- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 张文进    

学号:

 20220226150    

保密级别:

     

论文语种:

 chi    

学科代码:

 085700    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

     

第一导师姓名:

 李树刚    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-27    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on mining height effect of linkage evolution of stress field and seepage field in pressure relief gas high permeability area in fully mechanized mining face of inclined thick coal seam    

论文中文关键词:

 倾斜厚煤层 ; 卸压瓦斯高渗区 ; 分域判定准则 ; 联动演化 ; 采高效应    

论文外文关键词:

 Inclined thick coal seam ; High permeability zone of pressure relief gas ; Domain classification criteria ; Linkage evolution ; Mining height effect    

论文中文摘要:
<p>绿COMSOL</p> <p></p> <p>COMSOL</p> <p>--</p> <p>2m23m39.71%19.21%2.1</p> <p>-</p>
论文外文摘要:
<p>As most mines in China enter the stage of high-strength mining, the continuous increase of coal production leads to the increase of gas emission, resulting in an increase in the risk of gas anomalies in the working face, which directly affects the safe production and green development of the coal industry. Based on the geological conditions of the main mining face in Liuhuanggou&nbsp;coal mine&nbsp;in&nbsp;Changji, Xinjiang, combined with fractal theory and seepage mechanics,&nbsp;the&nbsp;physical similarity simulation experiments and the COMSOL numerical simulation experiments&nbsp;were used&nbsp;to carry out the&nbsp;research on the linkage evolution law of stress field and seepage field in the high permeability zone of mining pressure relief gas under different mining height conditions.</p> <p>Using the physical similarity simulation experiment platform of mining overburden fracture evolution, the physical similarity simulation experiment of geometric boundary identification of mining pressure relief gas high permeability zone in inclined coal seam was carried out. The morphological distribution of mining overburden fracture network was obtained, the fractal characteristics of fracture field were analyzed, and the variation rules of characteristic parameters such as overburden subsidence, bed separation, fracture rate and penetration were mastered. Based on the characteristic parameters of fracture network, the geometric boundary of mining pressure relief gas high permeability zone was identified and the regional judgment criterion was established. Eventually, the geometric range and dynamic evolution process of the pressure relief gas high permeability zone were obtained.</p> <p>Through COMSOL numerical simulation software, numerical models under different mining height conditions were established, and numerical simulation experiments were carried out. The process of crack generation, expansion, development, penetration and re-compaction&nbsp;in&nbsp;overburden&nbsp;during mining was systematically analyzed. The correlation between mining stress and pressure relief gas migration was expounded. The dynamic evolution law of overburden stress field under the influence of different mining height and the spatial and time-varying evolution law of pressure relief gas seepage field were obtained.&nbsp;The linkage evolution law of stress field and seepage field in high permeability area of mining pressure relief gas was clarified.</p> <p>Based on the results of theoretical analysis, physical similarity simulation experiment and numerical simulation experiment, the permeability coefficient of overburden fracture was taken as the key to the coupling of stress field and seepage field. Considering the factors of coal seam mining height and rock bulking, the function relationship between overburden stress and gas pressure under the influence of mining height was established, and the relationship between overburden stress field and pressure relief gas seepage field was quantitatively characterized. Then, The mining height effect mechanism of stress field-seepage field coupling in high permeability area was revealed.</p> <p>Aiming at the main mining face of the test mine, the technical measures of high-level directional long borehole extraction under the fully mechanized caving mining mode in&nbsp;inclined thick coal seam were put forward. Through the comparison of drilling field design and gas extraction test, it was concluded that the average gas&nbsp;extraction concentration of borehole increased&nbsp;with the rise&nbsp;of vertical distance. When the vertical distance rose from 2m to 23m, the average gas concentration of the borehole in the high permeability zone was 39.71 %, the gas concentration of the borehole in the caving zone was 19.21 %, and the gas concentration of the borehole was increased by 2.1 times. The gas extraction effect showed&nbsp;better, and the gas concentration of the upper corner and the return air lane effectively reduced during the normal production of the working face.</p> <p>Through the above research,&nbsp;the characteristic parameters of the overburden fracture network are used to determine the geometric range of high&nbsp;permeability zone&nbsp;of mining-induced pressure&nbsp;relief gas, and the numerical simulation experiment is adopted to obtain the stress field-seepage field linkage evolution law of high&nbsp;permeability zone&nbsp;of mining-induced pressure&nbsp;relief gas under different mining height conditions. The multi-field coupling theory in the process of gas extraction in overburden fractures is further improved, and the design parameters of the drilling field are optimized, which provides important theoretical support for the field practical problems such as the mine gas extraction technology and the disaster prevention and control.</p>
参考文献:

[1]谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(07): 2197-2211.

