- 无标题文档
查看论文信息

论文中文题名:

 煤矿采空区封存CO2泄漏扩散规律与应急处置研究    

姓名:

 陈文彬    

学号:

 20220226079    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤系CO2地质安全封存    

第一导师姓名:

 丁洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on leakage and diffusion law and emergency disposal of CO2 storage in goaf of coal mine    

论文中文关键词:

 采空区封存 ; CO2泄漏扩散 ; 真实地形 ; Fluent数值模拟 ; 泄漏预防与应对    

论文外文关键词:

 Goaf storage ; CO2 leakage and diffusion ; Real terrain ; Fluent numerical simulation ; Leakage prevention and response    

论文中文摘要:

我国作为煤炭大国,每年会产生大量的煤矿采空区,在“双碳”目标的大背景下,若能充分利用这些采空区进行CO2地质封存,实现采空区的二次利用,无疑会产生巨大的经济效益,增加资源的利用率,加速实现碳达峰和碳中和。然而,采空区独特的裂隙分布特征,导致其相较于其他地质封存方式具有更高的泄漏风险。因此,为了明确采空区封存CO2泄漏至大气后的扩散规律,本文以陕北某试验矿井为例,对泄漏至地表的CO2扩散规律进行了一系列的数值模拟研究,并设计了泄漏后的应急处置方案。

对试验地点近五年的风力状况进行了总结,为后续数值模拟中风速的选择提供了参考依据。利用高斯-克吕格投影将封存地点的工程坐标转换为经纬度坐标,确定了封存位置。选取了封存地点周围1500m×1500m的区域作为模拟区域,根据封存区域的DEM高程数据提取了地形特征,建立了真实地形的数值模型。分别设计了无植被地形和有植被地形上的CO2扩散模拟方案,研究地形、风速和风向以及植被变化对CO2扩散的影响。

采用Fluent软件对CO2在平坦地形和复杂地形下的扩散特性进行了数值模拟,分析了风速、风向和地形对CO2扩散的影响。当风速为0时,CO2主要沿着地形的坡度方向扩散,形成重力驱动的下坡流;当风速不为0时,CO2的扩散方向受到风力驱动的影响,与风向基本一致,且风速越大,CO2的横向扩散越弱;环境温度对CO2扩散的影响可以忽略不计。以1%浓度的CO2等值面为界限,划分了人员危险区域,并计算了在不同情况下CO2扩散3600s后的危害范围,为CO2泄漏事故的防范和应急提供了参考依据。

系统地分析了地表灌木林对CO2扩散的影响,采用了多孔介质模型来模拟灌木林的结构特征,考虑了不同的孔隙度和高度对CO2扩散的影响。灌木林密度越大,CO2在纵向上的扩散阻力越大,但同时也会增加CO2在横向和竖向上的扩散范围,这可能会加剧CO2泄漏的危害。灌木林高度对CO2扩散的影响较小,但当高度较低时,会增强CO2扩散的不稳定性。此外,当泄漏点位于灌木林内时,CO2的初始扩散速度会降低,并且受到更大的扰动。

对CO2采空区封存泄漏事故的预防和应对策略进行了研究和创新。在泄漏前,提出了一种基于多源数据的智能监测和预警系统,能够实时监测封存区的大气、土壤、地下水等环境参数,并利用机器学习算法分析异常信号,及时发现泄漏隐患并启动应急预案。在泄漏后,提出了一种基于GIS的安全疏散模型,能够根据泄漏源位置和CO2扩散特性,结合地形、风向、交通等因素,动态规划最佳疏散路线,并指导人员迅速撤离危险区域。同时,提出了一种基于故障诊断的补救方案选择方法,能够根据泄漏原因和程度,选择最合适的补救技术,有效控制泄漏事故的影响范围和程度。

论文外文摘要:

As a major coal-producing country, China generates a large amount of coal mine goaf every year. In the context of the “dual carbon” goals, if these goaf areas can be fully utilized for CO2 geological sequestration, achieving secondary utilization of goaf areas, it will undoubtedly generate huge economic benefits, increase resource utilization rate, and accelerate the realization of carbon peaking and carbon neutralization. However, the unique fracture distribution characteristics of the goaf lead to higher leakage risk than other geological storage methods. Therefore, in order to clarify the diffusion law of CO2 sequestration in goaf areas after leakage to the atmosphere, this paper takes a test mine well in northern Shaanxi as an example, and conducts a series of numerical simulation studies on the diffusion law of CO2 leaked to the surface, and designs emergency response plans after leakage.

The wind conditions of the experimental site in the past five years were summarized, which provided a reference basis for the selection of wind speed in the subsequent numerical simulation. The engineering coordinates of the sequestration site were converted into latitude and longitude coordinates by using Gauss-Krüger projection, and the sequestration location was determined. A 1500m×1500m area around the sequestration site was selected as the simulation area, and the terrain features were extracted according to the DEM elevation data of the sequestration area, and a numerical model of realistic terrain was established. The simulation schemes of CO2 diffusion on unvegetated terrain and vegetated terrain were designed respectively to study the effects of terrain, wind speed, wind direction and vegetation change on CO2 diffusion.

The numerical simulation of CO2 diffusion characteristics under flat terrain and complex terrain was carried out by using Fluent software, and the effects of wind speed, wind direction and terrain on CO2 diffusion were analyzed. When the wind speed was 0, CO2 mainly diffused along the slope direction of the terrain, forming a gravity-driven downhill flow; when the wind speed was not 0, the diffusion direction of CO2 was affected by the wind force, and was basically consistent with the wind direction, and the larger the wind speed, the weaker the lateral diffusion of CO2; the environmental temperature had negligible effect on CO2 diffusion. Taking the 1% concentration of CO2 isopleth as the boundary, the personnel danger area was divided, and the hazard range of CO2 diffusion after 3600s under different situations was calculated, which provided a reference basis for the prevention and emergency response of CO2 leakage accidents.

The influence of surface shrubland on CO2 diffusion was systematically analyzed, and a porous medium model was used to simulate the structural characteristics of shrubland, considering the effects of different porosity and height on CO2 diffusion. The denser the shrubland, the greater the diffusion resistance of CO2 in the vertical direction, but at the same time, it will also increase the diffusion range of CO2 in the horizontal and vertical directions, which may aggravate the harm of CO2 leakage. The height of shrubland has little effect on CO2 diffusion, but when the height is low, it will enhance the instability of CO2 diffusion. In addition, when the leakage point is located in the shrubland, the initial diffusion speed of CO2 will be reduced, and it will be subject to greater disturbance.

The prevention and response strategies for CO2 sequestration leakage accidents in goaf areas were studied and innovated. Before the leakage, a smart monitoring and early warning system based on multi-source data was proposed, which could monitor the environmental parameters such as atmosphere, soil, groundwater, etc. of the sequestration area in real time, and use machine learning algorithms to analyze abnormal signals, timely detect leakage risks and initiate emergency plans. After the leakage, a safety evacuation model based on GIS was proposed, which could dynamically plan the optimal evacuation route according to the leakage source location and CO2 diffusion characteristics, combined with factors such as terrain, wind direction, traffic, etc., and guide personnel to quickly evacuate the danger area. At the same time, a remediation scheme selection method based on fault diagnosis was proposed, which could select the most suitable remediation technology according to the cause and degree of leakage, effectively control the impact range and degree of leakage accidents.

参考文献:

[1] Matthews H D, Tokarska K B, Nicholls Z R J, et al. Opportunities and challenges in using remaining carbon budgets to guide climate policy[J]. Nature Geoscience, 2020, 13(12): 769-779.

[2] 习近平. 继往开来,开启全球应对气候变化新征程——在气候雄心峰会上的讲话[J]. 中华人民共和国国务院公报, 2020, 1718(35): 7.

