- 无标题文档
查看论文信息

论文中文题名:

 齿    

姓名:

 杨逸舟    

学号:

 20208223029    

保密级别:

 1    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

     

第一导师姓名:

 马天    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-13    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Study on the Tooth Segmentation Method Based on Deep Learning    

论文中文关键词:

 虚拟正畸 ; 牙齿分割 ; 深度学习 ; 多特征学习 ; 注意力机制    

论文外文关键词:

 Virtual orthodontics ; Tooth segmentation ; Deep learning ; Multi-feature learning ; Attention mechanism    

论文中文摘要:
<p>齿齿齿齿齿X齿齿齿齿</p> <p></p> <p>1齿使齿齿</p> <p>2X齿齿齿</p> <p>齿齿齿</p>
论文外文摘要:
<p>Tooth segmentation is critical for orthodontics, auxiliary diagnostics, and serves as a fundamental component of virtual orthodontic systems. The types of dental data used mainly consist of 3D dental models and dental panoramic X-ray images. The 3D dental models are characterized by the variability of human dental appearance, the complexity of the shape and structure, and rich geometric feature information. Dental panoramic X-ray images, on the other hand, are characterized by low overall contrast, teeth pixel values that are similar to surrounding areas, and the difficulty in distinguishing tooth boundary contours from surrounding tissues. In light of these unique characteristics of the two types of dental data, this study proposes a tooth segmentation algorithm based on deep learning.</p> <p>(1) A method for three-dimensional tooth segmentation based on multiple geometric feature learning is proposed to address the problems of existing algorithms that only consider point coordinate information processing while neglecting normal vector information, and the ineffective discrimination of feature learning between point coordinate information and normal vector information. Firstly, a spatial transformer network is used as a calibration and alignment module for geometric feature information in the dental model as network input. Secondly, a multiple geometric feature learning module is designed to enhance the encoding of each triangle&#39;s center coordinates and normal vectors in the dental model, preserving the differences in geometric features between different meshes, while allowing geometric features of different attributes to mutually complement each other in learning. Finally, by using multi-layer perceptron and efficient channel attention methods in a layered and concatenated approach, local-to-global fusion features are realized and further improvements are made to the segmentation results of 3D dental models. Experimental results demonstrate that the proposed approach achieves higher precision for dental segmentation, while maintaining high efficiency without requiring cumbersome and complex human-computer interaction, thereby making the segmentation process more automatic and efficient.</p> <p>(2) A dental panoramic X-ray image segmentation method based on multi-feature coordinate position learning is proposed to address the weak ability of existing algorithms to extract multi-sized target objects. First, a residual omni-dimensional convolution module is designed to simultaneously learn small-scale detail features and large-scale regional features, thereby improving the network&#39;s feature extraction and restoration capabilities. In addition, a two-stream coordinate attention module is designed between the feature encoding network and the feature decoding network to further process the output feature information of each layer in the feature encoding network, integrating and optimizing the feature information. Experimental results demonstrate that the proposed method further improves the accuracy of tooth segmentation and produces smoother tooth segmentation contours with a noticeable reduction in jaggedness.</p> <p>In summary, this paper proposes a tooth segmentation method based on an in-depth exploration of the characteristics of tooth data, which is more adaptable and produces better segmentation results. This provides important technical support for the automation and intelligence of virtual tooth orthodontic systems.</p>
参考文献:

[1] 冯希平. 中国居民口腔健康状况—第四次中国口腔健康流行病学调查报告[C]//中华口腔医学会第十八次口腔预防医学学术年会论文汇编. 2018: 13⁃14.

[2] 孙乐海, 孙庆光. 三维数字化牙颌模型在口腔正畸学中的应用价值探讨[J]. 中国实用医药, 2021, 16(19): 137-139.

[3] Bianchi J, Mendonca G, Gillot M, et al. Three-Dimensional Digital Applications for Implant Space Planning in Orthodontics: A Narrative Review[J]. Journal of the World Federation of Orthodontists, 2022, 11(6): 207-215.

[4] Yang Y, Cui Z, Li C, et al. ToothInpaintor: Tooth Inpainting from Partial 3D Dental Model and 2D Panoramic Image[J]. arXiv preprint arXiv, 2022, 2211(15502): 1-10.

[5] Kondo Toshiaki, Ong S H, Foong Kelvin W C. Tooth Segmentation of Dental Study Models using Range Images[J]. IEEE Transactions on Medical Imaging, 2004, 23(3): 350-362.

