- 无标题文档
查看论文信息

论文中文题名:

 黄陵二号矿含油煤层213工作面油气溯源分析及应用研究    

姓名:

 李泳    

学号:

 20220226126    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井瓦斯灾害防治    

第一导师姓名:

 严敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Oil and gas traceability analysis and application study of 213 working face of oil-bearing coal seam in Huangling No.2 mine    

论文中文关键词:

 油型气 ; 煤型气 ; 沉积环境 ; 稳定同位素组成 ; 瓦斯溯源    

论文外文关键词:

 Oil-type gas ; Coal-type gas ; Depositional environment ; Stable isotope composition ; Gas traceability    

论文中文摘要:

鄂尔多斯盆地南缘黄陇侏罗系黄陵矿区是我们国家典型的煤、油、气共生共采矿区。在开采煤炭资源过程中,受到煤层气和围岩油型气的双重威胁。黄陵二号矿作为高瓦斯矿井除瓦斯涌出量较大外,常伴有顶底板油型气异常涌出、渗油现象,严重影响矿井安全高效生产。为明确黄陵二号矿含油煤层中油气来源及分布规律,本文对213工作面瓦斯(煤型气及油型气)来源进行分析,论文以黄陵二号矿为研究区,利用X射线荧光光谱仪、电感耦合等离子体质谱仪等实验仪器对含煤地层岩样测试主量和微量元素,明确研究区油气源岩的沉积物源和古沉积环境;利用碳硫分析仪、岩石热解仪、色谱质谱联用仪,评价含煤岩层烃源岩生油潜力,通过油源精细化对比明确原油来源;采用配备有气相色谱的同位素比质谱仪,测定不同位置瓦斯碳氢同位素值,基于混源比例模型计算,明确213工作面瓦斯来源及赋存规律,判识瓦斯赋存富集区域,指导现场瓦斯预抽钻孔布置方案。

研究结果表明黄陵矿区延安组黄陵二号矿含煤地层油、气的古沉积环境表现为半干热-干热气候条件下具有较弱的水动力和较强的还原性(贫氧)的煤系地层。地层具备优质烃源岩,延安组岩层中油属于混合来源,包括本岩层烃源岩有机质自身转化和延长组原油充注作用下储存于煤层顶底板砂岩储层。

213工作面瓦斯与两个煤层(2#和3#)瓦斯成因类型总体相同,都属于生物成因气,213工作面有油型气的混入。213工作面瓦斯来源中,2#煤层煤型气贡献占比为64.50%~100.00%,3#煤层煤型气贡献占比为0%~35.48%,油型气贡献占比为0%~12.79%,油型气主要来源于2#煤层顶板。

根据研究区煤层瓦斯赋存地质条件调研与油气溯源结果,对黄陵二号矿213工作划分瓦斯赋存富集区,并依据富集区分布规律与特征制定了2#煤层、3#煤层及顶底板瓦斯预抽方案,其中,2#煤层及顶板作为主要煤型气预抽目标,3#煤层及顶为辅。同时,根据213工作面瓦斯赋存富集区划分结果细化区域钻孔布置,对2#煤层布置煤层顺层钻孔和顶底板瓦斯抽采钻孔,对3#煤层进行扇形钻场布置和施工区域瓦斯治理专用巷,以提高213工作面瓦斯治理效果。现场预抽结果表明,划定的瓦斯赋存富集区有效提高了213工作面瓦斯抽采的精确性和高效性。

论文以实验研究、理论分析和现场实践为研究手段,分析了黄陵二号矿油气的母质来源和沉积环境、油气来源以及213工作面瓦斯赋存规律,对其瓦斯赋存富集区进行了圈定,并设计了该工作面瓦斯预抽方案。研究结果为黄陵二号含油煤层中油气溯源分析和瓦斯赋存富集区域圈定提供了理论和实践指导。

论文外文摘要:

Huangling Mining Area of Huanglong Jurassic System at the southern margin of Ordos Basin is a typical symbiotic co-mining area of coal, oil and gas in China. In the process of mining coal resources, it is doubly threatened by coal bed methane and oil type gas in the surrounding rock. As a high gas mine, Huangling No.2 mine is often accompanied by abnormal gushing and oil seepage of oil-type gas from the top and bottom plates, which seriously affects the safe and efficient production of the mine, in addition to the large amount of gas gushing. In order to clarify the source and distribution pattern of oil and gas in the oil-bearing coal seam of Huangling No.2 mine, this paper analyzes the source of gas (coal-type gas and oil-type gas) in 213 working face. The paper takes Huangling No.2 mine as the study area, and uses experimental instruments such as X-ray fluorescence spectrometer and inductively coupled plasma mass spectrometer to test the main and trace elements in the rock samples of coal-bearing strata to clarify the sediment source and ancient deposition environment of oil and gas source rocks in the study area; uses Using carbon and sulfur analyzer, rock pyrolyzer and chromatography-mass spectrometer, we evaluate the oil generation potential of hydrocarbon source rocks in coal-bearing strata, and clarify the source of crude oil through oil source refinement comparison; using isotope ratio mass spectrometer equipped with gas chromatography, we determine the carbon and hydrogen isotope values of gas at different locations, and based on the calculation of mixed source ratio model, we clarify the source and distribution pattern of mixed gas at 213 working face, and identify the gas distribution enrichment area to guide the site The results of the study show that the gas pre-pumping drill holes in the Yellowing mine are not suitable for the mine.

The research results show that the paleodepositional environment of oil and gas in the coal-bearing strata of Huangling No.2 Mine of Yan'an Formation in Huangling Mine is a coal-bearing stratum with weak hydrodynamics and strong reducibility (oxygen-poor) under semi-dry-heat-dry-heat climate conditions. The formation has high-quality hydrocarbon source rocks, and the oil in the Yan'an Formation rock belongs to mixed sources, including the conversion of organic matter of hydrocarbon source rocks of this formation itself and the sandstone reservoir stored in the top and bottom plates of the coal seam under the action of crude oil filling of the Yan'an Formation.

The gas from the 213 working face and the two coal seams (2# and 3#) are generally of the same type of gas genesis, both belong to biogenic gas, and there is oil type gas mixed in the 213 working face. 64.50%~100.00% of the gas from the 213 working face is contributed by coal type gas from the 2# coal seam, 0%~35.48% from coal type gas from the 3# coal seam, and 0%~12.79% from oil type gas., and the oil-based gas mainly comes from the top of the #2 coal seam.

According to the research on the geological conditions of coal seam gas distribution in the study area and the results of oil and gas tracing, the 213 workings of Huangling No.2 mine were divided into gas distribution enrichment areas, and the gas pre-pumping plan for 2# coal seam, 3# coal seam and top and bottom plates was formulated based on the distribution pattern and characteristics of the enrichment areas. At the same time, according to the results of the division of the gas-rich area on the 213 working face, the regional drilling arrangement was refined, with the coal seam cascade drilling and the top and bottom plate gas extraction drilling arranged for the 2# coal seam, and the fan drilling field arrangement and the construction of regional gas management special alley for the 3# coal seam, in order to improve the gas management effect on the 213 working face. The results of the pre-sumping show that the delineated gas-rich areas effectively improved the accuracy and efficiency of gas extraction at the 213 working face.

Using experimental research, theoretical analysis and field practice as research methods, The parent material and depositional environment of the oil and gas in the Huangling No.2 mine, the source of oil and gas and the gas accumulation pattern of the 213 working face were analysed, the gas accumulation enrichment area was traced and a gas pre-pumping plan for the working face was designed. The results of the study provide theoretical and practical guidance for the analysis of oil and gas traceability in the oil-bearing coal seam of Huangling No.2 and the tracing of gas-rich areas.

参考文献:

张通. 双碳目标下新型科研体系建设[J]. 科技资讯, 2022, 20(18): 252-256.

[2] 彭治超, 李亚男, 张孙玄琦, 等. 主微量元素地球化学特征在沉积环境中的应用[J]. 西安文理学院学报(自然科学版), 2018, 21(03): 108-111.