[3] 刘华军, 石印, 郭立祥, 等.新时代的中国能源革命:历程、成就与展望[J]. 管理世界, 2022, 38(07): 6-24.

[4] 许勤华, 李文琪. 全球碳中和背景下的中国能源安全方略[J]. 南通大学学报(社会科学版), 2023, 39(01): 117-129.

[5] 刘世奇, 皇凡生, 杜瑞斌, 等. CO2地质封存与利用示范工程进展及典型案例分析[J]. 煤田地质与勘探, 2023, 51(02): 158-174.

[6] Aminu M D, Nabavi S A, Rochelle C A, et al. A review of developments in carbon dioxide storage[J]. Applied Energy, 2017, 208: 1389-1419.

[7] Ajayi T, Gomes J S, Bera A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches[J]. Petroleum Science, 2019, 16(5): 1028-1063.

[8] Mortezaei K, Amirlatifi A, Ghazanfari E, et al. Potential CO2 leakage from geological storage sites: advances and challenges[J]. Environmental Geotechnics, 2021, 8(1): 3-27.

[9] Ajayi T, Awolayo A, Gomes J S, et al. Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi[J]. Energy, 2019, 185: 653-670.

[10] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018, 43(06): 1487-1503.

[11] 袁亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报(社会科学版), 2018, 20(01): 3-12.

[12] 中国二氧化碳地质封存环境风险研究组. 中国二氧化碳地质封存环境风险评估[M]. 北京: 化学工学出版社, 2018.

[13] 赵改善. 二氧化碳地质封存地球物理监测:现状、挑战与未来发展[J]. 石油物探, 2023, 62(02): 194-211.

[14] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报, 2022, 47(03): 1072-1086.

[15] 何学秋, 田向辉, 宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术, 2022, 50(01): 212-219.

[16] Global CCS Institute. GLOBAL STATUS OF CCS 2022[R], 2022.

[17] Clayton C. Drax group’s bioenergy CCS (BECCS) project[J]. Greenhouse Gases: Science and Technology, 2019, 9(2): 130-133.

[18] Weber U, Kampman N, Mikoviny T, et al. Noble Gases as Monitoring Tracers in CCS: A Case Study with CO2 from the Waste-to-Energy Plant Klemetsrud, Norway[M]. Rochester.

[19] 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)—中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心. 2021.

[20] 米剑锋, 马晓芳. 中国CCUS技术发展趋势分析[J]. 中国电机工程学报, 2019, 39(09): 2537-2544.

[21] 刘贺娟, 童荣琛, 侯正猛, 等. 地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J]. 工程科学与技术, 2022, 54(01): 83-96.

[22] 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(04): 1430-1451.

[23] 曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(05): 1868-1882.

[24] Wigley M, Kampman N, Dubacq B, et al. Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah [J]. Geology, 2012, 40(6): 555-558.

[25] Patil R H, Colls J J, Steven M D. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems[J]. Energy, 2010, 35(12): 4587-4591.

[26] 金陶胜, 杨锦, 韩素芹, 等. 随机游动模型在大气污染扩散分析中的应用探讨[J]. 安全与环境学报, 2008, 43(01): 73-75.

[27] Cortis A, Oldenburg C M. Short-Range Atmospheric Dispersion of Carbon Dioxide[J]. Boundary-Layer Meteorology, 2009, 133(1): 17-34.

[28] Schnelle K, Dey P R. Atmospheric Dispersion Modeling Compliance Guide[C]. 1999.

[29] Mazzoldi A, Hill T, Colls J J. CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities[J]. Atmospheric Environment, 2008, 42(34): 8046-8054.

[30] Hertwig D, Soulhac L, Fuka V, et al. Evaluation of fast atmospheric dispersion models in a regular street network[J]. Environmental Fluid Mechanics, 2018, 18(4): 1007-1044.