[6] 郝国栋, 程筱胜, 戴宁, 俞青. 基于形态学的牙齿模型交互分割[J]. 中国制造业信息化, 2008(01): 36-39.

[7] Yuan T, Liao W, Dai N, et al. Single-Tooth Modeling for 3D Dental Model[J]. International Journal of Biomedical Imaging, 2010, 2010: 1-14.

[8] Kronfeld T, Brunner D, Brunnett G. Snake-Based Segmentation of Teeth from Virtual Dental Casts[J]. Computer-Aided Design and Applications, 2010, 7(2): 221-233.

[9] Wu K, Chen L, Li J, et al. Tooth Segmentation on Dental Meshes using Morphologic Skeleton[J]. Computers & Graphics, 2014, 38: 199-211.

[10] Zou B, Liu S, Liao S, et al. Interactive Tooth Partition of Dental Mesh Base on Tooth-Target Harmonic field[J]. Computers in Biology and Medicine, 2015, 56: 132-144.

[11] Mangan A P, Whitaker R T. Partitioning 3D Surface Meshes using Watershed Segmentation[J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 308-321.

[12] Li Z, Ning X, Wang Z. A Fast Segmentation Method for STL Teeth Model[C]//IEEE/ICME International Conference on Complex Medical Engineering. 2007: 163-166.

[13] Kumar Y, Janardan R, Larson B, et al. Improved Segmentation of Teeth in Dental Models [J]. Computer-Aided Design and Applications, 2011, 8(2): 211-224.

[14] Qi C R, Su H, Mo K, et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2017: 652-660.

[15] Qi C R, Yi L, Su H, et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]//International Conference on Neural Information Processing Systems, 2017: 5105-5114.

[16] Wang L, Huang Y, Hou Y, et al. Graph Attention Convolution for Point Cloud Semantic Segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 10288-10297.

[17] Hu Q, Yang B, Xie L, et al. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11105-11114.

[18] Xu X, Liu C, Zheng Y. 3D Tooth Segmentation and Labeling using Deep Convolutional Neural Networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 25(7): 2336-2348.

[19] 李占利, 孙志浩, 李洪安, 刘童鑫. 图卷积网络下牙齿种子点自动选取[J]. 中国图象图形学报, 2020, 25(07): 1481-1489.

[20] Verma N, Boyer E, Verbeek J. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2598-2606.

[21] 田素坤, 戴宁, 袁福来, 张贝, 俞青, 程筱胜. 多级层次三维卷积神经网络的牙颌模型分割与识别技术[J]. 计算机辅助设计与图形学学报, 2020, 32(08): 1218-1227.

[22] 张雅玲, 于泽宽, 何炳蔚. 基于GCNN的CBCT模拟口扫点云数据牙齿分割算法[J]. 计算机辅助设计与图形学学报, 2020, 32(07): 1162-1170.

[23] 王志江, 秦品乐, 柴锐, 武峰, 程一彤, 史玥. 基于深度学习的牙齿嵌塞自动判别方法[J]. 计算机工程, 2022, 48(04): 307-313.

[24] Thomas H, Qi C R, Deschaud J E, et al. KPConv: Flexible and Deformable Convolution for Point Clouds[C]//IEEE/CVF International Conference on Computer Vision. 2019: 6410-6419.

[25] Lian C, Wang L, Wu T H, et al. Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2440-2450.

[26] Zanjani F G, Pourtaherian A, Zinger S, et al. Mask-MCNet: Tooth Instance Segmentation in 3D Point Clouds of Intra-Oral Scans[J]. Neurocomputing, 2021, 453: 286-298.

[27] Li Y, Bu R, Sun M, et al. PointCNN: Convolution On X-Transformed Points[C]//Advances in Neural Information Processing Systems. 2018: 820-830.

[28] Cui Z, Li C, Chen N, et al. TSegNet: An Efficient and Accurate Tooth Segmentation Network on 3D Dental Model[J]. Medical Image Analysis, 2021, 69: 1-12.

[29] Zhang L, Zhao Y, Meng D, et al. TSGCNet: Discriminative Geometric Feature Learning With Two-Stream Graph Convolutional Network for 3D Dental Model Segmentation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 6699-6708.

[30] Radhiyah A, Harsono T, Sigit R. Comparison Study of Gaussian and Histogram Equalization Filter on Dental Radiograph Segmentation for Labelling Dental Radiograph [C]//International Conference on Knowledge Creation and Intelligent Computing. 2016: 253-258.

