飞, 高晓光, 万开方. 基于权值动量的RBM加速学习算法研究[J]. 自动化学报, 2017, 43(7): 1142−1159. [69] 余辉, 梁镇涛, 鄢宇晨. 多来源多模态数据融合与集成研究进展[J]. 情报理论与实践, 2020, 43(11): 169–178. [71] 何俊, 张彩庆, 李小珍, 张德海. 面向深度学习的多模态融合技术研究综述[J]. 计算机工程, 2020, 46(5): 1–11. [73] 郭玥秀, 杨伟, 刘琦, 王玉. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5): 1293–1297. [75] 黄天镜. 基于多维特征的ADS-B数据异常检测方法研究[D]. 天津: 中国民航大学, 2020. [76] 黄孝喜, 李晗雨, 王荣波, 王小华, 谌志群. 基于卷积神经网络与SVM分类器的隐喻识别[J]. 现代图书情报技术, 2018, 22(10): 77–83. [77] 万磊, 佟鑫, 盛明伟, 秦洪德, 唐松奇. Softmax分类器深度学习图像分类方法应用综述[J]. 导航与控制, 2019, 18(6): 1–9. |
中图分类号: | TP399 |
开放日期: | 2022-06-24 |