[31] Oldenburg C M, Unger A J A. Coupled Vadose Zone and Atmospheric Surface-Layer Transport of Carbon Dioxide from Geologic Carbon Sequestration Sites[J]. Vadose Zone Journal, 2004, 3(3): 848-857.

[32] Papanikolaou E, Heitsch M, Baraldi D. Validation of a numerical code for the simulation of a short-term CO2 release in an open environment: Effect of wind conditions and obstacles[J]. Journal of Hazardous Materials, 2011, 190(1): 268-275.

[33] Mazzoldi A, Hill T, Colls J J. Assessing the risk for CO2 transportation within CCS projects, CFD modelling[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 816-825.

[34] Flesch T K, Wilson J D, Yee E. Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions[J]. Journal of Applied Meteorology and Climatology, 1995, 34(6): 1320-1332.

[35] Flesch T K, Wilson J D, Harper L A. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial with Wind Disturbance[J]. Journal of Applied Meteorology and Climatology, 2005, 44(4): 475-484.

[36] Leuning R, Etheridge D, Luhar A, et al. Atmospheric monitoring and verification technologies for CO2 geosequestration[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 401-414.

[37] Wareing C J, Fairweather M, Falle S A E G, et al. Modelling punctures of buried high-pressure dense phase CO2 pipelines in CCS applications[J]. International Journal of Greenhouse Gas Control, 2014, 29: 231-247.

[38] Wareing C J, Fairweather M, Falle S A E G, et al. Modelling ruptures of buried high pressure dense phase CO2 pipelines in carbon capture and storage applications—Part I. Validation[J]. International Journal of Greenhouse Gas Control, 2015, 42: 701-711.

[39] Wareing C J, Fairweather M, Falle S A E G, et al. Modelling ruptures of buried high-pressure dense-phase CO2 pipelines in carbon capture and storage applications – Part II. A full-scale rupture[J]. International Journal of Greenhouse Gas Control, 2015, 42: 712-728.

[40] Liu X, Godbole A, Lu C, et al. Optimisation of dispersion parameters of Gaussian plume model for CO2 dispersion[J]. Environmental Science and Pollution Research, 2015, 22(22): 18288-18299.

[41] Crawford A. The Use of Gaussian Mixture Models with Atmospheric Lagrangian Particle Dispersion Models for Density Estimation and Feature Identification[J]. Atmosphere, 2020, 11(12): 1369.

[42] Bogaers A, Rensburg G J V. A comparison of different CFD and Gaussian dispersion models[C]. 2018.

[43] Scargiali F, Grisafi F, Busciglio A, et al. Modeling and simulation of dense cloud dispersion in urban areas by means of computational fluid dynamics[J]. Journal of Hazardous Materials, 2011, 197: 285-293.

[44] Herzog N, Gorenz P, Egbers C. CFD modeling of high-pressurized CO2 released from onshore pipeline leakages[J]. Environmental Earth Sciences, 2013, 70(8): 3749-3759.

[45] Herzog N, Egbers C. Atmospheric Dispersion of CO2 Released from Pipeline Leakages[J]. Energy Procedia, 2013, 40: 232-239.

[46] Xing J, Liu Z, Huang P, et al. Experimental and numerical study of the dispersion of carbon dioxide plume[J]. Journal of Hazardous Materials, 2013, 256-257: 40-48.

[47] Wen J, Heidari A, Xu B, et al. Dispersion of carbon dioxide from vertical vent and horizontal releases—A numerical study[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2013, 227(2): 125-139.

[48] Wen J X, Le F P, Jie H, et al. Further development and validation of CO2FOAM for the atmospheric dispersion of accidental releases from carbon dioxide pipelines[J]. International Journal of Greenhouse Gas Control, 2016, 52: 293-304.

[49] Liu X, Godbole A, Lu C, et al. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state[J]. Applied Energy, 2014, 126: 56-68.

