- 无标题文档
查看论文信息

论文中文题名:

 基于Block Bootstrap 方法的厚尾模型均值变点检验研究    

姓名:

 梁丹亚    

学号:

 19201221005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 时间序列分析    

第一导师姓名:

 金浩    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杨云锋    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Block Bootstrap for Detection of Mean Change Point under Heavy-tailed Model    

论文中文关键词:

 厚尾序列 ; 最小二乘估计 ; M估计 ; 均值变点 ; Block Bootstrap抽样    

论文外文关键词:

 Heavy-tailed model ; Least square estimation ; M estimation ; Mean change point ; Block Bootstrap test    

论文中文摘要:

    从上世纪七十年代,变点问题就是计量经济学中的热门话题之一,变点理论和实践运用也受到了普遍重视。变点的存在直接影响序列的分布特征,故检验结构变点对构建更精确的时间序列模型变得十分重要。由于厚尾序列呈“尖峰厚尾”的特征,并且数据间也往往具有相依性,均值是时间序列数据的主要数值特征。基于此,本文运用Block Bootstrap抽样方法对厚尾相依序列均值变点问题展开研究,内容如下:

    厚尾指数为(1,2)时,采用最小二乘估计方法,构造稳健Ratio统计量研究新息过程为AR(p)的厚尾模型的均值变点。在合理的假设和引理下,从理论上推导出了统计量在原假设下的极限分布及证明了其在备择假设下的一致性。但是发现原Ratio的检验效果易受变点位置的影响,变点发生在前半段的经验势高于变点发生在后半段的经验势。基于此,考虑对统计量加以颠倒,得出颠倒统计量,然后再取原统计量和颠倒统计量的最大值,从而理论上证实了修正统计量的经验势对变点时刻不再敏感。由于序列间具有一定程度的相依性,且统计量的临界值与厚尾指数有关,所以采用Block Bootstrap抽样方法模拟出更加准确的临界值。最后,通过有限样本下的数值模拟可以得出,修正统计量能够有效检验均值变点,也证明了该方法的可行性。

    厚尾指数为(0,1)时,采用M估计方法研究新息过程为AR(1)的厚尾序列的均值变点。当厚尾指数较小时,序列的“奇异点”会增加并且此时不存在期望,所以最小二乘估计的检验作用就会减弱,从而提出了M估计方法。根据广义的中心极限定理,基于M估计推导出统计量在原假定下的极限分布,进而确定了它们在备择假设下的一致性。有限样本下的数值模拟表明,不同参数下统计量的临界值相对稳定,原假设下的经验水平在0.05上下浮动,备择假设下的经验势也随着样本量和跳跃幅度的增大而提高。所以当异常数据较多时,M估计比最小二乘法构建的统计量更为稳健。

论文外文摘要:

    Since the 1970s, the change point problem has been one of the hot topics in econometrics.  The theory and practical application of change points have attracted widespread attention. The change point directly affects the distribution characteristics of the series. In order to build a more accurate time series model, so it is very important for testing the structural point . Since heavy-tailed series are characterized by "spikes and heavy tails", and the data are often dependent on each other. The mean  is also the main numerical characteristic of time series data. Based on the characteristic, this paper uses Block Bootstrap sampling method to detect the mean-change point under heavy-tailed model. The detailed content is as follows.

     When the heavy-tailed index is (1,2), this paper adopts the least squares estimation method to construct a robust ratio statistic for detecting the mean change points, and the innovation process is AR(p). Under reasonable assumptions and lemmas, the limiting distribution of the test statistic under the null hypothesis and its consistency under the alternative hypothesis are theoretically derived. However, it is found that the test effect of the original Ratio is easily affected by the location of the change point, and the empirical potential of the change point occurring in the first half of the period is higher than that of the change point occurring in the second half of the period. Based on the defect, the statistic was reversed to derive the reversal statistic, and then the maximum of the original statistic and the reversal statistic was taken. Thus theoretically confirming that the empirical potential of the revised statistic is no longer sensitive to the moment of the change point. Since there is a certain degree of inter-series dependence and the critical value of the statistic is related to the heavy-tailed index, the Block Bootstrap sampling method is used to simulate a more accurate critical value. Finally, numerical simulations with limited samples can conclude that the modified statistic can effectively test the mean change point, which also proves the feasibility of the method.

