- 无标题文档
查看论文信息

论文中文题名:

 表面活性剂作用下细菌降解乌东低阶煤的机理研究    

姓名:

 吴昊    

学号:

 19213077022    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 煤炭生物转化    

第一导师姓名:

 刘向荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Research on mechanisms of microbial degradation of Wudong low-rank coal under the action of surfactants    

论文中文关键词:

 铜绿假单胞菌 ; 日本假单胞菌 ; 低阶煤 ; 细胞膜通透性 ; 细胞表面疏水性 ; 微生物降解    

论文外文关键词:

 Pseudomonas aeruginosa ; Pseudomonas japonicum ; Low-rank coal ; Cell membrane permeability ; Cell surface hydrophobicity ; Biodegradation    

论文中文摘要:

低阶煤的微生物降解在常温、常压下进行,具有能耗低、设备简单和环境友好等优点,是低阶煤绿色转化的有效途径之一。然而,大多数研究发现煤的微生物降解率普遍较低,因此,研究者们尝试利用表面活性剂来优化降解过程,目前该研究主要集中于表面活性剂对煤表面性质的改性,而关于表面活性剂对微生物细胞的影响研究较少。

本文选取了3种类型的表面活性剂,分别为非离子表面活性剂Triton X-100,阴离子表面活性剂SDS和阳离子表面活性剂DTAB。基于表面活性剂与细胞的相互作用,研究了铜绿假单胞菌和日本假单胞菌2种细菌,在表面活性剂的作用下对新疆乌东低阶煤的降解过程和降解机理。

主要工作如下:

(1)探讨了表面活性剂对细菌细胞膜通透性和细胞表面疏水性的影响

测定了在3种表面活性剂作用下,细菌的细胞膜通透性和细胞表面疏水性,结果表明:Triton X-100提高了2种细菌细胞膜的通透性,而SDS和DTAB均降低了2种细菌细胞膜的通透性。当Triton X-100的浓度分别为4 CMC(临近胶束浓度)和6 CMC时,铜绿假单胞菌和日本假单胞菌细胞膜的通透性达到最大值;而SDS和DTAB即使在浓度较低(0.2 CMC)时,都会使2种细菌细胞膜的通透性降低。此外,3种表面活性剂均提高了2种细菌细胞表面疏水性,且当它们的浓度均为CMC时,2种细菌的细胞表面疏水性均能达到最大值。

(2)研究了表面活性剂作用下乌东煤的微生物降解过程

在未添加表面活性剂的微生物降解煤的过程中,确定了2种细菌对乌东煤的最佳降解条件。当铜绿假单胞菌和日本假单胞菌的培养时间分别为36 h和48 h,煤样粒径均为0.25-0.50 mm,煤浆浓度均为0.3 g/50 mL时,对乌东煤的降解率达到最大,分别为71.20%和61.63%。

在上述最优降解条件下,探究了表面活性剂对乌东煤降解过程的影响,发现表面活性剂可通过改变细菌细胞膜的通透性和细胞表面疏水性影响乌东煤的降解率,其中,细菌细胞膜通透性的增加可提高煤样的降解率,细胞表面疏水性的增加可降低煤样的降解率。当Triton X-100浓度为4 CMC和6 CMC时,铜绿假单胞菌和日本假单胞菌的细胞膜通透性达到最大,乌东煤的降解率最高,为78.63%和73.17%,较未添加表面活性剂的对照组分别提高了7.43%和11.54%。当SDS和DTAB浓度为CMC时,2种细菌细胞膜的通透性降低,细胞表面疏水性达到最大,乌东煤的降解率最低。在SDS和DTAB的作用下,铜绿假单胞菌对乌东煤的降解率分别为55.93%和20.93%,较未添加表面活性剂的对照组分别降低了15.27%和50.27%;日本假单胞菌对乌东煤的降解率为52.33%和17.53%,较未添加表面活性剂的对照组分别降低了9.30%和44.10%。