[3] 林晓慧, 詹兆文, 邹艳荣, 等. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境意义[J]. 地球化学, 2019, 48(01): 67-78.

[4] Rimmer S, Thompson J, Goodnight S, et al. Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2004, 215(1-2): 125-154.

[5] Xu C, Shan X, He W, et al. The influence of paleoclimate and a marine transgression event on organic matter accumulation in lacustrine black shales from the Late Cretaceous, southern Songliao Basin, Northeast China[J]. International Journal of Coal Geology, 2021, 246: 103842.

[6] Li D, Li R, Zhu Z, et al. Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China)[J]. Fuel, 2017, 208(15): 223-235.

[7] 崔振昂, 郑志昌, 梁开. 广西北海近岸海域4200a以来古盐度时间序列分析[J]. 地质科技情报, 2010, 29(4): 1-5,13.

[8] Zhang X, Lin C, Zahid M A, et al. Paleosalinity and water body type of Eocene Pinghu Formation, Xihu Depression, East China Sea Basin[J]. Journal of Petroleum Science and Engineering, 2017, 158: 469-478.

[9] Rimmer S M. Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3-4): 373-391.

[10] Yan D, Li S, Fu H, et al. Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform, South China[J]. International Journal of Coal Geology, 2021: 103706.

[11] 邱振, 王清晨. 来宾地区中晚二叠世之交烃源岩沉积的主控因素及大地构造背景[J]. 地质科学, 2012, 47(4): 1085-1098.

[12] Css A, Cm A, Ss B, et al. Geochemical and carbon isotopic studies of carbonaceous phyllites from Dharwar craton, India – Reconstruction of Precambrian depositional environment[J]. Precambrian Research, 2022, 372: 106575.

[13] Xie Q F, Cai Y F, Dong Y P, et al. Geochemical characteristics of the Permian marine mudstone and constraints on its provenance and paleoenvironment in the Fenghai area, Fujian Province, southeastern China[J]. 石油科学:英文版, 2019, 16(3): 14.

[14] 李艳芳, 邵德勇, 吕海刚, 等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报, 2015, 36(12): 1470-1483.

[15] 黄志强, 黄虎, 杜远生, 等. 广西那坡裂陷盆地晚古生代硅质岩地球化学特征及其地质意义[J]. 地球科学(中国地质大学学报), 2013, 38(02): 253-265.

[16] 刘刚, 周东升. 微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例[J]. 石油实验地质, 2007(03): 307-310+314.

[17] 欧阳柳芸, 贺琦, 刘昆, 等. 马岭地区嘉陵江组沉积环境演化分析:来自沉积学和主微量元素的证据[J]. 地质科技通报, 2022, 41(03): 44-53.

[18] Boboye O A, Nwosu O R. Petrography and geochemical indices of the Lagos lagoon coastal sediments, Dahomey Basin (southwestern Nigeria): Sea level change implications[J]. Quaternary International, 2014, 338(aug.4): 14-27.

[19] 孙建伟, 付永涛, 兰朝利. 青岛八仙墩碎屑岩微量元素地球化学特征及沉积环境意义[J]. 海洋科学, 2014, 38(08): 75-81.

[20] 王淑芳, 董大忠, 王玉满, 等. 四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标[J]. 海相油气地质, 2014, 19(03): 27-34.

[21] 张文伟. 基于主(微)量元素分析法的细粒沉积岩沉积环境判别——以大民屯凹陷安福屯地区沈352井沙四下亚段为例[J]. 东北石油大学学报, 2017, 41(04): 99-106+10.

[22] 段美铃, 宋昊, 胡伟, 等. 川北韩家店组页岩风化过程的矿物学与元素地球化学研究[J]. 地球科学进展, 2022, 37(06): 641-659.

[23] 李蒙, 赵红格, 李文厚, 等. 贺兰山地区晚三叠世沉积主微量元素物源分析及方法探讨[J]. 高校地质学报, 2018, 24(06): 841-855.

[24] 郭爱鹏, 毛龙江, 莫多闻, 等. 长沙铜官窑遗址剖面地球化学元素特征与物源变化[J/OL]. 沉积学报: 2022, 9(25): 1-17.

