- 无标题文档
查看论文信息

论文中文题名:

 渭河流域景观生态风险评价及驱动力分析    

姓名:

 许婷    

学号:

 19210210054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085215    

学科名称:

 工学 - 工程 - 测绘工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 遥感技术与应用    

第一导师姓名:

 黄远程    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Landscape ecological risk assessment and lor='red'>driving force analysis lor='red'>of the Weihe River Basin    

论文中文关键词:

 土地利用变化 ; 景观生态风险 ; 地理加权回归模型 ; 地理探测器    

论文外文关键词:

 Land use change ; Landscape ecological risk ; Geographical weighted regression model ; Geographical detector    

论文中文摘要:

自20世纪90年代以来,随着我国经济的快速发展、人口数量的增加从而导致区域生态环境受到人为因素的干扰日趋严重,土地资源的不合理利用也严重影响着区域生态稳定性。景观生态风险评价是以土地利用类型作为景观生态风险评价的综合体,通过选取合适的景观指数构建景观生态风险评价模型,进而对区域内景观生态风险进行评价,并探究自然因素和人为因素对区域内生态环境造成的影响。基于土地利用类型数据进行景观生态风险评价,对区域内土地资源的合理配置、生态环境保护和促进资源可持续性利用具有重要的现实意义。
本文以渭河流域为研究对象,首先对研究区域内土地利用类型进行时空变化分析;其次选取景观指数来构建景观生态风险评价模型,对渭河流域1990-2018年七个时期的景观生态风险进行时空变化特征分析;再结合地理加权回归模型和地理探测器研究渭河流域景观生态风险发生的驱动因子、驱动因子对景观生态风险空间分布的作用强度及驱动因子之间的交互作用对景观生态风险发生的影响。主要结论如下:
(1)基于中国科学院资源环境科学数据中心下载的1990-2018年土地利用数据,从土地利用类型的数量、结构、动态度和转移方向等方面定量地分析渭河流域土地利用时空变化规律。结果表明:在整个研究期间内,渭河流域以耕地和草地为主要土地利用类型,耕地和草地的面积占流域总面积的75%以上;从渭河流域土地利用变化的时空动态度的角度看,渭河流域的综合动态度呈现“N型”的发展趋势,其中2015-2018年的综合动态度最大为4.80%,说明这一时期渭河流域综合土地利用类型的变化最为显著;从土地利用类型转移的数量和方向看,渭河流域内的土地利用类型的转化方式以耕地和草地之间进行相互转化、耕地的转出和建设用地的转入为主。
(2)基于景观生态学的角度选取了景观破碎度、景观分离度、景观优势度和景观脆弱度等指数构建景观生态风险评价模型,对1990-2018年渭河流域景观生态风险进行评价,并对其时空变化规律进行分析,利用空间自相关方法探究其空间的自相关性和空间异质性。结果表明:1990-2018年,渭河流域内较低风险、中风险和较高风险区域的面积在增加,高风险区域的面积在减少,其中较低风险区、中风险区和较高风险区的面积分别增加了2.94%、4.97%和3.54%,但高风险区的面积减少了11.24%,说明在研究时期内渭河流域的景观生态风险整体上呈现降低的趋势,表明渭河流域内景观生态风险正在向好的方向发展;在空间自相关分析中,1990-2018年间渭河流域景观生态风险在空间上具有显著的正相关性,在空间分布呈现“高-高”聚集和“低-低”聚集的形式。
(3)从自然因素和人为因素两个方面选取渭河流域景观生态风险发生的驱动因子, 用地理加权回归模型和地理探测器方法研究驱动因子对景观生态风险空间分布的作用强度及驱动因子之间的交互作用。结果表明:对渭河流域景观生态风险影响较为显著的驱动因子为:DEM、坡度、降水量、年均气温、相对湿度、人口密度和人为干扰度,其中各驱动因子对渭河流域景观生态风险的作用强度和空间分布均不相同,其中人为干扰度的对渭河流域内景观生态风险的发生作用强度最大;从驱动因子之间的交互作用来看,坡度和人为干扰度交互后对渭河流域内景观生态风险发生的解释力达到了60%以上,而且两两驱动因子交互作用后的强度均大于单驱动因子,说明渭河流域景观生态风险的发生并不是单个驱动因子直接作用的结果,而是各驱动因子之间两两交互作用后增强的结果。

