- 无标题文档
查看论文信息

论文中文题名:

 三相 BLDCM 无位置传感器控制芯片研究与设计    

姓名:

 鲜大帅    

学号:

 19206107030    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0809    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位)    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电子科学与技术    

研究方向:

 集成电路与芯片设计    

第一导师姓名:

 刘树林    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-25    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Research and Design of Sensorless Control Chip for Three Phase BLDCM    

论文中文关键词:

 直流无刷电机控制芯片 ; 无感控制 ; PWM 驱动 ; 低噪声    

论文外文关键词:

 Brushless DC Motor Control Chip ; Sensorless Control ; PWM Drive ; Low Noise    

论文中文摘要:

       随着新能源汽车、无人机、机器人以及智能家居等产业的快速发展,直流无刷电机得到了广泛应用。但其位置传感器带来的体积、成本和可靠性问题也愈发凸显,不利于电机控制系统的小型化、集成化。因此,对无位置传感器三相直流无刷电机控制芯片进行研究,具有理论研究意义和工程应用价值。

       通过分析三相直流无刷电机的结构和工作原理,建立相应的数学模型,得出反电动势与电机转子位置的关系,据此设计反电动势检测和相位延迟电路,无需位置传感器即可获得电机转子的位置信息。分析对比典型的两相导通120度换相控制和三相导通180度换相控制各自特点,得出了增加电机输出转矩,减少转矩脉动和噪声的150度十二步换相控制方法。针对直流无刷电机在静止或低速时反电动势无法检测的问题,基于三段式启动方法,设计了一种改进的启动策略,实现了电机的平稳可靠启动。详细分析了功率MOS器件寄生体二极管产生的消磁事件对电机反电动势检测的干扰,设计了相应的屏蔽算法,优化了PWM驱动模式,以减小消磁事件持续的时间,消除其对换相时机产生的不良影响。进而从启动、控制和驱动三个方面改善了电机性能,减少了电机的电流和转矩脉动,降低了电机噪声。此外,设计了速度检测、PI调节和IIC通信等辅助模块,搭建了三相直流无刷电机的无位置传感器控制系统及对应的仿真模型,并在Simulink中进行了系统验证。

       最后,设计了整体系统代码,并通过了VCS仿真验证,据此搭建了FPGA原型验证平台,对所设计的控制系统进行功能测试,实验结果表明,系统各项功能达到了预期效果,验证了理论分析的正确性和设计的可行性。

论文外文摘要:

       With the rapid development of industries such as new energy vehicles, drones, robots and smart homes, brushless DC motors have been widely used. But the volume, cost and reliability problems brought by their position sensors have become more and more prominent, which is not conducive to the miniaturization and integration of the motor control system. Therefore, it is of theoretical research significance and engineering application value to research a three-phase brushless DC motor control chip without position sensor.

       Through analyzing the structure and working principle of the three-phase brushless DC motor, its corresponding mathematical model is built, and the relative relationship between its back EMF and the motor rotor position is obtained. According to this, the back EMF detection and phase delay circuit are designed. The position information of the motor rotor is obtained without the need for a position sensor. Analyze and compare the characteristics of typical two-phase conduction 120-degree commutation control and three-phase conduction 180-degree commutation control, and then a 150-degree twelve-step commutation control method is obtained to increase the output torque of the motor and reduce the torque ripple and noise through the analysis. In light of the problem that the back EMF cannot be detected when the brushless DC motor is stationary or at low speed, an improved starting strategy is designed based on the three-stage starting method, which realizes the smooth and reliable starting of the motor. The interference of the degaussing event generated by the parasitic body diode of the power MOS device when the motor is commutated to the detection of the motor back EMF is analyzed in detail, then the corresponding shielding algorithm is designed and the model of PWM drive is optimized to reduce the duration of the degaussing event and eliminate its impact the adverse effects of commutation timing. At this point, the performance of motor is improved from the three aspects of starting, control, and driving, reducing the current and torque ripple of the motor, thereby reducing the noise of motor. In addition, auxiliary modules such as speed detection, PI regulation and IIC communication are designed, the position sensorless control system of a three-phase Brushless DC Motor and the corresponding simulation model are built, then the system is verified in Simulink.