    When the heavy-tailed index is (0,1), this paper adopts the M-estimation method to study the mean change point of the heavy-tailed series with the innovation process as AR(1). When the heavy-tailed index is small, the number of the singularity becomes more and the series has no expectation, so least squares estimation will be weakened. Thus the M estimation method is proposed. Based on the generalized central limit theorem, the limiting distributions of the statistics under the null hypothesis are derived, and their consistency under the alternative hypothesis is determined. Numerical simulations under finite samples show that the critical values of the statistics for different parameters are relatively stable, the empirical size under the null hypothesis fluctuates around 0.05, and the empirical potential under the alternative hypothesis also increases with the increase of the sample size and the jump magnitude. Therefore, when there are more anomalous data, the M estimation is more robust than the statistic constructed by the least squares method.

参考文献:

[1]Page E S. Continuous inspection schemes[J]. Biometrika, 1954, 41(1/2): 100-115.

[2]陈希孺. 变点统计分析简介[J]. 数理统计与管理, 1991, 10(1):55–58.

[3]张虎. 变点估计值对状态空间模型预测的影响分析[D]. 合肥:合肥工业大学, 2012.

[4]Mandelbrot B B . The Variation of Certain Speculative Prices[J]. The Journal of Business, 1963, 36(4):394-394.

[5]武东,汤银才. 稳定分布及其在金融中的应用[J]. 应用概率统计,2007,23(4):434-445.

[6]IBRAGIMOV, R. Heavy-tailedness and threshold sex determination[J]. Statistics & Probability Letters,2008,78(16):2804-2810.

[7]Hawkins D L, Gallant A R, Fuller W. A simple least squares method for estimating a change in mean[J]. Communications in Statistics-Simulation and Computation, 1986, 15(3):523-530.

[8]Sen, Ashish, Srivastava, et al. On Tests for Detecting Change in Mean[J]. Ann Statist, 1975, 3(1):98-108.

[9]Srivastava M S, Worsley K J. Likelihood ratio tests for a change in the multivariate normal mean[J]. Journal of the American Statistical Association, 1986, 81(393): 199-204.

[10]Nolan, J. P., Stable Distribution: Models for Heavy Tailed Data, Springer Verlar, 2005.

[11]Samorodnitsky G, Taqqu M S. Stable nonGaussian random processes[M]. New York, 1994.

[12]Kokoszka P , Leipus R . Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40(4):385-393.

[13]Miklós Csrg, L Horváth. Limit Theorems in Change-Point Analysis[M]. john wiley & sons ltd chichester, 1997.

[14]Perron P. Dealing with structural breaks[J]. Palgrave handbook of econometrics, 2006, 1(2): 278-352.

[15]Chen J, A. K. Gupta. Parametric Statistical Change Point Analysis[M]. Birkhäuser Boston, 2012.

[16]Kim S, Cho S, Lee S. On the cusum test for parameter changes in GARCH(1,1) models[J].Communication in Statistics , 2000,29(2):445-462.

[17]Horvath L, Horvath Z, Huskova M. Ratio tests for change point detection[J]. Institute of Mathematical Statistics, 2008, 1: 293-304.

[18]Bai J, Perron P. Estimating and Testing Linear Models with Multiple Structural Changes[J]. Econometrica, 1998, 66(1):47-78.

[19]Hawkins D M. Testing a sequence of observations for a shift in location[J]. Journal of the American Statistical Association, 1977, 72(357): 180-186.

[20]James B J, James K L, Siegmund D. Asymptotic approximations for likelihood ratio test and con-dence regions for a change-point in the mean of a multivariate normal distribution[J].Statistica Sinica, 1992,2(1):69-90.

[21]Csörgő M, Horváth L. 20 nonparametric methods for changepoint problems[J]. Handbook of statistics, 1988, 7(88): 403-425.

[22]Ray B K, Tsay R S. Bayesian methods for change‐point detection in long‐range dependent processes[J]. Journal of Time Series Analysis, 2002, 23(6): 687-705.

[23]Raimondo M, Tajvidi N. A peaks over threshold model for change-point detection by wavelets[J]. Statistica Sinica, 2004: 395-412.

[24]Giordani P, Kohn R. Efficient Bayesian Inference for Multiple Change-Point and

Mixture Innovation Models[J]. Journal of Business and Economic Statistics, 2008,

26(1): 66-77.