 

论文外文摘要:

Since the 1990s, with the rapid development lor='red'>of China's economy and the rapid increase lor='red'>of the population, the region ecological environment has been strongly disturbed by human factors, and the irrational use lor='red'>of land resources also seriously affected the stability lor='red'>of region ecology. Landscape ecological risk assessment (LERA) is based on land use landscape, and the assessment model was constructed by selecting and calculating the appropriate landscape index in land use time series. The landscape ecological risk change can reveal the pattern lor='red'>of landscape ecological risk and the influence lor='red'>of natural factors and human activities in the region. Therefore, the research on LERA is very important for the rational allocation lor='red'>of land resources, ecological environmental protection and the promotion lor='red'>of sustainable utilization lor='red'>of resources in the region.

The paper analyzed the spatial-temporal changes lor='red'>of land use types in Weihe River Basin from 1990 to 2018, and using landscape indexes to construct LERA model. The spatial-temporal changes lor='red'>of landscape ecological risks have been analyzed. Combined with the geographical weighted regression model and geographical detectors, the lor='red'>driving factors lor='red'>of landscape ecological risk occurrence in the Weihe River Basin, the intensity lor='red'>of the lor='red'>driving factors on the spatial distribution lor='red'>of landscape ecological risks, and the interaction between lor='red'>driving factors on the occurrence lor='red'>of landscape ecological risks were studied. The main conclusions are as follows:

(1) Based on land use data form Data Center for Resources and Environmental Sciences, Chinese Academy lor='red'>of Sciences, the spatial and temporal changes lor='red'>of land use in the Weihe River Basin were quantitatively analyzed from the aspects lor='red'>of quantity, structure, dynamic degree and transfer direction lor='red'>of land use types. The results showed that during the whole study period, cultivated land and grassland were the main land use types in the Weihe River Basin, and the area lor='red'>of cultivated land and grassland accounted for more than 75% lor='red'>of the total area. From the perspective lor='red'>of the spatial-temporal dynamics lor='red'>of land use change in the Weihe River Basin, the comprehensive dynamics lor='red'>of the Weihe River Basin showed an ‘N-type’ development trend, in which the maximum comprehensive dynamic degree from 2015 to 2018 was 4.80%. The change lor='red'>of comprehensive land use types in the Weihe River Basin during this period was the most significant. From the perspective lor='red'>of the number and direction lor='red'>of land use type transfer, the transformation mode lor='red'>of land use class in the Weihe River Basin are mainly the mutual transformation between cultivated land and grassland, the transfer lor='red'>of cultivated land and the transfer lor='red'>of construction land.

(2) Landscape fragmentation, landscape separation, landscape advantage and landscape vulnerability in landscape ecology were selected to construct landscape ecological risk evaluation model from 1990 to 2018 for Weihe River Basin. The spatial-temporal autocorrelation and spatial heterogeneity were explored by spatial autocorrelation methods. The results showed that from 1990 to 2018, the area lor='red'>of lower-risk, medium-risk and higher-risk areas in the Weihe River Basin were increased, and the area lor='red'>of high-risk areas was decreased. The areas lor='red'>of lower-risk areas, medium-risk areas and higher-risk areas increased by 2.94%, 4.97% and 3.54% respectively, and the area lor='red'>of high-risk areas decreased by 11.24%. These indicated that the landscape ecological risk lor='red'>of the Weihe River Basin showed a decreasing trend during the whole period. It also showed that the landscape ecological risk in the Weihe River Basin is developing in a good direction. The spatial autocorrelation analysis showed that the landscape ecological risks lor='red'>of the Weihe River Basin had a significant positive correlation in space from 1990 to 2018, and the spatial distribution showed the forms lor='red'>of "high-high" aggregation and "low-low" aggregation.