[50] Liu X, Godbole A, Lu C, et al. Investigation of the consequence of high-pressure CO2 pipeline failure through experimental and numerical studies[J]. Applied Energy, 2019, 250: 32-47.

[51] 王文芳. CO2泄漏扩散规律实验系统的研究与设计[D]. 安徽理工大学, 2020.

[52] 马登龙, 邓建强, 张早校. 地质封存中CO2泄漏的非稳态扩散数值模拟研究[J]. 西安交通大学学报, 2012, 46(09): 102-107.

[53] 汪黎东, 顿小宝, 张天赢, 等. CO2地质封存中单井源泄漏风险的评估方法及模型[J]. 化工环保, 2013, 33(01): 76-79.

[54] 刘洪波, 王婧馨, 刘云峰. 工业危废贮存间有害气体扩散模拟及健康风险评价[J]. 安全与环境学报, 2021, 21(03): 1316-1323.

[55] 喻健良, 刘长远, 闫兴清, 等. 高压超临界CO2管道泄漏扩散灾害模拟[J]. 安全与环境学报, 2022, 22(03): 1495-1502.

[56] 沈泽亚, 郎建垒, 毛书帅, 等. 储罐泄漏高度和方向对气体扩散的影响[J/OL]. 安全与环境学报: 1-11. https://doi.org/10.13637/j.issn.1009-6094.2022.0040.

[57] 晏伟. 管输二氧化碳泄漏放空模拟[D]. 中国石油大学(华东), 2013.

[58] 李康. 小尺度超临界二氧化碳泄漏过程物理机理研究[D]. 中国科学技术大学, 2016.

[59] 刘锋. 超临界压力CO2管道泄漏特征与扩散规律研究[D]. 清华大学, 2016.

[60] 郑阳光. CO2管道泄漏扩散实验及数值模拟研究[D]. 大连理工大学, 2017.

[61] Chow F K, Granvold P W, Oldenburg C M. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites[J]. Energy Procedia, 2009, 1(1): 1925-1932.

[62] Hsieh K J, Lien F S, Yee E. Dense gas dispersion modeling of CO2 released from carbon capture and storage infrastructure into a complex environment[J]. International Journal of Greenhouse Gas Control, 2013, 17: 127-139.

[63] Sun B, Utikar R P, Pareek V K, et al. Computational fluid dynamics analysis of liquefied natural gas dispersion for risk assessment strategies[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1): 117-128.

[64] Woolley R M, Fairweather M, Wareing C J, et al. An integrated, multi-scale modelling approach for the simulation of multiphase dispersion from accidental CO2 pipeline releases in realistic terrain[J]. International Journal of Greenhouse Gas Control, 2014, 27: 221-238.

[65] Lisbona D, Mcgillivray A, Saw J L, et al. Risk assessment methodology for high-pressure CO2 pipelines incorporating topography[J]. Process Safety and Environmental Protection, 2014, 92(1): 27-35.

[66] Liu B, Liu X, Lu C, et al. Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment[J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 419-432.

[67] Wang H, Liu B, Liu X, et al. Dispersion of carbon dioxide released from buried high-pressure pipeline over complex terrain[J]. Environmental Science and Pollution Research, 2021, 28(6): 6635-6648.

[68] Liu J, Chen J M, Black T A, et al. E-ε modelling of turbulent air flow downwind of a model forest edge [J]. Boundary-Layer Meteorology,1996, 77: 2l-44.

[69] Ohashi M. A study on analysis of airflow around an individual tree[J]. Journal of Environmental Engineering (Transactions of AIJ), 2004, 69(578), 91–96.

[70] Zhou X H, Brandle J R, Mize C W, et al. Three-dimensional aerodynamic structure of a tree shelterbelt: Definition, characterization and working models[J/OL]. Agroforestry Systems, 2005, 63(2): 133-147.