[2]许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术, 2020, 48(09): 1-15.

[3]国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[N]. 人民日报, 2023-03-01(009).

[4]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[5]袁亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报, 2021, 46(03): 716-725.

[6]汪长明. 大倾角厚煤层综采工作面覆岩移动与矿压显现规律研究[J]. 矿业安全与环保, 2017, 44(04): 14-18.

[7]谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(05): 1283-1305.

[8]Yuan L. Control of coal and gas outbursts in Huainan mines in China: A review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4): 559-567.

[9]谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(8): 1391-1397.

[10]林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(1): 28-35.

[11]叶建平, 陆小霞. 我国煤层气产业发展现状和技术进展[J]. 煤炭科学技术, 2016, 44(01): 24-28+46.

[12]王恩元, 张国锐, 张超林, 等. 我国煤与瓦斯突出防治理论技术研究进展与展望[J].煤炭学报, 2022, 47(01): 297-322.

[13]梁运培, 郑梦浩, 李全贵, 等. 我国煤与瓦斯突出预测与预警研究综述[J]. 煤炭学报, 2022: 1-24.

[14]袁亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报, 2016, 41(1): 1-6.

[15]李树刚, 林海飞, 成连华. 煤与瓦斯安全共采基础理论研究进展[J]. 陕西煤炭, 2005, (增): 25-29.

[16]袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009, 34(1): 1-8.

[17]赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021, 38(01): 9-18+30.

[18]张超林, 蒲静轩, 宋世豪, 等.煤与瓦斯突出两相流研究现状及展望[J]. 煤炭科学技术, 2023: 1-11.

[19]袁欣鹏, 梁冰, 孙维吉, 等. 煤层群覆岩裂隙带煤与瓦斯共采协同机制研究[J]. 中国矿业大学学报, 2020, 49(02): 289-295.

[20]范钢伟, 张东升, 陈铭威, 等. 采动覆岩裂隙体系统耗散结构特征与突变失稳阈值效应[J]. 采矿与安全工程学报, 2019, 36(06): 1093-1101.

[21]宋振骐, 蒋金泉. 煤矿岩层控制的研究重点与方向[J]. 岩石力学与工程学报, 1996, (02): 33-39.

[22]Holla L. Ground movement due to longwall mining in high relief areas in New South Wales, Australia[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(5): 775-787.

[23]Booth C J, Spande E D. Potentiometric and aquifer property changes above subsiding longwall mine panels, Illinois basin coalfield[J]. Ground Water, 1992, 30(3): 362-368.

[24]Richard R, Randolph J, Zipper D. High extraction mining, subsidence, and Virginia’s water resources, chapter 4. Subsidence Effects on Water Resources[J]. Virginia Center for Coal & Energy Research. Virginia Polytechnic Institute and state University, Virginia, 1990: 17-20.

[25]Peng S S, Ma W M, Zhong W L. Surface subsidence engineering[J]. Society for Mining, Metallurgy, and Exploration, 1992.

[26]Palchik V. Formation of fractured zones in overburden due to longwall mining[J]. Environmental Geology 2003,44:28–38.

[27]Majdi A, Hassani F P, Nasiri M Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining[J]. International Journal of Coal Geology, 2012, 98: 62-72.

[28]刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995, 20(1): 1-5.

[29]钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 225-230.

[30]钱鸣高, 缪协兴, 何富连. 采场“砌体梁”结构的关键块分析[J]. 煤炭学报, 1994, 19(6): 557-563.

[31]许家林,钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000, 25(2): 122-126.