(3) The factors for the occurrence lor='red'>of ecological risks in the Weihe River Basin were selected from the aspects lor='red'>of natural factors and human factors, and then interactive detectors were used to interactively detect the dominant factors. The intensity lor='red'>of the lor='red'>driving factors and the interaction between lor='red'>driving factors were studied by geographical weighted regression model and geographical detectors. The results showed that the significant lor='red'>driving factors were DEM, slope, precipitation, annual average temperature, relative humidity, population density and human interference. The intensity and spatial differences lor='red'>of the lor='red'>driving factors on the landscape ecological risk lor='red'>of the Weihe River Basin are different, and the intensity lor='red'>of human interference was most important. From the perspective lor='red'>of the interaction between the lor='red'>driving factors, the explanatory power lor='red'>of the occurrence lor='red'>of landscape ecological risk in the Weihe River Basin after the interaction lor='red'>of slope and human interference has reached more than 60%, and the intensity lor='red'>of the interaction lor='red'>of the two lor='red'>driving factors were greater than single lor='red'>driving factor, which indicated that the occurrence lor='red'>of landscape ecological risk in the Weihe River Basin was not only the result lor='red'>of a single lor='red'>driving factor, but also the result lor='red'>of the interaction between the lor='red'>driving factors.

参考文献:

[1] Tsuchiya K. IGBP (International Geosphere Biosphere Programme)[J]. Journal of The Remote Sensing Society of Japan, 1994, 14(4): 345-349.

[2] Annoucement: International Human Dimensions Programme on Global Environmental Change [J]. Geo Journal, 1998, 44(2): 179-181.

[3] 路云阁, 蔡运龙, 许月卿. 走向土地变化科学-土地利用/覆被变化研究的新进展[J]. 中国土地科学, 2006, (01): 55-61.

[4] 张明. 以土地利用/土地覆被变化为中心的土地科学研究进展[J]. 地理科学进展, 2001, (04): 297-304.

[5] 王瑗. 流域尺度景观格局时空演变与生态系统健康评价研究[D]. 长春: 东北师范大学, 2012.

[6] 吴琳娜, 杨胜天, 刘晓燕, 等. 1976年以来北洛河流域土地利用变化对人类活动程度的响应[J]. 地理学报, 2014, 69(01): 54-63.

[7] 刘纪远, 宁佳, 匡文慧, 等. 2010-2015年中国土地利用变化的时空格局与新特征[J]. 地理学报, 2018, 73(05): 789-802.

[8] 刘纪远, 匡文慧, 张增祥, 等. 20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J]. 地理学报, 2014, 69(01): 3-14.

[9] 顾梦瑶, 李娟, 赵晓峰. 基于土地利用变化的贵安新区景观生态风险评价[J]. 生态科学, 2020, 39(05): 73-81.

[10] 谢丽霞. 黄河上游生态功能区土地利用变化及其景观生态风险评价[D]. 西安: 西北师范大学, 2021.

[11] 彭建, 王仰麟, 刘松, 等. 景观生态学与土地可持续利用研究[J]. 北京大学学报(自然科学版), 2004, (01): 154-160.

[12] 何莎莎, 李欣, 何春龙, 等. 基于土地利用变化的扬州市广陵区景观生态风险评价[J]. 南京师大学报(自然科学版), 2019, 42(01): 139-148.

[13] 陈辉, 刘劲松, 曹宇, 等. 生态风险评价研究进展[J]. 生态学报, 2006, (05): 1558-1566.

[14] 周婷, 蒙吉军. 区域生态风险评价方法研究进展[J]. 生态学杂志, 2009, 28(04): 762-767.

[15] 陈鹏, 潘晓玲. 干旱区内陆流域区域景观生态风险分析-以阜康三工河流域为例[J]. 生态学杂志, 2003, (04): 116-120.

[16] 吕乐婷, 张杰, 孙才志, 等. 基于土地利用变化的细河流域景观生态风险评估[J]. 生态学报, 2018, 38(16): 5952-5960.

[17] 刘琪. 基于土地利用变化的延河流域景观生态风险评价[D]. 西安: 西北大学, 2016.

[18] 王辉, 宋长春. 三江平原湿地区域生态风险评价研究[J]. 地理科学进展, 2019, 38(06): 872-882.

[19] 康紫薇, 张正勇, 位宏, 等 .基于土地利用变化的玛纳斯河流域景观生态风险评价[J]. 生态学报, 2020, 40(18): 6472-6485.

[20] 陈心怡, 谢跟踪, 张金萍. 海口市海岸带近30年土地利用变化的景观生态风险评价 [J]. 生态学报, 2021, 41(03): 975-986.