(3)分析了乌东煤微生物降解的固、液相产物组成

在表面活性剂的作用下,对最优降解条件下的产物进行了分析,与对照组相比发现,固相产物的芳香族脂肪链长度减小,芳香族和脂肪族官能团的相对丰度降低;煤样微晶结构中芳香层片的平均直径和平均高度减小;液相产物的组成相似,主要为烷烃、醇、羧酸、酯类和芳香类等物质,分子量在70-546之间,这表明了表面活性剂只能影响煤样的降解速度和降解率,不能改变产物的组成。

(4)探讨了表面活性剂作用下乌东煤的微生物降解机理

在本文的研究方法下,Triton X-100、SDS和DTAB主要是通过改变细菌细胞膜的通透性和细胞表面疏水性等方式,综合作用于煤的微生物降解过程,进而改变了乌东煤的降解率。其中,Triton X-100增加了细胞表面疏水性,对乌东煤的降解产生了不利影响,但细菌细胞膜通透性提高,总体促进了乌东煤的降解;而SDS和DTAB既降低了细菌细胞的通透性,也提高了细菌细胞表面疏水性,从而抑制了乌东煤的降解。

论文外文摘要:

Microbial degradation of low-rank coal is carried out at normal temperature and pressure, which has the advantages of low energy consumption, simple equipment, and environmental friendliness, and is one of the effective ways for green conversion of low-rank coal. However, most studies found that the microbial degradation rate of coal is generally low, therefore, researchers have tried to optimize the degradation process by using surfactants, and at present, this research mainly focuses on the modification of surface properties of coal by surfactants, while there are fewer studies on the effects of surfactants on microbial cells.

In this paper, three types of surfactants were selected, namely, nonionic surfactant Triton X-100, anionic surfactant SDS, and cationic surfactant DTAB. Based on the interaction between surfactants and cells, the degradation process and degradation mechanism of two bacteria, Pseudomonas aeruginosa and Pseudomonas japonicus, on Xinjiang Wudong low-rank coal in the presence of surfactants were investigated.

The main works are as follows.

(1) Effects of surfactants on bacterial cell membrane permeability and cell surface hydrophobicity

The cell membrane permeability and cell surface hydrophobicity of bacteria were measured under the effects of three surfactants, and the results showed that Triton X-100 increased the cell membrane permeability of two bacteria, while both SDS and DTAB decreased the cell membrane permeability of two bacteria. The cell membrane permeability of Pseudomonas aeruginosa and Pseudomonas japonicus reached the maximum when the concentrations of Triton X-100 were 4 CMC (near micelle concentration) and 6 CMC, respectively, while SDS and DTAB reduced the cell membrane permeability of two bacteria even at lower concentrations (0.2 CMC). In addition, all three surfactants increased the cell surface hydrophobicity of two bacteria, and the cell surface hydrophobicity of two bacteria could reach the maximum when their concentrations were all CMC.

(2) Microbial degradation processes of Wudong coal under the action of surfactants

In the process of microbial degradation of coal without the addition of surfactant, the optimal degradation conditions of Wudong coal by two bacteria were determined. When the incubation time of Pseudomonas aeruginosa and Pseudomonas japonicus was 36 h and 48 h, respectively, and the particle size of coal samples were both 0.25-0.50 mm, and the concentrations of coal slurry were both 0.3 g/50 mL, the degradation rate of Wudong coal reached the maximum, which was 71.20% and 61.63%, respectively.