[25] 范玉海, 屈红军, 王辉,等. 微量元素分析在判别沉积介质环境中的应用——以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质, 2012, 61(002): 382-389.

[26] 范玉海, 王辉, 张少鹏. 微量元素分析在判别沉积介质环境中的应用-以鄂尔多斯盆地西部中区晚三叠世为例[C]. //第二届全国青年地质大会论文集. 2015: 632-634.

[27] 郭艳琴, 余芳, 李洋, 等. 鄂尔多斯盆地东部石盒子组盒8沉积环境的地球化学表征[J]. 地质科学, 2016, 51(3): 872-890.

[28] 彭海艳, 陈洪德, 向芳, 等. 微量元素分析在沉积环境识别中的应用——以鄂尔多斯盆地东部二叠系山西组为例[J]. 新疆地质, 2006, 24(2): 202-205.

[29] 赵帮胜, 李荣西, 王香增,等. 鄂尔多斯盆地延长探区山西组泥页岩沉积地球化学特征及有机质保存条件分析[J]. 地质科技情报, 2016, 35(6): 9.

[30] Zhang X, Zhang T, Lei B, et al. Origin and characteristics of grain dolomite of Ordovician Ma55 Member in the northwest of Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(6): 1182-1194.

[31] Zhao Y, Liu C Y, Niu H Q, et al. Trace and rare earth element geochemistry of crude oils and their coexisting water from the Jiyuan Area of the Ordos Basin, N China[J]. Geological Journal, 2018, 53(1).

[32] Ma S, Li J, Wang L, et al. Provenance, tectonic setting and source-area paleoweathering of the Upper Paleozoic sandstones in the northwestern Ordos Basin, China: evidence from whole-rock geochemistry[J]. Carbonates and Evaporites, 2021, 36(4): 1-14.

[33] 孙莎莎, 姚艳斌, 吝文. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境[J]. 矿物岩石地球化学通报, 2015, 03(3): 642-642.

[34] 马艳萍, 刘池洋, 赵俊峰, 等. 鄂尔多斯盆地东北部砂岩漂白现象与天然气逸散的关系[J]. 中国科学: D辑, 2007, 37(A01): 12.

[35] 陈景山, 刘翔, 姚泾利, 等. 鄂尔多斯盆地晚三叠世长9期古地理格局及物源分析[C]. //第十二届全国古地理学及沉积学学术会议论文集. 2012: 144-144.

[36] 杨晓勇, 罗贤冬, 凌明星, 等. 鄂尔多斯盆地砂岩型铀矿床地球化学特征及其地质意义[J]. 地质论评, 2008, 054(004): 539-549.

[37] 尹锦涛, 俞雨溪, 姜呈馥, 等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报, 2017, 42(06): 1544-1556.

[38] Wang G Z, Wu Z P, Liu, et al. Fault Activity’s Controlling Effect on Source Rock an Example from Bohai Sea Area [J]. Applied Mechanics and Materials, 2014, 3436(628): 366-371.

[39] 孔庆云, 周辉, 李铁, 等. 生物标志化合物指标的探讨[J]. 大庆石油学院学报, 1987(03): 9-15.

[40] 邱雯, 路俊刚. 生物标志化合物在油源对比中的应用[J]. 中国石油和化工标准与质量, 2019, 39(23): 111-112.

[41] 张泓,晋香兰,李贵红,等. 鄂尔多斯盆地侏罗纪-白垩纪原始面貌与古地理演化[J]. 古地理学报, 2008, 10(1): 1-11.

[42] 薛春纪, 薛伟, 康明, 等. 鄂尔多斯盆地流体动力学过程及其砂岩型铀矿化[J]. 现代地质, 2008, 22(1): 1-8.

[43] Li Y, Liu W, Liu P, et al. Paleoenvironment and Organic Matter Enrichment of the Middle Ordovician Marine Carbonates in the Ordos Basin of China: Evidence from Element Geochemistry[J]. ACS Earth Space Chem. 2022, 6(1), 44–55.

[44] Yang Y, Li W, Ma L. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bull. 2005, 8, 255–269.