[32]许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(1): 35-43.

[33]卢国志, 汤建泉, 宋振骐. 传递岩梁周期裂断步距与周期来压步距差异分析[J]. 岩土工程学报, 2010, 32(04): 538-541.

[34]谢和平, 于广明. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999, 18(2): 147-151.

[35]张玉军, 李凤明. 高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J]. 岩石力学与工程学报, 2011(S1): 2994-3001.

[36]李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1): 44-46.

[37]李树刚, 徐培耘, 赵鹏翔, 等. 综采工作面覆岩压实区演化采高效应分析及应用[J]. 煤炭学报, 2018, 43(S1): 112-120.

[38]Zhou SP, Wu K, Zhou DW, et al. Experimental Study on Displacement Field of Strata Overlying Goaf with Sloping Coal Seam[J]. Geotechnical and Geological Engineering, 2016 34: 1847-1856.

[39]Zheng SS, Lou YH, Kong DZ. et al. The Roof Breaking Characteristics and Overlying Strata Migration Law in Close Seams Group Under Repeated Mining[J]. Geotechnical and Geological Engineering, 2019, 37: 3891–3902.

[40]林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报, 2011, 28(2): 298-303.

[41]YANG J, CHEN W, YANG D, et al. Numerical determination of strength and deformability of fractured rock mass by FEM modeling[J]. Computers and Geotechnics, 2015, 64: 20-31.

[42]MAJDI A, HASSANI F P, NASIRI M Y. Prediction of the height of destressed zone above the mined panel roof in longwall coal mining[J]. International Journal of Coal Geology, 2012, 98: 62-72.

[43]HE J, CHEN S, SHAHROUR I. Numerical estimation and prediction of stress-dependent permeability tensor for fractured rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 70-79.

[44]Wu WD, Bai JB, Wang XY, et al. Field investigation of ftactures evolution in overlying strata caused by extraction of the jurassic and carboniferous coal seams and its application: Case study[J]. International Journal of Coal Geology, 2019, 208(10): 12-23.

[45]石必明, 俞启香, 周世宁. 保护层开采远距离煤岩破裂变形数值模拟[J]. 中国矿业大学学报, 2004(03): 25-29.

[46]石必明, 刘泽功. 保护层开采上覆煤层变形特性数值模拟[J]. 煤炭学报, 2008(01): 17-22.

[47]石必明,俞启香,王凯. 远程保护层开采上覆煤层透气性动态演化规律试验研究[J]. 岩石力学与工程学报, 2006(09): 1917-1921.

[48]涂敏, 缪协兴, 黄乃斌. 远程下保护层开采被保护煤层变形规律研究[J]. 采矿与安全工程学报, 2006(03): 253-257.

[49]刘超, 李树刚, 许满贵, 等. 采空区覆岩采动裂隙演化过程及其分形特征研究[J]. 湖南科技大学学报(自然科学版), 2013, 28(03): 1-5.

[50]李宏艳, 王维华, 齐庆新, 等. 基于分形理论的采动裂隙时空演化规律研究[J]. 煤炭学报, 2014, 39(06): 1023-1030.

[51]刘泉声, 刘学伟. 多场耦合作用下岩体裂隙扩展演化关键问题研究[J]. 岩土力学, 2014, 35(02): 305-320.

[52]谢和平, 于广明, 杨伦, 等. 采动岩体分形裂隙网络研究[J]. 岩石力学与工程学报, 1999(02): 29-33.

[53]谢和平, 张泽天, 高峰, 等. 不同开采方式下煤岩应力场-裂隙场-渗流场行为研究[J]. 煤炭学报, 2016, 41(10): 2405-2417.

[54]薛东杰, 周宏伟, 任伟光,等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015, 40(08): 1746-1752.

[55]张玉军, 高超. 急倾斜特厚煤层水平分层综放开采覆岩破坏特征[J]. 煤炭科学技术, 2016, 44(01): 126-132.

[56]Liu C, Xue J, Yu G, et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology[J]. International Journal of Mining Science and Technology, 2016, 26(2): 295-299.