       In the end, the overall system code is designed and verified by VCS simulation. Based on this, an FPGA prototype verification platform is built to test the function of the designed control system. The experimental results show that the functions of the system have achieved the expected results, which verifies the correctness of theoretical analysis and the feasibility of design.

参考文献:

[1]金惟伟,汪自梅,张生德,连亚明.中小型电机行业“十四五”发展战略思考[J].电机与控制应用,2021,48(2):1-12.

[2]Arun Kumar Paul.Sensorless Robust Speed Controller Design of Pancake Axial Field PMDC Motor[J].2019,55(6):5981-5989.

[3]尹胜利.我国微电机行业存在的问题及发展对策[J].微特电机,2021,49(1):60-62.

[4]钱华,李志鹏,陈辰,金燚翥.有刷直流电机真空应用研究[J].炭素,2020(2):20-23.

[5]候海波.单相永磁无刷直流电机控制系统的研究[D].浙江:浙江大学,2017.

[6]Elik E,Nihat ztürk.Commutation current ripple minimization of brushless DC motor drive based on programmed phase current references[J].Electrical Engineering,2021:1-14.

[7]Patnana H K,Tirumala S V.A cost-effective and fault-tolerant brushless direct current drive with open-stator windings for low power electric vehicles[J].International Journal of Circuit Theory and Applications,2021,49(9):2885-2908.

[8]张庆超.无刷直流电机转速伺服系统高阶滑模控制研究[D].西安:西北工业大学,2017.

[9]Kolano K,Drzymaa B,Gca J.Sinusoidal Control of a Brushless DC Motor with Misalignment of Hall Sensors[J].Energies,2021,14(20):1-13.

[10]Lee H W,Cho D H,Lee K B.Rotor position estimation over entire speed range of interior permanent magnet synchronous motors[J].Journal of Power Electronics.2021,21(4):693-702.

[11]Hemalatha N,Nageswari S.A New Approach of Position Sensorless Control for Brushless DC Motor[J].Current Signal Transduction Therapy,2020,15(1):65-76.

[12]张前.高速无刷直流电机控制器开发及关键技术研究[D].北京:北京科技大学,2018.

[13]赵培迪.基于改进型滑模观测器的PMSM无传感器控制策略研究[D].石家庄:河北科技大学.2018.

[14]兰宝华.无刷直流电动机无位置传感器位置检测技术的研究[D].长沙:中南大学,2009.

[15]Iizuka,Kenichi,Uzuhashi,Hideo,Kano,Minoru,Endo,Tsunehiro,Mohri,Katsuo.Microcomputer Control for Sensorless Brushless Motor[J].Industry Applications,IEEE Transactions on,1985,IA-21(3):595-601.

[16]Ogasawara S,Akagi H.An approach to position sensorless drive for brushless DC motors[J].IEEE Transactions on Industry Applications,1990,27(5):928-933.

[17]Moreira J C.Indirect sensing for rotor flux position of permanent magnet AC motors operating over a wide speed range[J].Industry Applications,IEEE Transactions on,1996,32(6):1394-1401.

[18]Corley M J.Rotor Position and Velocity Estimation for a Permanent Magnet Synchronous Machine at Standstill and High Speeds[C]// IEEE Ias Meeting.IEEE,1996:36-41.

[19]Song X,Han B,Zheng S,Fang J.High-precision Sensorless Drive for High-speed BLDC Motors based on the Virtual 3rd harmonic back-EMF[J].IEEE Transactions on Power Electronics,2018,33(2):1528-1540.

[20]李飞浪.永磁同步电机的无速度传感器启动技术研究[D].浙江:浙江大学,2020.