Under the above optimal degradation conditions, the effect of surfactant on the degradation process of Wudong coal was investigated, and it was found that surfactant could affect the degradation rate of Wudong coal by changing the bacterial cell membrane permeability and cell surface hydrophobicity, among which, the increase of bacterial cell membrane permeability could increase the degradation rate of coal samples, and the increase of cell surface hydrophobicity could decrease the degradation rate of coal samples. When Triton X-100 concentrations were 4 CMC and 6 CMC, the cell membrane permeability of Pseudomonas aeruginosa and Pseudomonas japonicus reached the maximum, and the degradation rates of Wudong coal were the highest, 78.63% and 73.17%, which increased 7.43% and 11.54%, respectively, compared with the control group without surfactant addition. When the concentrations of SDS and DTAB were CMC, the cell membrane permeability of the two bacteria decreased, the cell surface hydrophobicity of the two bacteria reached the maximum, and the degradation rates of Wudong coal were the lowest. In the presence of SDS and DTAB, the degradation rates of Pseudomonas aeruginosa on Wudong coal were 55.93% and 20.93%, which were 15.27% and 50.27% lower than those of the control group without surfactant addition, respectively; the degradation rates of Pseudomonas japonicus on Wudong coal were 52.33% and 17.53%, which were 9.30% and 44.10% lower than the control group without surfactant addition, respectively.

(3) Compositions of the solid and liquid products of microbial degradation of Wudong coal

The products under optimal degradation conditions were analyzed in the presence of surfactants. Compared with the control group, it was found that the length of aromatic aliphatic chain and the relative abundance of aromatic and aliphatic functional groups of the solid products decreased; The average diameter and height of aromatic lamellae in the microcrystalline structure of coal samples reduced; The compositions of the liquid product were similar, mainly alkanes, alcohols, carboxylic acids, esters, and aromatics, with molecular weights ranging from 70 to 546, which indicated that the surfactants could only affect the degradation speed and degradation rate of the coal samples, and could not change the compositions of the product.

(4) Microbial degradation mechanisms of Wudong coal under the action of surfactants

Under the research method of this paper, Triton X-100, SDS and DTAB mainly acted on the microbial degradation process of coal by changing the cell membrane permeability and cell surface hydrophobicity of bacteria, which in turn changed the degradation rate of Wudong coal. Among them, Triton X-100 increased cell surface hydrophobicity, which adversely affected the degradation of Wudong coal, but increased bacterial cell membrane permeability, which generally promoted the degradation of Wudong coal, while SDS and DTAB both decreased bacterial membrane cell permeability and increased bacterial cell surface hydrophobicity, which inhibited the degradation of Wudong coal.

参考文献:

[1] Sekhohola L M, Igbinigie E E, Cowan A K. Biological degradation and solubilisation of coal[J]. Biodegradation, 2013, 24(3): 305-318.

[2] 张明旭, 王龙贵, 沈国娟, 等. 煤炭的生物转化技术研究[C]//2005 年全国选煤学术会议论文集. 2005.

[3] Lumpkin R E. Recent progress in the direct liquefaction of coal[J]. Science, 1988, 239(4842): 873-877.

[4] Shi K, Liu Y, Chen P, et al. Contribution of lignin peroxidase, manganese peroxidase, and laccase in lignite degradation by mixed white-rot fungi[J]. Waste and Biomass Valorization, 2021, 12(7): 3753-3763.

[5] Potter M C. Bacteria as agents in the oxidation of amorphous carbon[J]. Proceedings of the Royal Society of London. Series B, containing papers of a biological character, 1908, 80(539): 239-259.

[6] Fakoussa R M. Production of water-soluble coal-substances by partial microbial liquefaction of untreated hard coal[J]. Resources, Conservation and Recycling, 1988, 1(3-4): 251-260.

[7] Cohen M S, Gabriele P D. Degradation of coal by the fungi Polyporus versicolor and Poria monticola[J]. Applied and environmental microbiology, 1982, 44(1): 23-27.

[8] Kulikova N A, Stepanova E V, Koroleva O V. Mitigating activity of humic substances: direct influence on biota[J]. Use of humic substances to remediate polluted environments: from theory to practice, 2005: 285-309.

[9] Hofrichter M, Ziegenhagen D, Sorge S, et al. Degradation of lignite(low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system[J]. Applied Microbiology and Biotechnology, 1999, 52(1): 78-84.

[10] Grinhut T, Hadar Y, Chen Y. Degradation and transformation of humic substances by saprotrophic fungi: processes and mechanisms[J]. Fungal Biology Reviews, 2007, 21(4): 179-189.