[57]史博文, 白建平, 郝春生, 等. 采动覆岩裂隙动态演化规律的三维模拟[J]. 煤矿安全, 2019, 50(07): 259-262.

[58]魏宗勇, 李树刚, 林海飞, 等. 大采高综采覆岩裂隙演化特征三维实验研究[J]. 西安科技大学学报, 2020, 40(04): 589-598.

[59]龚选平, 武建军, 李树刚, 等. 低瓦斯煤层高强开采覆岩卸压瓦斯抽采合理布置研究[J]. 采矿与安全工程学报, 2020, 37(02): 419-428.

[60]赵毅鑫, 令春伟, 刘斌, 等. 浅埋超大采高工作面覆岩裂隙演化及能量耗散规律研究[J]. 采矿与安全工程学报, 2021, 38(01): 9-18.

[61]赵鹏翔, 卓日升, 李树刚, 等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术. 2018, 46(07): 99-108.

[62]Zhao PX, Zhuo RS, Li SG, et al. Fractal characteristics of gas migration channels at different mining heights[J]. Fuel, 2020, 271: 117479-117488.

[63]赵鹏翔, 卓日升, 李树刚, 等. 综采工作面瓦斯运移优势通道演化规律采高效应研究[J]. 采矿与安全工程学报, 2019, 36(4): 848-856.

[64]刘洪永, 程远平, 周红星, 等. 综采长壁工作面推进速度对优势瓦斯通道的诱导与控制作用[J]. 煤炭学报, 2015, 40(04): 809-815.

[65]黄庆享, 夏小刚. 采动岩层与地表移动的“四带”划分研究[J]. 采矿与安全工程学报, 2016, 33(03): 393-397.

[66]Junchao C, Lei Z, Binwei X, et al. Numerical investigation of 3D distribution of mining-induced fractures in response to longwall mining[J]. Natural Resources Research, 2021, 30: 889-916.

[67]Shaofeng W, Xibing L, Shanyong W. Separation and fracturing in overlying strata disturbed by longwall mining in a mineral deposit seam[J]. Engineering Geology, 2017, 26(11): 2133-2141.

[68]Hadi H, Kourosh S, Mohammad F M, et al. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67(25): 2143-2152.

[69]Luis AMC, Euripedes DAV, Rodrigo PDF, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism[J]. Engineering Geology, 2013, 153(18): 1816-1823.

[70]郭惟嘉, 刘立民, 沈光蹄, 等, 采动覆岩离层性确定方法及离层规律的研究[J] 煤炭学报, 1995(01): 39-44.

[71]姚邦华, 周海峰, 陈龙. 重复采动下覆岩裂隙发育规律模拟研究[J]. 采矿与安全工程学报, 2010, 27(03): 443-446.

[72]张永刚, 刘延欣, 武宇亮. 厚松散层薄基岩下重复采动覆岩破坏高度综合研究[J]. 煤炼技术, 2017, 36(08): 72-75.

[73]姬俊燕, 邬剑明, 周春山, 等. 煤层群覆岩采动裂隙演化规律及瓦斯抽采技术[J]. 煤炭科学技术, 2013, 41(S2): 189-191.

[74]余明高, 滕飞, 褚廷湘, 等. 浅埋煤层重复采动覆岩裂隙及溥风通道演化模拟研究[J]. 河南理工大学学报(自然科学版), 2018, 37(01): 1-7.

[75]Liu J, Elsworth D. Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1139-1152.

[76]Bai M, Elsworth D. Modeling of subsidence and stress-dependent hydraulic conductivity for intact and fractured porous media[J]. Rock mechanics and rock engineering, 1994, 27(4): 209-234.

[77]Zhang J, Standifird W B, Roegiers J C, et al. Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications[J]. Rock Mechanics and Rock Engineering, 2007, 40(1): 3-21.

[78]Esterhuizen G S, Karacan C O. Development of Numerical Models to Investigate Permeability Changes and Gas Emission around Longwall Mining Panel[C]// Alaska Rocks 2005, The 40th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 2005.

[79]Gale W J. Application of computer modelling in the understanding of caving and induced hydraulic conductivity about longwall panels[J]. 2005.