[21] 许凤娇, 吕晓. 基于土地利用变化的江苏沿海地区生态风险格局[J]. 生态学报, 2018, 38(20): 7312-7325.

[22] 王玲. 基于土地利用变化的上海市生态风险评价[J]. 农业科学研究, 2018, 39(01): 10-16.

[23] 汪翡翠, 汪东川, 张利辉, 等. 京津冀城市群土地利用生态风险的时空变化分析[J]. 生态学报, 2018, 38(12): 4307-4316.

[24] 习近平出席全国生态环境保护大会并发表重要讲话[J]. 创造, 2018, (05): 9-10.

[25] 习近平出席全国生态环境保护大会并发表重要讲话 加大力度推进生态文明建设解决生态环境问题[J]. 中国金融家, 2018, (07): 12-13.

[26] 岳启发, 赵筱青, 李思楠, 等. “一带一路”背景下博多河流域景观格局变化及生态风险评价研究 [J]. 世界地理研究, 2021, 30(04): 839-850.

[27] 乔蕻强. 石羊河流域景观格局变化及生态安全构建研究[D]. 兰州: 甘肃农业大学, 2019.

[28] Lodge J P. An ecological framework for environmental impact assessment in Canada: Gordon E. Beanlands and Peter N. Buinker, Federal Environmental Assessment Review Office, 200 Sacré-Coeur Blvd., Hull, Quebec K1A OH3, Canada, 1983, 132 pp. English and 142 pp. French. Price: first copy gratis [J]. Atmospheric Environment (1967), 1983, 17(11): 2376-2377.

[29] Cairns J, Dickson L, Maki A W. Estimating the hazard of chemical substances to aquatic life [J]. Hydrobiologia, 1979, 64(2): 157-166.

[30] Suter G W, Norton S B, Barnthouse L W. The Evolution of Frameworks for Ecological Risk Assessment from the Red Book Ancestor [J]. Human and Ecological Risk Assessment: An International Journal, 2003, 9(5): 1349-1360.

[31] 陈春丽, 吕永龙, 王铁宇, 等. 区域生态风险评价的关键问题与展望[J]. 生态学报, 2010, 30(03): 808-816.

[32]Janice K. Wiegers,Howard M. Feder,Linda S. Mortensen,David G. Shaw,Valerie J. Wilson,Wayne G. Landis. A Regional Multiple-Stressor Rank-Based Ecological Risk Assessment for the Fjord of Port Valdez, Alaska[J]. Human and Ecological Risk Assessment: An International Journal,1998,4(5) : 1125-1173.

[33]Pooja Kanwar,William B. Bowden,Suzie Greenhalgh. A Regional Ecological Risk Assessment of the Kaipara Harbour, New Zealand, Using a Relative Risk Model[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 1123-1146.

[34]Landis Wayne G,Markiewicz April J,Ayre Kim K,Johns Annie F,Harris Meagan J,Stinson Jonah M,Summers Heather M. A general risk-based adaptive management scheme incorporating the Bayesian Network Relative Risk Model with the South River, Virginia, as case study.[J]. Integrated environmental assessment and management, 2017, 13(1): 115-126.

[35] Zandbergen P A. Urban watershed ecological risk assessment using GIS: a case study of the Brunette River watershed in British Columbia, Canada [J]. Journal of Hazardous Materials, 1998, 61(1): 163-173.

[36] Cormier S M, Smith M, Norton S, et al. Assessing ecological risk in watersheds: A case study of problem formulation in the Big Darby Creek watershed, Ohio, USA[J]. Environmental Toxicology and Chemistry, 2000, 19(4): 1082-1096.

[37] 卢宏玮, 曾光明, 谢更新, 等. 洞庭湖流域区域生态风险评价[J]. 生态学报, 2003, (12): 2520-2530.

[38] 郭平, 谢忠雷, 李军, 等. 长春市土壤重金属污染特征及其潜在生态风险评价[J]. 地理科学, 2005, (01): 108-112.

[39] Liu H, Liu G, Zhou C, et al. Geochemical speciation and ecological risk assessment of heavy metals in surface soils collected from the Yellow River Delta National Nature Reserve, China [J]. Human and Ecological Risk Assessment: An International Journal, 2017, 23(7): 1585-1600.