[11] 李慧, 张亚婷, 汪广恒, 等. 光氧化预处理对神府煤生物转化的影响[J]. 应用化工, 2007, 36(4): 325-333.

[12] 李建涛, 刘向荣, 皮淑颖, 等. 煤的微生物转化研究进展[J]. 西安科技大学学报, 2017, 37(1): 106-120.

[13] 李建涛,刘向荣,杨杰,等. 微生物降解低阶煤的光氧化预处理降解条件优化[J]. 化学与生物工程, 2019, 36(12): 17-20.

[14] 韩威, 佟威, 杨海波, 等. 煤的微生物溶(降) 解及其产物研究[J]. 大连理工大学学报, 1994, 34(6): 653-661.

[15] Graff R A, Brandes S D. Modification of coal by subcritical steam: pyrolysis and extraction yields[J]. Energy & Fuels, 1987, 1(1): 84-88.

[16] 董鹏伟, 岳君容, 高士秋, 等. 热预处理影响褐煤热解行为研究[J]. 燃料化学学报, 2012, 40(8): 897-905.

[17] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(1): 125-127.

[18] 张金龙, 郭红光, 王凯, 等.煤生物转化的预处理技术研究进展[J]. 煤炭技术, 2016, 35(11): 317-319.

[19] Alvarez R, Clemente C, Gomez-Limon D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure☆[J]. Fuel, 2003, 82(15-17): 2007-2015.

[20] 石开仪, 陶秀祥, 李阳, 等. 抚顺褐煤微生物溶煤机理初步研究[J]. 选煤技术, 2008, 2008(3): 4-9.

[21] Huang Z, Liers C, Ullrich R, et al. Depolymerization and solubilization of chemically pretreated powder river basin subbituminous coal by manganese peroxidase(MnP) from Bjerkandera adusta[J]. Fuel, 2013, 112: 295-301.

[22] Jones E J P, Harris S H, Barnhart E P, et al. The effect of coal bed dewatering and partial oxidation on biogenic methane potential[J]. International Journal of Coal Geology, 2013, 115: 54-63.

[23] Liu F, Guo H, Wang Q, et al. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis[J]. Fuel, 2019, 237: 1209-1216.

[24] 王龙贵, 张明旭, 欧泽深, 等. 菌种的选育及用于煤炭降解转化实验研究[J]. 中国矿业大学学报, 2006, 35(4): 504-509.

[25] 李建涛, 刘向荣, 皮淑颖, 等. 放线菌降解云南昭通褐煤降解条件优化研究[J]. 应用化工, 2017, 46(9): 1683-1687.

[26] Yossifova M G, Valčeva S P, Nikolova S F. Exogenic microbial activity in coals[J]. Fuel Processing Technology, 2011, 92(4): 825-835.

[27] Barnhart E P, De León K B, Ramsay B D, et al. Investigation of coal-associated bacterial and archaeal populations from a diffusive microbial sampler(DMS)[J]. International Journal of Coal Geology, 2013, 115: 64-70.

[28] 占迪, 何环, 廖远松, 等. 褐煤强化产甲烷菌群的群落分析及条件优化[J]. 微生物学报, 2018, 58(4): 684-698.

[29] Gupta R K, Deobald L A, Crawford D L. Depolymerization and chemical modification of lignite coal by Pseudomonas cepacia strain DLC-07[J]. Applied Biochemistry and Biotechnology, 1990, 24(1): 899-911.

[30] Jiang F, Li Z, Lv Z, et al. The biosolubilization of lignite by Bacillus sp. Y7 and characterization of the soluble products[J]. Fuel, 2013, 103: 639-645.

[31] Sezen S, Güllüce M, Karadayi M, et al. First report of fungal strains from Afşin–Elbistan mine for microbial lignite process[J]. Geomicrobiology Journal, 2020, 37(2): 143-146.

[32] Romanowska I, Strzelecki B, Bielecki S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020[J]. Fuel Processing Technology, 2015, 131: 430-436.