[45] 席胜利, 黄军平, 张才利, 等. 鄂尔多斯盆地西缘石炭系羊虎沟组油砂的发现与油源分析[J/OL].地质学报:1-12[2022-03-06].

[46] 杨水胜, 冷丹凤, 付国民, 等. 鄂尔多斯盆地中南部中侏罗统直罗组油源研究[J].中国科技论文, 2021, 16(01): 27-37.

[47] 张云霞, 陈纯芳, 宋艳波, 等.鄂尔多斯盆地南部中生界烃源岩特征及油源对比[J].石油实验地质, 2012, 34(02): 173-177.

[48] 郭艳琴, 李文厚, 陈全红, 等. 鄂尔多斯盆地安塞-富县地区延长组-延安组原油地球化学特征及油源对比[J]. 石油与天然气地质, 2006(02): 218-224.

[49] 段毅, 吴保祥, 张辉, 等. 鄂尔多斯盆地西峰油田原油地球化学特征及其成因[J]. 地质学报, 2006(02): 301-310.

[50] 董春梅. 辽东湾海域原油及生油岩的生物标志化合物特征[J]. 石油大学学报(自然科学版), 1995(02): 12-18.

[51] 李德江, 朱筱敏, 董艳蕾, 等. 辽东湾坳陷古近系沙河街组层序地层分析[J]. 石油勘探与开发, 2007, 34(6): 8.

[52] 朱筱敏, 董艳蕾, 杨俊生, 等. 辽东湾地区古近系层序地层格架与沉积体系分布[J]. 中国科学:地球科学, 2008, 038(01): 4-13.

[53] 庞雄奇, 郭永华, 姜福杰, 等. 渤海海域优质烃源岩及其分布预测[J]. 石油与天然气地质, 2009, 30(4): 393-397.

[54] 左银辉, 邱楠生, 李建平, 等. 渤海盆地辽东湾地区古近系烃源岩成熟演化模拟[J]. 现代地质, 2009, 23(4): 9.

[55] 徐长贵, 朱秀香, 史翠娥, 等. 辽东湾坳陷古近系东营组泥岩对油气藏分布的控制作用[J]. 石油与天然气地质, 2009, 30(4): 431-437.

[56] 姜雪, 邹华耀, 庄新兵, 等. 辽东湾地区烃源岩特征及其主控因素[J]. 中国石油大学学报: 自然科学版, 2010, 34(2): 8.

[57] 梁建设,张功成,苗顺德,等. 辽东湾辽西凹陷沙河街组烃源岩评价及油源研究[J]. 沉积学报, 2012, 30(4): 739-746.

[58] 姜雪, 邹华耀, 杨元元. 辽东湾地区烃源岩微观特征与生烃潜力相关性探讨[J]. 断块油气田, 2013(1): 5.

[59] 牛成民, 金强, 李培培, 等. 辽东湾古近系烃源岩生烃动力学研究[J]. 海相油气地质, 2018, 23(1): 6.

[60] 金强, 侯庆杰, 程付启, 等. 成熟探区有效烃源岩的评价方法——以辽东湾地区为例[J]. 石油学报, 2019, 40(3): 11.

[61] 戴广龙, 汪有清, 张纯如, 等. 保护层开采工作面瓦斯涌出量预测[J]. 煤炭学报, 2007(04): 382-385.

[62] 朱红青, 常文杰, 张彬. 回采工作面瓦斯涌出BP神经网络分源预测模型及应用[J]. 煤炭学报, 2007, 32(5): 504-508.

[63] 崔鸿伟. 长壁采煤工作面瓦斯涌出量影响因素实测研究[J]. 煤炭科学技术, 2011, 39(11): 70-72.

[64] 李五忠, 雍洪, 李贵中. 煤层气甲烷碳同位素的特征及分馏效应[J]. 天然气工业, 2010, 30(11): 14-16.

[65] 缪卫东, 罗霞, 王延斌,等. 松辽盆地无机成因气碳同位素判识指标探讨[J]. 天然气工业, 2010, 30(3): 27-30.