[25]马健琦,陈占寿,吕娜.基于Sieve Bootstrap方法的长记忆过程均值变点的检验[J].青海师范大学学报, 2017,33(2):34-38.

[26]Wang L. Change in mean problem for long memory time series models with applications[J]. Journal of Statistical Computation and Simulation, 2008,78(7): 653-668.

[27]Xiaofeng Shao. A simple test of changes in mean in the possible presence of long-range dependence[J]. Journal of Time Series Analysis, 2011, 32(6):598-606.

[28]Kai W, Leschinski C, Sibbertsen P. Change-in-mean tests in long-memory time series: a review of recent developments[J]. Asta Advances in Statistical Analysis, 2019,

103(2):237-256.

[29]Kokoszka P, Wolf M. Subsampling the mean of heavy‐tailed dependent observations[J]. Journal of Time Series Analysis, 2004, 25(2): 217-234.

[30]Han S, Tian Z. Truncating estimation for the mean change-point in heavy-tailed dependent observations[J]. Communications in Statistics-Theory and Methods, 2006, 35(1): 43-52.

[31]Jin H, Tian Z, Qin R B. Bootstrap tests for structural change with infinite

variance observations[J]. Statistics and Probability Letters, 2009,79(19):1985- 1955.

[32]赵文芝,吕会琴. 厚尾相依序列均值变点Ratio检验[J].山西大学学报,2016,39(3):410-414.

[33]Horvath L, Horvath Z, Huskova M. Ratio tests for change point detection[J]. Institute of Mathematical Statistics, 2008,63(9):293-304.

[34]Dan W , Pengjiang G , Zhiming X. Detection and estimation of structural change in heavy-tailed sequence[J]. Communications in Statistics, 2017, 46(2):815-827.

[35]PAPARODITIS E, POLITIS D N. Residual-based block bootstrap for unit root testing[J]. Econometrica,2003,71(3):813-855.

[36]秦瑞兵,杨晓琴.基于block bootstrap的厚尾相依序列均值变点检验[J].贵州师范大学学报(自然科学版), 2017, 35(5):56-59.

[37]高奎. 厚尾序列均值变点的统计推断及其应用研究[D].西安:西安科技大学,2020.

[38]金浩.方差无穷厚尾序列变点的统计推断[D],西安:西北工业大学,2009.

[39]金浩,张思.基于稳定分布的ARCH模型均值变点检验[J].宝鸡文理学院学报(自然科学版),2017,37(3):1-6.

[40]秦瑞兵,田铮,陈占寿. 独立随机序列均值多变点的非参数检测[J].应用概率统计, 2013, 29(5): 449-457.

[41]白会会. 基于M-估计的厚尾序列结构变点检验研究[D].西安:西安科技大学,2021.

[42]Qin R, Liu Y. Block bootstrap testing for changes in persistence with heavy- tailed innovations[J]. Communication in Statistics- Theory and Methods, 2018, 47(5):1104-1116.

[43]Shao X , Zhang X . Testing for Change Points in Time Series[J]. Journal of the American Statistical Association, 2010, 105(491):128-1240.

[44]Huber P J. Robust Statistics [M]. New York: Wiley, 1981.

[45]Qin R, Liu W. A robust test for mean change in dependent observations[J]. Journal of Inequalities and Applications, 2015, 2015(1): 1-19.

[46]Qin R, Liu W. Ratio detection for mean change in α mixing observations[J]. Communications in Statistics, 2019, 48(7):1693-1708.

[47]Hušková M. Tests and estimators for the change point problem based on M-statistics[J]. Statistics & Risk Modeling, 1996, 14(2): 115-136.

[48]Hušková M, Marušiaková M. M-procedures for detection of changes for dependent observations[J]. Communications in Statistics-Simulation and Computation, 2012, 41(7): 1032-1050.

[49]Sohrabi M, Zarepour M. Asymptotic theory for M-estimates in unstable AR (p) processes with infinite variance innovations[J]. Journal of Statistical Planning and Inference, 2019, 198: 105-118.

[50]Horvath L, Kokoszka P. A bootstrap approximation to a unit root test statistic for heavy-tailed observations[J]. Statistics and Probability Letters, 2003,63(3):163- 173.

[51]Peštová, B., Pešta, M. Abrupt change in mean using block bootstrap and avoiding variance estimation[J]. Computational Statistics,2018, 33(3): 1-29.

中图分类号:

 O212.1    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式