[71] Yoshida S. Development of Three-Dimensional Plant Canopy Model for Numerical Simulation of Outdoor Thermal Environment[C]. 2006.

[72] Mochida A, Tabata Y, Iwata T, et al. Examining tree canopy models for CFD prediction of wind environment at pedestrian level[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10): 1667-1677.

[73] Endalew A M, Hertog M, Delele M A, et al. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture[J]. International Journal of Heat and Fluid Flow, 2009, 30(2): 356-368.

[74] 毛泽魁. 多孔介质森林模型中流场分布特征的研究[D]. 兰州大学, 2016.

[75] 邓彩华, 童亮, 陈壁峰, 等.多孔介质流动的直接数值模拟[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(06): 1257-1260.

[76] 吴沿友, 郭晓君, 付为国, 等. 红树林多孔介质阻力模型与消波效果仿真分析[J]. 农业工程学报, 2012, 28(23): 92-97+295.

[77] Santiago J L, Martin F, Cuerva A, et al. Experimental and numerical study of wind flow behind windbreaks[J]. Atmospheric Environment, 2007, 41(30): 6406-6420.

[78] Mochida A, Lun Y F. Prediction of wind environment and thermal comfort at pedestrian level in urban area[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10): 1498-1527.

[79] Buccolieri R, Salim S M, Leo L S, et al. Analysis of local scale tree–atmosphere interaction on pollutant concentration in idealized street canyons and application to a real urban junction[J]. Atmospheric Environment, 2011, 45(9): 1702-1713.

[80] Dalpe B, Masson C. Numerical simulation of wind flow near a forest edge[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(5): 228-241.

[81] Bitog J P, Lee I B, Hwang H S, et al. Numerical simulation study of a tree windbreak[J]. Biosystems Engineering, 2012, 111(1): 40-48.

[82] Liu C, Zheng Z, Cheng H, et al. Airflow around single and multiple plants[J]. Agricultural and Forest Meteorology, 2018, 252: 27-38.

[83] Mohamed H S, Heinke S K, David G. Including trees in the numerical simulations of the wind flow in urban areas: Should we care? [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 144: 84-95.

[84] 杨伟, 顾明, 陈素琴. 计算风工程中k-ε模型的一类边界条件[J]. 空气动力学学报, 2005, 23(01): 97-102.

[85] 方平治, 顾明, 谈建国. 计算风工程中基于k-ε系列湍流模型的数值风场[J]. 水动力学研究与进展A辑, 2010, 25(04): 475-483.

[86] 杨会, 付海明. 树冠流动阻力特性数值模拟与实验研究[J]. 中南大学学报(自然科学版), 2016, 47(12): 4292-4300.

[87] 崔鹏义, 张岩, 王梦洁, 等. 绿化对街道峡谷内对流传质影响的数值模拟研究[J]. 工程热物理学报, 2019, 40(07): 1648-1654.

[88] 谢志豪. 植被绿化对周围环境影响研究[D]. 东华大学, 2019.

[89] 冯成栋, 顾明. 基于改进剪切应力输运k-ω湍流模型对考虑风向随高度偏转大气边界层的数值模拟[J]. 同济大学学报(自然科学版), 2022, 50(06): 821-830.

[90] 张震, 黄远东, 崔鹏义, 等. 树冠尺寸与建筑高度对街谷通风与污染物扩散的影响[J]. 上海理工大学学报, 2022, 44(03): 269-280+298.

[91] 林波荣. 绿化对室外热环境影响的研究[D]. 清华大学, 2004.

[92] 李亮, 李晓锋, 林波荣, 等. 用带源项k-ε两方程湍流模型模拟树冠流[J]. 清华大学学报(自然科学版), 2006, 46(06): 753-756.

[93] 杨易, 顾明, 金新阳, 等. 风环境数值模拟中模拟植被的数学模型与应用[J]. 同济大学学报(自然科学版), 2010, 38(09): 1266-1270.