[31] Li H, Sun G, Sun H, et al. Watershed Algorithm Based on Morphology for Dental X-Ray Images Segmentation[C]//International Conference on Signal Processing. 2012: 877-880.

[32] Tikhe S V, Naik A M, Bhide S D, et al. Algorithm to Identify Enamel Caries and Interproximal Caries using Dental Digital Radiographs[C]//International Conference on Advanced Computing. 2016: 225-228.

[33] Mao J, Wang K, Hu Y, et al. GrabCut Algorithm for Dental X-Ray Images Based on Full Threshold Segmentation[J]. IET Image Processing, 2018, 12(12): 2330-2335.

[34] Said E H, Nassar D E M, Fahmy G, et al. Teeth Segmentation in Digitized Dental X-ray Films using Mathematical Morphology[J]. IEEE Transactions on Information Forensics and Security, 2006, 1(2): 178-189.

[35] Alsmadi M K. A Hybrid Fuzzy C-Means and Neutrosophic for Jaw Lesions Segmentation[J]. Ain Shams Engineering Journal, 2018, 9(4): 697-706.

[36] Tuan T M. A Cooperative Semi-Supervised Fuzzy Clustering Framework for Dental X-Ray Image Segmentation[J]. Expert Systems with Applications, 2016, 46: 380-393.

[37] Trivedi D N, Modi C K. Dental Contour Extraction using ISEF Algorithm for Human Identification[C]//International Conference on Electronics Computer Technology. 2011: 6-10.

[38] Niroshika U A A, Meegama R G N, Fernando T G I. Active Contour Model to Extract Boundaries of Teeth in Dental X-Ray Images[C]//International Conference on Computer Science & Education. 2013: 396-401.

[39] Modi C K, Desai N P. A Simple and Novel Algorithm for Automatic Selection of ROI for Dental Radiograph Segmentation[C]//Canadian Conference on Electrical and Computer Engineering. 2011: 000504-000507.

[40] 於猛, 刘向荣, 黄晓阳, 陈迎潮. 改进区域生长法及其在冠状动脉造影图中的应用[J]. 厦门大学学报(自然科学版), 2013, 52(01): 38-42.

[41] 章斌, 卢洪义, 刘舜, 桑豆豆, 杨禹成. 发动机部件CT图像特征提取与区域生长算法[J]. 兵工学报, 2022: 1-10.

[42] Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2015: 3431-3440.

[43] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. 2015: 234-241.

[44] He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.

[45] Huang G, Liu Z, Van Der Maaten L, et al. Densely Connected Convolutional Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4700-4708.

[46] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 2018: 3-11.

[47] Liu S, Li Y, Zhou J, et al. Segmenting Nailfold Capillaries using an Improved U-Net Network[J]. Microvascular Research, 2020, 130: 1-9.

[48] Zhuang J. LadderNet: Multi-Path Networks Based on U-Net for Medical Image Segmentation[J]. arXiv preprint arXiv, 2018, 1810(07810): 1-4.

[49] Shuvo M B, Ahommed R, Reza S, et al. CNL-UNet: A Novel Lightweight Deep Learning Architecture for Multimodal Biomedical Image Segmentation with False Output Suppression[J]. Biomedical Signal Processing and Control, 2021, 70: 1-14.

[50] Rao Y, Nartey O T, Zeng S, et al. LeFUNet: UNet with Learnable Feature Connections for Teeth Identification and Segmentation in Dental Panoramic X-ray Images[C]//IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2022: 2110-2118.

[51] Moran M, Faria M, Giraldi G, et al. Classification of Approximal Caries in Bitewing Radiographs using Convolutional Neural Networks[J]. Sensors, 2021, 21(15): 1-12.

[52] Zhao H., Shi J., Qi X., et al. Pyramid Scene Parsing Network[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2881-2890.

[53] Gu Z, Cheng J, Fu H, et al. CE-Net: Context Encoder Network for 2D Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292.

[54] Wang G, Liu H, Yi X, et al. ARMS Net: Overlapping Chromosome Segmentation Based on Adaptive Receptive Field Multi-Scale Network[J]. Biomedical Signal Processing and Control, 2021, 68: 1-9.

[55] Wang D, Hu G, Lyu C. Multi-Path Connected Network for Medical Image Segmentation[J]. Journal of Visual Communication and Image Representation, 2020, 71: 1-11.