[33] Kwiatos N, Jędrzejczak-Krzepkowska M, Strzelecki B, et al. Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase[J]. Amb Express, 2018, 8(1): 1-9.

[34] 徐敬尧. 煤炭生物降解转化新菌种基因工程的构建研究[D]. 安徽理工大学, 2009.

[35] Shi K Y , Tao X X , Yin S D , et al. Bio-liquefaction of Fushun lignite: characterization of newly isolated lignite liquefying fungus and liquefaction products[J]. Procedia Earth and Planetary Science, 2009, 1(1): 627-633.

[36] 王英, 王力, 王学民. 微生物溶煤产物的分析[J]. 2006, 湿法冶金, 2006, 25(3): 165-168.

[37] 姚菁华. 褐煤的微生物解聚研究[D]. 中国矿业大学, 2014.

[38] Saha P, Sarkar S. Microbial degradation of coal into a value added product[J]. International Journal of Coal Preparation and Utilization, 2019, 39(1): 1-19.

[39] Akimbekov N, Digel I, Qiao X, et al. Lignite Biosolubilization by Bacillus sp. RKB 2 and Characterization of its Products[J]. Geomicrobiology Journal, 2020, 37(3): 255-261.

[40] 徐云龙, 刘向荣, 李建涛, 等. 两种细菌降解内蒙古褐煤过程及液相产物分析[J]. 煤炭转化, 2017, 40(6): 34-40.

[41] 徐杰, 刘向荣, 杜志鹏, 等. 两种微生物对山西高硫煤脱硫的最优降解条件[J]. 煤炭转化, 2019, 42(2): 90-96.

[42] Quigley D R, Ward B, Crawford D L, et al. Evidence that microbially produced alkaline materials are involved in coal biosolubilization[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 753-763.

[43] Quigley D R, Wey J E, Breckenridge C R, et al. The influence of pH on biological solubulization of oxidized, low-rank coal[J]. Resources, Conservation and Recycling, 1988, 1(3-4): 163-174.

[44] Maka A, Srivastava V J, Kllbane J J, et al. Biological solubilization of untreated North Dakota lignite by a mixed bacterial and a mixed bacterial/fungal culture[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 715-729.

[45] Strandberg G W, Lewis S N. Solubilization of coal by an extracellular product from Streptomyces setonii 75Vi2[J]. Journal of Industrial Microbiology and Biotechnology, 1987, 1(6): 371-375.

[46] Hofrichter M, Bublitz F, Fritsche W. Fungal attack on coal II. Solubilization of low-rank coal by filamentous fungi[J]. Fuel Processing Technology, 1997, 52(1-3): 55-64.

[47] Conesa A, Punt P J, Cees A M J J, et al. Fungal peroxidases: molecular aspects and applications[J]. Journal of Biotechnology, 2002, 93(2):143-158.

[48] Quigley D R, Breckenridge C R, Dugan P R, et al. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures[J]. Energy & Fuels, 1989, 3(5): 571-574.

[49] Cohen M S, Feldman K A, Brown C S, et al. Isolation and identification of the coal-solubilizing agent produced by Trametes versicolor[J]. Applied and Environmental microbiology, 1990, 56(11): 3285-3291.

[50] Fredrickson J K, Stewart D L, Campbell J A, et al. Biosolubilization of low-rank coal by a Trametes versicolor siderophore-like product and other complexing agents[J]. Journal of Industrial Microbiology and Biotechnology, 1990, 5(6): 401-406.

[51] Pyne Jr J W, Stewart D L, Fredrickson J, et al. Solubilization of leonardite by an extracellular fraction from Coriolus versicolor[J]. Applied and Environmental Microbiology, 1987, 53(12): 2844-2848.

[52] Glenn J K, Morgan M A, Mayfield M B, et al. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium[J]. Biochemical and Biophysical Research Communications, 1983, 114(3): 1077-1083.

[53] Willmann G, Fakoussa R M. Extracellular oxidative enzymes of coal-attacking fungi[J]. Fuel Processing Technology, 1997, 52(1-3): 27-41.