[80]Guo H, Adhikary D P, Craig M S. Simulation of mine water inflow and gas emission during longwall mining[J]. Rock Mechanics and Rock Engineering, 2009, 42(1): 25-51.

[81]马立强, 张东升, 缪协兴, 等. FLAC3D 模拟采动岩体渗流规律[J]. 湖南科技大学学报(自然科学版), 2006, 21(3): 1-5.

[82]朱斌, 高峰, 杨建文, 等. 深部薄层煤岩体裂隙-孔隙双渗流模拟研究[J]. 中国矿业大学学报, 2014 (6): 987-994.

[83]张杰, 侯忠杰, 石平五. 地下工程渗流场与应力场耦合的相似材料模拟[J]. 辽宁工程技术大学学报, 2005, 24(5): 639-642.

[84]杨天鸿, 赵兴东, 冷雪峰, 等. 地下开挖引起围岩破坏及其渗透性演化过程仿真[J]. 岩石力学与工程学报, 2003, 22(增1): 2386-2389.

[85]缪协兴, 刘卫群, 陈占清. 采动岩体渗流与煤矿灾害防治[J]. 西安石油大学学报: 自然科学版, 2007, 22(2): 74-77.

[86]王文学, 隋旺华, 董青红. 应力恢复对采动裂隙岩体渗透性演化的影响[J]. 煤炭学报, 2014, 39(6): 1031-1038.

[87]王皓, 乔伟, 柴蕊. 采动影响下煤层覆岩渗透性变化规律及垂向分带特征[J]. 煤田地质与勘探, 2015, 43(3): 51-55.

[88]张东明, 齐消寒, 宋润权, 等. 采动裂隙煤岩体应力与瓦斯流动的耦合机理[J]. 煤炭学报, 2015, 40(04): 774-780.

[89]Khodot V V. Role of methane in the stress state of a coal seam[J]. Soviet Mining, 1980, 16(5): 460-466.

[90]Krishnamurthy N S, Rao V A, Kumar D, et al. Electrical resistivity imaging technique to delineate coal seam barrier thickness and demarcate water filled voids[J]. Journal of the Geological Society of India, 2009, 73(5): 639-650.

[91]Mordecai M. An investigation into the effect of stress on the permeability of rock taken from carboniferous strata. Ph D thesis, University of Nottingham, 1971.

[92]Neate CJ. Effects of mining subsidence on the permeability of coal measure rocks. Ph D thesis, University of Nottingham, 1980.

[93]Durucan S. An investigation into the stress permeability relationship of coals and flow Patterns around working longwall faces. Ph D thesis, University of Nottingham, 1981.

[94]Keen T F. The simulation of methane flow in carboniferous strata. Ph D thesis, University of Nottingham, 1977.

[95]Balusu R, Deguchi G, Holland R, et al. Goaf gas flow mechanics and development of gas and Sponcom control strategies at a highly gassy mine[J]. Coal and Safety. 2002, 20: 35-45.

[96]Ren T X. CFD modelling of longwall goaf gas flow to improve gas capture and prevent goaf self-heating[J]. Journal of Coal Science & Engineering, 2009, 15(3): 225-228.

[97]Wang W X, Sui W H, Faybishenko B, et al. Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush[J]. Environmental Earth Sciences, 2016, 75(4): 326.

[98]李树刚, 林海飞, 成连华. 综放开采支承压力与卸压瓦斯运移关系研究[J]. 岩石力学与工程学报, 2004, 23(19): 3288-3291.

[99]蒋曙光, 张人伟. 综放采场流场数学模型及数值计算[J]. 煤炭学报, 1998, 23(3): 258-261.

[100]丁广骧, 柏发松. 采空区混合气运动基本方程及有限元解法[J]. 中国矿业大学学报,1996,25(3):21-26.

[101]梁栋, 黄元平. 采动空间瓦斯运动的双重介质模型[J]. 阜新矿业学院学报, 1995, 14(2): 4-7.

[102]高建良, 刘佳佳, 张学博. 采空区渗透率对瓦斯运移影响的模拟研究[J]. 中国安全科学学报, 2010, 20(9): 9-14.