[56] Chen Q, Zhao Y, Liu Y, et al. MSLPNet: Multi-Scale Location Perception Network for Dental Panoramic X-Ray Image Segmentation[J]. Neural Comput & Applic, 2021, 33: 10277-10291.

[57] Kose K, Bozkurt A, Alessi-Fox C, et al. Segmentation of Cellular Patterns in Confocal Images of Melanocytic Lesions in Vivo Via a Multiscale Encoder-Decoder Network (MED-Net)[J]. Medical Image Analysis, 2021, 67: 1-12.

[58] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]//International Conference on Neural Information Processing Systems. 2017: 6000-6010.

[59] Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning Where to Look for the Pancreas[J]. arXiv preprint arXiv, 2018, 1804(03999): 1-10.

[60] 张淑军, 彭中, 李辉. SAU-Net:基于U-Net和自注意力机制的医学图像分割方法[J]. 电子学报, 2022, 50(10): 2433-2442.

[61] Li Y, Wang S, Wang J, et al. GT U-Net: A U-Net Like Group Transformer Network for Tooth Root Segmentation[C]//Machine Learning in Medical Imaging. 2021: 386-395.

[62] Heo B, Yun S, Han D, et al. Rethinking Spatial Dimensions of Vision Transformers[C]//IEEE/CVF International Conference on Computer Vision. 2021: 11936-11945.

[63] Gu R, Wang G, Song T, et al. CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 40(2): 699-711.

[64] Kaya M C, Akar G B. Dental X-Ray Image Segmentation using Octave Convolution Neural Network[C]//Signal Processing and Communications Applications Conference (SIU). IEEE, 2020: 1-4.

[65] Chen Y, Fan H, Xu B, et al. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution[C]//IEEE/CVF international conference on computer vision. 2019: 3435-3444.

[66] Sheng C, Wang L, Huang Z, et al. Transformer-Based Deep Learning Network for Tooth Segmentation on Panoramic Radiographs[J]. Journal of Systems Science and Complexity, 2023, 36(1): 257-272.

[67] Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation[C]//European Conference on Computer Vision. 2023: 205-218.

[68] Kong Z, Xiong F, Zhang C, et al. Automated Maxillofacial Segmentation in Panoramic Dental X-Ray Images using an Efficient Encoder-Decoder Network[J]. IEEE Access, 2020, 8: 207822-207833.

[69] Zhao Y, Li P, Gao C, et al. TSASNet: Tooth Segmentation on Dental Panoramic X-Ray Images by Two-Stage Attention Segmentation Network[J]. Knowledge-Based Systems, 2020, 206: 1-10.

[70] Valanarasu J M J, Patel V M. UNeXt: MLP-Based Rapid Medical Image Segmentation Network[C]//Medical Image Computing and Computer Assisted Intervention. 2022: 23-33.

[71] Wang Q, Wu B, Zhu P, et al. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11531-11539.

[72] Jaderberg M, Simonyan K, Zisserman A. Spatial Transformer Networks[C]//International Conference on Neural Information Processing Systems. 2015: 2017-2025.

[73] 关柏良, 周凡, 林淑金, 罗笑南. 面向三维模型分割的边界感知点云神经网络[J]. 计算机辅助设计与图形学学报, 2020, 32(01): 147-155.

[74] Sudre C H, Li W, Vercauteren T, et al. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 2017: 240-248.

[75] Smith L N. Cyclical Learning Rates for Training Neural Networks[C]//IEEE Winter Conference on Applications of Computer Vision. 2017: 464-472.

[76] Li C, Zhou A, Yao A. Omni-Dimensional Dynamic Convolution[C]//International Conference on Learning Representations. 2022: 1-20.

[77] Yang B, Bender G, Le Q V, et al. CondConv: Conditionally Parameterized Convolutions for Efficient Inference[C]//International Conference on Neural Information Processing Systems. 2019: 1307-1318.

[78] Chen Y, Dai X, Liu M, et al. Dynamic Convolution: Attention over Convolution Kernels[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 11030-11039.

[79] Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.

[80] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//European Conference on Computer Vision. 2018: 3-19.

[81] Hou Q, Zhou D, Feng J. Coordinate Attention for Efficient Mobile Network Design[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13713-13722.

[82] Abdi A H, Kasaei S, Mehdizadeh M. Automatic Segmentation of Mandible in Panoramic X-Ray[J]. Journal of Medical Imaging, 2015, 2(4): 1-8.

中图分类号:

 TP391    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式