[66] 何环, 黄新颖, 黄再兴, 等. 高岭土对煤生物产气的影响及微生物群落响应[J]. 煤田地质与勘探, 2022, 50(6): 1-10.

[67] 陈子归, 姜涛, 匡增桂, 等. 琼东南盆地天然气水合物与浅层气共生体系成藏特征[J]. 地球科学, 2022, 47(5): 1619-1634.

[68] 戴金星, 宋岩, 程坤芳, 等. 中国含油气盆地有机烷烃气碳同位素特征[J]. 石油学报, 1993(02): 23-31.

[69] 刘文汇, 徐永昌. 煤型气碳同位素演化二阶段分馏模式及机理[J]. 地球化学, 1999(04): 359-366.

[70] 刘文汇, 王晓锋, 腾格尔, 等. 中国近十年天然气示踪地球化学研究进展[J]. 矿物岩石地球化学通报, 2013, 32(03): 279-289.

[71] Wang X F, Liu W H, Shi B G, et al. Hydrogen isotope characteristics of thermogenic methane in Chinese sedimentary basins [J], Organic Geochemistry, 2015, 8384, 178-189

[72] 李五忠, 雍洪, 李贵中.煤层气甲烷碳同位素的特征及分馏效应[J].天然气工业, 2010, 30(11): 14-16+114-115.

[73] 王万春, 徐永昌. 辽河盆地烃类气体组分及同位素组成[J]. 沉积学报, 1992, (2): 135-142.

[74] 徐超, 陈冰宇, 吴盾, 等. 淮北煤田祁东煤矿煤和瓦斯中稳定碳同位素分布特征及其地质成因[J]. 煤田地质与勘探, 2017, 45(03): 54-58.

[75] 梁文勖, 李江涛, 付巍, 等. 基于稳定同位素的瓦斯源识别技术研究与应用[J]. 矿业安全与环保, 2022, 49(03): 56-61.

[76] 高宏, 杨宏伟, 慈祥. 基于碳氢同位素分析技术的瓦斯涌出构成研究[J]. 煤矿安全, 2018, 49(11): 16-19.

[77] 殷民胜, 陈冬冬, 郑凯歌. 基于混源气计算模型的煤油气共存采空区瓦斯定量分析[J]. 矿业安全与环保, 2016, 43(5): 99-102.

[78] 周伟, 袁亮, 张国亮, 等. 采空区瓦斯涌出来源量化判识方法——以寺河矿为例[J]. 煤炭学报, 2018, 43(04): 1016-1023.

[79] 周伟, 夏仕柏. 采空区瓦斯涌出综合判别方法研究[J]. 山西焦煤科技, 2017, 41(8): 49-56.

[80] 徐占杰, 刘钦甫, 郑启明, 等. 沁水盆地北部太原组煤层气碳同位素特征及成因探讨[J]. 煤炭学报, 2016, 41(06): 1467-1475.

[81] 郑启明, 刘钦甫, 徐占杰. 沁水盆地阳泉地区煤层氮气同位素组成及其成因[J]. 煤炭学报, 2015, 40(09): 2159-2165.

[82] 段利江, 唐书恒, 刘洪林, 等. 晋城地区煤层甲烷碳同位素特征及成因探讨[J]. 煤炭学报, 2007, 158(11): 1142-1146.

[83] 段利江, 唐书恒, 刘洪林,等. 晋城和昌吉地区煤层甲烷碳同位素分馏特征对比分析[J]. 中国矿业大学学报, 2008, 37(5):4.

[84] 田文广, 邵龙义, 张继东, 等. 鄂尔多斯盆地南部侏罗系煤层气成因探究[J]. 中国矿业, 2015, 24(05): 81-85.

[85] 王晓锋, 刘文汇, 徐永昌, 等.塔里木盆地天然气碳、氢同位素地球化学特征[J]. 石油勘探与开发, 2005(03): 55-58.

[86] 周伟. 基于稳定碳氢同位素及多源线性算法的瓦斯涌出分源研究[D]. 安徽: 安徽理工大学, 2021.