[103]王凯, 蒋曙光, 张卫清, 等. 尾巷改变采空区瓦斯流场的数值模拟研究[J]. 采矿与安全工程学报, 2012, 29(1): 24-30.

[104]金龙哲, 姚伟, 张君. 采空区瓦斯渗流规律的CFD模拟[J]. 煤炭学报, 2010, 35(9): 1476-1480.

[105]董金玉, 杨继红, 杨国香, 等. 基于正交设计的模型试验相似材料的配比试验研究[J]. 煤炭学报, 2012, 37(01): 44-49.

[106]Zhao PX, Zhuo RS, Li SG, et al. Fractal characteristics of methane migration channels in inclined coal seams[J]. Energy, 2021(5): 120127-39.

[107]王志国, 周宏伟, 谢和平. 深部开采上覆岩层采动裂隙网络演化的分形特征研究[J]. 岩土力学, 2009, 30(08): 2403-2408.

[108]田焕志, 江明泉, 余照阳, 等. 格目底向斜地质构造特征及其对瓦斯赋存的影响研究[J]. 煤矿安全, 2022, 53(08): 149-154.

[109]于广明, 谢和平, 周宏伟, 等. 结构化岩体采动裂隙分布规律与分形性实验研究[J]. 实验力学, 1998(02): 14-23.

[110]杨滨滨, 袁世冲, 郑德志, 等. 近距离煤层重复采动覆岩裂隙时空演化特征研究[J]. 采矿与安全工程学报, 2022, 39(02): 255-263.

[111]Zhang H B, Huang Y F. Flow field and gas concentration distribution in the coal mining face and mined-out area with J-Shape and U-Shape ventilation system using COMSOL [J]. Journal of Physics: Conference Series, 2019, 1168(5).

[112]李生舟.采动覆岩裂隙场演化及瓦斯运移规律研究[D]. 重庆: 重庆大学, 2012.

[113]李东印, 许灿荣, 熊祖强. 采煤工作面瓦斯流动模型及COMSOL数值解算[J]. 煤炭学报, 2012, 37(06): 967-971.

[114]孟召平, 张娟, 师修昌, 等. 煤矿采空区岩体渗透性计算模型及其数值模拟分析[J]. 煤炭学报, 2016, 41(8): 1997-2005.

[115]张礼, 齐庆新, 张勇, 等. 采动覆岩裂隙场三维形态特征及其渗透特性研究[J]. 采矿与安全工程学报, 2021, 38(04): 695-705.

[116]徐超, 王凯, 郭琳, 等. 采动覆岩裂隙与渗流分形演化规律及工程应用[J]. 岩石力学与工程学报, 2022, 41(12): 2389-2403.

[117]司俊鸿, 程根银, 朱建芳, 等. 采空区非均质多孔介质渗透特性三维建模及应用[J]. 煤炭科学技术, 2019, 47(5): 220-224.

[118]Whittles DN, Lowndes IS, Kingman SW, et al. Influence of geotechnical factors on gas flow experienced in a UK longwall coal mine panel [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(3):369-387.

[119]许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(01): 35-43.

[120]蒋力帅, 武泉森, 李小裕, 等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报, 2017, 42(08): 1951-1959.

[121]徐则民, 杨立中. 渗流场与应力场相互关系研究中应注意的两个问题[J]. 矿物岩石, 1998(01): 103-108.

[122]Salamon M. Mechanism of caving in longwall coal mining [A]. Rock mechanics contribution and challenges [C]. Proceedingsof the 31st US Symposium of Rock Mechanics, Golden, Colorado, 1990: 161-168.

[123]Yavuz. H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 193-205.

[124]路广奇. 平煤股份十一矿“以孔代巷”定向钻进区域瓦斯治理技术研究及应用[J]. 煤炭技术, 2023, 42(01): 147-150.

郭明杰, 郭文兵, 赵高博, 等. 长壁开采覆岩内水平定向长钻孔位置特征与卸压瓦斯抽采机理[J]. 煤炭学报: 1-16.

中图分类号:

 TD712    

开放日期:

 2023-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式