[94] 徐志. 周边树木对低矮房屋挡风性能的研究[D]. 北京交通大学, 2013.

[95] 黄笑, 云挺, 薛联凤, 等. 基于流体运动仿真的不同林冠形状抗风强度分析[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 107-113.

[96] 徐风, 黄笑, 顾一凡, 等. 基于流体仿真的椭球型树冠抗风性能研究[J]. 林业工程学报, 2019, 4(03): 125-131.

[97] 谢志豪, 付海明. 树冠流动阻力风洞试验与数值模拟[J]. 东华大学学报(自然科学版), 2020, 46(03): 442-449.

[98] 罗昔联, 王乐, 顾兆林. 树冠特征对城市街谷内流场及污染物扩散影响的数值模拟研究[J]. 应用力学学报, 2021, 38(05): 1981-1988.

[99] Godbole A, Liu X, Michal G, et sl. Atmospheric Dispersion of CO2 Following Full-Scale Burst Tests: 3365779[R]. Rochester, NY: Social Science Research Network, 2019.

[100] Siddiqui M, Jayanti S, Swaminathan T. CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation[J]. Journal of Hazardous Materials, 2012, 209-210: 177-185.

[101] 王圣业, 符翔, 杨小亮, 等. 高阶矩湍流模型研究进展及挑战[J]. 力学进展, 2021, 51(01): 29-61.

[102] Tan W, Liu X, Liu Y, et al. Modeling the two-phase cloud evolution from instantaneous flashing release using CFD[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(4): 420-425.

[103] Gavelli F, Chernovsky M K, Bullister E, et al. Modeling of LNG spills into trenches[J]. Journal of Hazardous Materials, 2010, 180(1): 332-339.

[104] Launder B, Spalding D. Lectures in mathematical models of turbulence[J]. 1972.

[105] Hiraoka H. Modelling of turbulent flows within plant/urban canopies[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47: 173-182.

[106] Yamada T. A Numerical Model Study of Turbulent Airflow in and Above a Forest Canopy[J]. Journal of the Meteorological Society of Japan. Ser. II, 1982, 60(1): 439-454.

[107] Uno I, Ueda H, Wakamatsu S. Numerical modeling of the nocturnal urban boundary layer[J]. Boundary-Layer Meteorology, 1989, 49(1): 77-98.

[108] Svensson U, Haggkvist K. A two-equation turbulence model for canopy flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 35: 201-211.

[109] 王慧茹. 复杂条件下CO2扩散特性研究[D]. 石家庄铁道大学, 2021.

[110] Benson S M. Chapter 25 - Lessons Learned from Industrial and Natural Analogs for Health, Safety and Environmental Risk Assessment for Geologic Storage of Carbon Dioxide[M]//THOMAS D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations. Amsterdam: Elsevier Science, 2005: 1133-1141.

[111] Benson S, Hepple R. Chapter 28 - Prospects for Early Detection and Options for Remediation of Leakage from CO2 Storage Projects[M]//THOMAS D C. Carbon Dioxide Capture for Storage in Deep Geologic Formations. Amsterdam: Elsevier Science, 2005: 1189-1203.

[112] Buschbach T C, Bond D C. Underground storage of natural gas in Illinois-1973[C]. 1967.

[113] Metz B. IPCC special report on carbon dioxide capture and storage[C]. 2005.

[114] Looney B, Falta R. Vadose zone: science and technology solutions[C]. 2000.

[115] Gadgil A J, Bonnefous Y C, Fisk W J. Relative Effectiveness of Sub-slab Pressurization and Depressurization Systems for Indoor Radon Mitigation: Studies with an Experimentally Verified Numerical Model[J]. Indoor Air, 1994, 4(4): 265-275.

[116] Fischer M L, Bentley A J, Dunkin K A, et al. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination[J]. Environmental Science & Technology, 1996, 30(10): 2948-2957.

中图分类号:

 TD77+1; X701.7    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式