[54] Wondrack L. Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase[J]. Applied Biochemistry and Biotechnology, 1989, 20(1): 765-780.

[55] Yang Y, Yang J, Li B, et al. An esterase from Penicillium decumbens P6 involved in lignite depolymerization[J]. Fuel, 2018, 214: 416-422.

[56] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌对煤炭的降解转化实验[J]. 煤炭学报, 2006, 31(2): 241-244.

[57] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌降解转化煤炭的机理研究[J]. 煤炭科学技术, 2006, 34(3): 40-43.

[58] Fakoussa R M, Hofrichter M. Biotechnology and microbiology of coal degradation[J]. Applied Microbiology and Biotechnology, 1999, 52(1): 25-40.

[59] Fakoussa R M. Coal as a substrate for microorganisms: Investigation with microbial conversion of national coals[D]. Friedrich-Wilhelms University.

[60] Polman J K, Miller K S, Stoner D L, et al. Solubilization of bituminous and lignite coals by chemically and biologically synthesized surfactants[J]. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, 1994, 61(1): 11-17.

[61] Kang H, Liu X, Zhang Y, et al. Bacteria solubilization of shenmu lignite: influence of surfactants and characterization of the biosolubilization products[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(10): 1162-1180.

[62] Górna H, Ławniczak Ł, Zgoła-Grześkowiak A, et al. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids[J]. Bioresource Technology, 2011, 102(3): 3028-3033.

[63] Van H J D, Singh A, Ward O P. Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology[J]. Biotechnology Advances, 2006, 24(6): 604-620.

[64] Helenius A, Simons K A I. Solubilization of membranes by detergents[J]. Biochimica et Biophysica Acta(BBA)-Reviews on Biomembranes, 1975, 415(1): 29-79.

[65] Zhang D, Zhu L, Li F. Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain[J]. Bioresource Technology, 2013, 142: 454-461.

[66] Zita A, Hermansson M. Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs[J]. Applied and Environmental Microbiology, 1997, 63(3): 1168-1170.

[67] Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity[J]. Enzyme and Microbial Technology, 2000, 27(10): 749-754.

[68] Owsianiak M, Szulc A, Chrzanowski Ł, et al. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity[J]. Applied Microbiology and Biotechnology, 2009, 84(3): 545-553.

[69] Cohen M S, Bowers W C, Aronson H, et al. Cell-free solubilization of coal by Polyporus versicolor[J]. Applied and Environmental Microbiology, 1987, 53(12): 2840-2843.

[70] Laborda F, Fernandez M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and/or liquefy Spanish coals[J]. Fuel Processing Technology, 1997, 52(1-3): 95-107.

[71] Shi K, Tao X, Hong F, et al. Mechanism of oxidation of low rank coal by nitric acid[J]. Journal of Coal Science and Engineering (China), 2012, 18(4): 396-399.

[72] Woodward C A, Kaufman E N. Enzymatic catalysis in organic solvents: Polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene[J]. Biotechnology and Bioengineering, 1996, 52(3): 423-428.

[73] Itskos G, Itskos S, Moutsatsou A, et al. The outcomes of the 2-decade monthly monitoring of fly ash-composition in a lignite-fired power station[J]. Waste and Biomass Valorization, 2010, 1(4): 431-437.

[74] Gokcay C F, Kolankaya N, Dilek F B. Microbial solubilization of lignites[J]. Fuel, 2001, 80(10): 1421-1433.

[75] Shi K Y, Yin S D, Tao X X, et al. Quantitative measurement of coal bio-solubilization by ultraviolet-visible spectroscopy[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2013, 35(15): 1456-1462.

[76] Cavallari J F, Lamers R P, Scheurwater E M, et al. Changes to its peptidoglycan-remodeling enzyme repertoire modulate β-lactam resistance in Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(7): 3078-3084.

[77] Hancock R E, Wong P G. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane[J]. Antimicrobial Agents and Chemotherapy, 1984, 26(1): 48-52.