[40] 马德毅, 王菊英. 中国主要河口沉积物污染及潜在生态风险评价[J]. 中国环境科学, 2003, (05): 74-78.

[41] 许学工, 林辉平, 付在毅, 等. 黄河三角洲湿地区域生态风险评价[J]. 北京大学学报(自然科学版), 2001, (01): 111-120.

[42] 付在毅, 许学工, 林辉平, 等. 辽河三角洲湿地区域生态风险评价[J]. 生态学报, 2001, (03): 365-373.

[43] 王洁, 摆万奇, 田国行. 土地利用生态风险评价研究进展[J]. 自然资源学报, 2020, 35(03): 576-585.

[44] 乔蕻强, 程文仕, 乔伟栋, 等. 基于相对风险模型的土地利用变化生态风险定量评价-以石羊河流域为例[J]. 中国沙漠, 2017, 37(01): 198-204.

[45] 潘竟虎, 刘晓. 疏勒河流域景观生态风险评价与生态安全格局优化构建[J]. 生态学杂志, 2016, 35(03): 791-799.

[46] 巩杰, 谢余初, 赵彩霞, 等. 甘肃白龙江流域景观生态风险评价及其时空分异[J]. 中国环境科学, 2014, 34(08): 2153-2160.

[47] 巩杰, 赵彩霞, 谢余初, 等. 基于景观格局的甘肃白龙江流域生态风险评价与管理[J]. 应用生态学报, 2014, 25(07): 2041-2048.

[48] 李青圃, 张正栋, 万露文, 等. 基于景观生态风险评价的宁江流域景观格局优化 [J]. 地理学报, 2019, 74(07): 1420-1437.

[49] 彭建, 党威雄, 刘焱序, 等. 景观生态风险评价研究进展与展望[J]. 地理学报, 2015, 70(04): 664-677.

[50] 景培清, 张东海, 艾泽民, 等. 基于格局-过程生态适应性循环三维框架的自然景观生态风险评价——以黄土高原为例 [J]. 生态学报, 2021, 41(17): 7026-7036.

[51] 赵彩霞. 甘肃白龙江流域生态风险评价[D]. 兰州: 兰州大学, 2013.

[52] 曹祺文, 张曦文, 马洪坤, 等. 景观生态风险研究进展及基于生态系统服务的评价框架:ESRISK[J]. 地理学报, 2018, 73(05): 843-855.

[53] 许妍, 高俊峰, 郭建科. 太湖流域生态风险评价[J]. 生态学报, 2013, 33(09): 2896-2906.

[54] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743-750.

[55] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(01): 116-134.

[56] 肖建勇, 王世杰, 白晓永, 等. 喀斯特关键带植被时空变化及其驱动因素[J]. 生态学报, 2018, 38(24): 8799-8812.

[57] 陶帅, 邝婷婷, 彭文甫, 等. 2000-2015年长江上游NDVI时空变化及驱动力-以宜宾市为例[J]. 生态学报, 2020, 40(14): 5029-5043.

[58] 王晓峰, 张明明, 尹礼唱, 等. 2000-2015年中国干旱半干旱地区沙漠化进程驱动力研究[J]. 生态环境学报, 2019, 28(05): 948-957.

[59] HAN Y, TAO H. Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States [J]. International journal of environmental research and public health, 2021, 18(13): 6832-6832.

[60] TING Y T, QI R W, NING Z S, et al. The influence of the COVID-19 pandemic on tourism demand for destinations: an analysis of spatial heterogeneity from a multi-scale perspective [J]. Asia Pacific Journal of Tourism Research, 2021, 26(7): 793-810.

[61] Climate Change; New Findings on Climate Change from Sichuan Normal University Summarized (Quantifying Influences of Natural Factors On Vegetation Ndvi Changes Based On Geographical Detector In Sichuan, Western China)[J]. Global Warming Focus, 2019.

[62] Deng Xiaojuan, Hu Shi, Zhan Chesheng. Attribution of vegetation coverage change to climate change and human activities based on the geographic detectors in the Yellow River Basin, China. [J]. Environmental science and pollution research international, 2022.

[63] 孙道亮, 洪步庭, 任平. 都江堰市农村居民点时空演变与驱动因素研究[J]. 长江流域资源与环境, 2020, 29(10): 2167-2176.