[21]宁国英,徐国伟,修春波.一种永磁同步电机新型高阶滑模观测器设计[J].微电机,2021,54(6):93-98+102.

[22]陈强,许昌源,孙明轩.基于扩张状态观测器的永磁同步电机重复学习控制[J].控制理论与应用,2021,38(9):1372-1380.

[23]曲浩,曲宝军,周海安,王艺淇,魏家晓.永磁同步电机无位置传感器混合控制策略[J].组合机床与自动化加工技术,2021,(9):90-93+99.

[24]张嘉洋,巨永锋,刘永臣,杜凯.基于扩张状态观测器的永磁同步电机自适应逆控制[J].现代电子技术,2021,44(21):96-100.

[25]Alex S S,Daniel A E.An Efficient Position Tracking Smoothing Algorithm for Sensorless Operation of Brushless DC Motor Drives[J].Modelling and Simulation in Engineering,2018,2018:1-9.

[26]孟得龙,李宁洲,卫晓娟.基于改进强跟踪滤波器的PMSM矢量控制[J].微特电机,2021,49(6):49-52.

[27]曾小华,陈虹旭,崔臣,宋大凤.考虑铁损的永磁同步电机无位置传感器控制算法[J].东北大学学报:自然科学版,2021,42(1):102-110.

[28]韩晨,张广明.基于二阶滑模和MRAS的PMSM速度与磁链估计[J].微电机,2021,54(4):94-98.

[29]殷凯轩,高琳,陈锐,付文华,冯智煜.带参数识别的永磁同步电机多虚拟信号注入最大转矩电流比控制[J].西安交通大学学报,2021,55(11):87-96.

[30]周宇,陈永军.基于MRAS的永磁同步电机改进滑模速度控制设计[J].微电机,2021,54(10):74-78+89.

[31]孙坤迪,董腾辉,张希,朱翀,鲁岩松.基于遗传算法的车用永磁同步电机在线热模型参数辨识方法[J].微电机,2021,54(6):55-59+64.

[32]乔林,刘颖,胡畔,聂祺昕,杨海.基于遗传算法与模糊PID复合控制的电机调速研究[J].微电机,2021,54(7):92-98.

[33]金昊,丁曙光.基于GA优化RBF网络的永磁同步电机无位置控制[J].组合机床与自动化加工技术,2021(2):95-98.

[34]张淑芳,宋香明,朱彬华.结合改进PSO-BP神经网络的无刷直流电机控制[J].南开大学学报:自然科学版,2021,54(4):62-67.

[35]张博,周达,蒋波涛.基于RBF神经网络和扰动观测器的PMLSM位置控制[J].组合机床与自动化加工技术,2021(8):90-93.

[36]邹继斌,张豫,李宗政,王强,李春廷.无位置传感器无刷直流电机驱动电路的研究[J].微电机,1999,32(02):16-18+47.

[37]余长城.无位置传感器无刷直流电机控制系统设计[D].合肥:合肥工业大学,2017.

[38]Yu C H.A practical sensorless commutation method based on virtual neutral voltage for brushless DC motor[J].IEEJ Transactions on Electrical and Electronic Engineering.2017,12(5):770-777.

[39]邓灿,张森林.一种新的无刷直流电机起动方法[J].微电机,2002,35(6):29-31+60.

[40]弓箭,廖力清,叶冰清.基于高精度电感法的无刷直流电机起动及反电动势同步检测稳定性研究[J].电工技术学报,2017,32(5):105-112.

[41]Kim W J,Kim S H.MTPA operation scheme with current feedback in V/f control for PMSM drives[J].Journal of Power Electronics,2020,20(2):524-537.

[42]Xu D,Wang B,Zhang G,Yong Y.A review of sensorless control methods for AC motor drives[J].CES Transactions on Electrical Machines and Systems,2018,2(1):104-115.

[43]Nair S V,Hatua K,Prasad N,Reddy D.A Quick I-f Starting of PMSM Drive with Pole Slipping Prevention and Reduced Speed Oscillations[J].IEEE Transactions on Industrial Electronics,2021,68(8):6650-6661.