[78] Bos M P, Tefsen B, Geurtsen J, et al. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface[J]. Proceedings of the National Academy of Sciences, 2004, 101(25): 9417-9422.

[79] Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity[J]. FEMS Microbiology Letters, 1984, 22(3): 289-295.

[80] Moses E R. Permeabilized cells[J]. Methods in Enzymology, 1995, 262: 497-499.

[81] Van der Werf M J, Hartmans S, Van den Tweel W J J. Permeabilization and lysis of Pseudomonas pseudoalcaligenes cells by Triton X-100 for efficient production of D-malate[J]. Applied Microbiology and Biotechnology, 1995, 43(4): 590-594.

[82] Klebensberger J, Rui O, Fritz E, et al. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate[J]. Archives of Microbiology, 2006, 185(6): 417-427.

[83] Guanhua N, Zhao L, Qian S, et al. Effects of [Bmim][Cl] ionic liquid with different concentrations on the functional groups and wettability of coal[J]. Advanced Powder Technology, 2019, 30(3): 610-624.

[84] Tao Y, Qian L H, Xie J. Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus[J]. Carbohydrate Polymers, 2011, 86(2): 969-974.

[85] Xiao L, Qu X, Zhu D. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding[J]. Environmental Science & Technology, 2007, 41(8): 2750-2755.

[86] Zhao Z, Selvam A, Wong J W C. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene[J]. Bioresource Technology, 2011, 102(5): 3999-4007.

[87] Zhang D, Zhu L. Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1[J]. Environmental Pollution, 2012, 164: 169-174.

[88] Lai Y J S, Zhou Y, Eustance E, et al. Cell disruption by cationic surfactants affects bioproduct recovery from Synechocystis sp. PCC 6803[J]. Algal Research, 2018, 34: 250-255.

[89] Guo H, Dong Z, Liu X, et al. Analysis of methanogens adsorption and biogas production characteristics from different coal surfaces[J]. Environmental Science and Pollution Research, 2019, 26(14): 13825-13832.

[90] Vick S H W, Tetu S G, Sherwood N, et al. Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface[J]. International Journal of Coal Geology, 2016, 160: 42-50.

[91] He X, Liu X, Nie B, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.

[92] Li Z, Ni G, Wang H, et al. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy[J]. Fuel, 2020, 272, 117705.

[93] Jiang J, Yang W, Cheng Y, et al. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel, 2019, 239: 559-572.

[94] Takagi H, Maruyama K, Yoshizawa N, et al. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel, 2004, 83(17-18): 2427-2433.

[95] Jiang J, Zhang S, Longhurst P, et al. Molecular structure characterization of bituminous coal in Northern China via XRD, Raman and FTIR spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 255: 119724.

[96] Qi L, Tang X, Wang Z, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach[J]. International Journal of Mining Science and Technology, 2017, 27(2): 371-377.

[97] 李建楼, 张治. 低温氮吸附法判识构造煤的实验研究[J]. 地质与勘探, 2020, 56: 838-844.

[98] Wang Z, Cheng Y, Qi Y, et al. Experimental study of pore structure and fractal characteristics of pulverized intact coal and tectonic coal by low temperature nitrogen adsorption[J]. Powder Technology, 2019, 350: 15-25.

[99] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5): 552-556.

[100]Yin M, Huang H, Ma J. Pore size constrains on hydrocarbon biodegradation in shales from the Second White Speckled Shale Formation of the Western Canada Sedimentary Basin[J]. Fuel, 2016, 185: 639-648.

[101]吴昊, 刘向荣, 石晨, 等. 日本假单胞菌超声破碎液对新疆乌东低阶煤降解过程的研究[J]. 煤炭学报, 2022: 1-10.

[102]刘祺峰. 基于热重分析的煤氧复合过程中特征温度点的研究[D]. 西安科技大学, 2007.

[103]王秋红, 方向, 李州昊. 4种典型易燃烟煤的着火特性分析[J]. 中国安全生产科学技术, 2020.

中图分类号:

 TQ 536    

开放日期:

 2023-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式