[64] 孙丽蓉, 周冬梅, 岑国璋, 等. 基于地理探测器模型的疏勒河流域景观生态风险评价及驱动因素分析 [J]. 干旱区地理, 2021, 44(05): 1384-1395.

[65] 张玉娟, 曲建光, 侯建国. 哈尔滨市景观生态风险时空变化驱动力及分布预测[J]. 测绘通报, 2022,(02): 83-89.

[66] 吴锦涛. 渭河流域生态系统健康评价研究[D]. 西安: 西北大学, 2021.

[67] 王泰然, 孙根年, 刘顺艳. 渭河干流关中段水污染时空变化及其与径流量的关系[J]. 干旱区研究, 2011, 28(04): 609-615.

[68] 蒲欢欢. 渭河流域水生态评价与区划研究[D]. 郑州: 郑州大学, 2015.

[69] 刘燕, 胡安焱. 渭河流域近50年降水特征变化及其对水资源的影响[J]. 干旱区资源与环境, 2006, (01): 85-87.

[70] 柴雪柯. 渭河流域水沙变化及其影响因素[D]. 西安: 西北农林科技大学, 2017.

[71] 任立良, 沈鸿仁, 袁飞, 等. 变化环境下渭河流域水文干旱演变特征剖析[J]. 水科学进展, 2016, 27(04): 492-500.

[72] 李虹睿. 娄烦县土地利用景观格局演变及其生态风险评价[D]. 太原: 山西大学, 2019.

[73] 刘纪远, DLS.IOGAC.ON, 布和敖斯尔. 中国土地利用变化现代过程时空特征的研究──基于卫星遥感数据[J]. 第四纪研究, 2000, (03): 229-239.

[74] 张明鑫, 谢树春, 李陇堂. 宁夏中卫市沙坡头区近13年土地利用空间布局变化及环境健康效应[J]. 经济地理, 2016, 36(02): 176-181.

[75] 付建新, 曹广超, 郭文炯. 1980-2018年祁连山南坡土地利用变化及其驱动力[J]. 应用生态学报, 2020, 31(08): 2699-2709.

[76] 何昊. 延寿县土地利用生态风险评价[D]. 哈尔滨: 东北农业大学, 2019.

[77] 朱会义, 李秀彬. 关于区域土地利用变化指数模型方法的讨论[J]. 地理学报, 2003, (05): 643-650.

[78] 钱家乘, 张佰林, 刘虹吾, 等. 东部旅游特色山区乡村发展分化及其驱动力-以浙江省平阳县为例[J]. 地理科学进展, 2020, 39(09): 1460-1472.

[79] 刘春艳, 张科, 刘吉平. 1976-2013年三江平原景观生态风险变化及驱动力[J]. 生态学报, 2018, 38(11): 3729-3740.

[80] 崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(03): 541-551.

[81] 尉芳, 刘京, 夏利恒, 等. 基于LUCC的陕西渭北旱塬区景观生态风险评价[J]. 中国环境科学, 2022, 42(04): 1963-1974.

[82] 何英彬, 姚艳敏, 唐华俊, 等. 土地利用/覆盖变化驱动力机制研究新进展[J]. 中国农学通报, 2013, 29(02): 190-195.

[83] 宫宁. 近三十年中国湿地变化及其驱动力分析[D]. 泰安: 山东农业大学, 2015.

[84] 宫宁, 牛振国, 齐伟, 等. 中国湿地变化的驱动力分析[J]. 遥感学报, 2016, 20(02): 172-183.

[85] 李沛. 基于GIS的长武县土地利用时空变化特征及驱动力分析[D]. 西安: 长安大学, 2020.

[86] 徐康宁, 陈丰龙, 刘修岩. 中国经济增长的真实性:基于全球夜间灯光数据的检验[J].经济研究, 2015, 50(09): 17-29.

[87] 陈艳红. 基于土地利用变化的长江经济带景观生态风险评价与影响因素研究[D]. 武汉: 湖北大学, 2021.

[88] 王少剑, 高爽, 陈静. 基于GWR模型的中国城市雾霾污染影响因素的空间异质性研究[J]. 地理研究, 2020, 39(03): 651-668

中图分类号:

 P208.2    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式