[44]Ugale R T,Chaudhari B N.Rotor Configurations for Improved Starting and Synchronous Performance of Line Start Permanent-Magnet Synchronous Motor[J].IEEE Transactions on Industrial Electronics,2017,64(1):138-148.

[45]Sun W,Shen J X,Jin M J,Hao H.A Robust Magnetic Polarity Self-Sensing Method for Start-Up of PM Synchronous Machine in Fan-Like System[J].IEEE Transactions on Industry Applications,2017,53(3):2169-2177.

[46]Pravica L,Sumina D,Bariša T,Čolović I.Flying Start of a Permanent Magnet Wind Power Generator Based on a Discontinuous Converter Operation Mode and a Phase-Locked Loop[J].IEEE transactions on industrial electronics,2018,65(2):1097-1106.

[47]王洁,陈永军,何舟,石宽,李寅生.六种PWM方式对无刷直流电机性能影响研究[J].仪器仪表与分析监测,2019(4):8-14.

[48]林楠,邱建琪,史涔溦.PWM_ON_PWM调制方式的无刷直流电机转子位置检测方法[J].电机与控制学报,2019,23(3):1-8.

[49]李国华,刘春武,汪玉凤.单相逆变器随机PWM选择性消谐滞环随机扩频方法[J].电工技术学报,2021,36(6):1279-1289.

[50]刘和平,刘庆,张威,苗轶如,刘平.电动汽车用感应电机削弱振动和噪声的随机PWM控制策略[J].电工技术学报,2019(7):1488-1495.

[51]Huang Y,Xu Y,Zhang W,Zou J.Hybrid RPWM Technique Based on Modified SVPWM to Reduce the PWM Acoustic Noise[J].IEEE Transactions on Power Electronics,2019,34(6):5667-5674.

[52]熊英鹏,毛佳昌.基于CFPWM的交流电机调速系统的仿真[J].电子设计工程,2020,28(3):9-13.

[53]甘时霖,陈亚爱,周京华,陈焕玉.叠加三倍次谐波的永磁同步电机控制系统研究[J].电力电子技术,2018,52(5):58-61.

[54]唐梦婷,王维庆,李贵彬.PMSM机车牵引变换器调制算法研究[J].电力电子技术,2018,52(2):25-27.

[55]马丰民,吴正国,侯新国.基于统一PWM调制器的随机空间矢量调制[J].中国电机工程学报,2007,27(7):98-102.

[56]宋君健,孙佳伟,姜涛.三相静止坐标系不连续PWM实现方法研究[J].电力电子技术,2018,52(5):9-12.

[57]王金平,季圣植,姜卫东,刘圣宇,姜浩然.一种实现Vienna整流器开关损耗降低和中点电压平衡的新型不连续PWM策略[J/OL].中国电机工程学报,2022:1-12.

[58]Krishnan R.Permanent magnet synchronous and brushless DC motor drives[M].Boca Raton:CRC press,2017:457.

[59]汤天浩. 电机及拖动基础第2版[M].北京:机械工业出版社,2016:28.

[60]周美兰,高肇明,吴晓刚,李志.五种PWM方式对直流无刷电机系统换相转矩脉动的影响[J].电机与控制学报,2013,17(7):15-21.

[61]Lai Y S,Lin Y K.Assessment of Pulse-Width Modulation Techniques for Brushless DC Motor Drives[C]// IAS Meeting.IEEE,2006:1629-1636.

[62]Liu M,Guo H,Song M.Ripple torque analysis and simulation of BLDC motor with different PWM modes[C]// Power Electronics & Motion Control Conference.IEEE,2012:973-977.

[63]Chuang H S,Ke Y L,Chuang Y C.Analysis of commutation torque ripple using different PWM modes in BLDC motors[C]// Industrial & Commercial Power Systems Technical Conference-conference Record.IEEE,2009:1-6.

中图分类号:

 TN492    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式