[87] 刘斌. 采空区瓦斯涌出来源量化分析及分源治理技术[D]. 太原: 太原理工大学, 2021.

[88] 李增学. 瓦斯地质学[M]. 北京: 煤炭工业出版社: 2009: 44-47.

[89] DAVID P. CREEDY. Geological controls on the Formation and distribution of Gas in British coal Measure strata, UK[J]. International of coal geology. 1988, (10).

[90] Frodsham K, Gayer RA. The impact of tectonic deformation upon coal seams in the South Wales coalfield, UK[J]. Int J Coal Geol. 1999 (38): 297-332.

[91] 王生全, 王英. 石嘴山一矿地质构造的控气性分析[J]. 中国煤田地质,2000(04): 32-35.

[92] 芮绍发, 陈富勇, 宋三胜. 煤矿中小型构造控制瓦斯涌出规律[J]. 矿业安全与环保, 2001(06): 18-19+75.

[93] 宋荣俊, 李佑炎. 皖北刘桥二矿断裂构造对瓦斯的控制作用[J]. 江苏煤炭, 2002(04): 9-11.

[94] 曹运兴, 彭立世. 顺煤断层的基本类型及其对瓦斯突出带的控制作用[J]. 煤炭学报, 1995(04): 413-417.

[95] 曹运兴, 彭立世, 等. 顺煤层断层的基本特征及其地质意义[J]. 地质论评, 1993(06): 522-528.

[96] 曹国华, 田富超, 郝从娜. 地质构造对寺河矿煤层瓦斯赋存规律的影响分析[J]. 煤炭工程, 2009(3): 57-60.

[97] 戴中浩, 胡宝林, 冯士安. 卧龙湖煤矿瓦斯赋存规律与危险性预测[J]. 安徽地质, 2020, 30(03): 218-223.

[98] 吴财芳, 曾勇, 秦勇. 神经网络分析方法在瓦斯预测中的应用[J]. 地球科学进展, 2004(05): 860-866.

[99] 张国辉, 韩军, 宋卫华. 地质构造形式对瓦斯赋存状态的影响分析[J]. 辽宁工程技术大学学报, 2005(01): 19-22.

[100] 魏国营, 王保军, 闫江伟等. 平顶山八矿突出煤层瓦斯地质控制特征[J]. 煤炭学报, 2015, 40(03): 555-561.

[101] 吴观茂, 黄明, 李刚. 基于BP神经网络的瓦斯含量预测[J]. 煤田地质与勘探, 2008(01): 30-33.

[102] 吴观茂, 黄明, 李刚等. 基于RBF神经网络的瓦斯含量预测研究[J]. 煤炭科学技术, 2008, 398(01): 49-52.

[103] Css A, Cm A, Ss B, et al. Geochemical and carbon isotopic studies of carbonaceous phyllites from Dharwar craton, India–Reconstruction of Precambrian depositional environment[J]. Precambrian Research, 2022, 372: 106575.

[104] Zhang H , Lu H , Jiang S Y , et al. Provenance of loess deposits in the Eastern Qinling Mountains (central China) and their implications for the paleoenvironment[J]. Quaternary Science Reviews, 2012, 43: 94-102.

[105] Adeigbe, Yusuf A J. Geochemical fingerprints: Implication for provenance, Tectonic and depositional settings of lower Benue trough sequence, southeatern Nigeria[J]. Journal of Environment & Earth Science, 2013, 3(10): 115-119.

[106] Hao Q, Guo Z, Qiao Y, et al. Geochemical evidence for the provenance of middle Pleistocene loess deposits in southern China[J]. Quaternary Science Reviews, 2010, 29(23-24): 3317-3326.

[107] Feng L J, Chu X L, Zhang Q R, et al. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10(4): 539-544.

[108] 孙莎莎,刘人和,拜文华. 鄂尔多斯盆地铜川地区上三叠统油页岩含油率影响因素分析[J]. 中国石油勘探, 2011, 16(2): 79-83.

[109] 孙莎莎, 姚艳斌, 吝文. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境[J]. 矿物岩石地球化学通报, 2015(3): 642-645.

[110] Qiu X W, Liu C Y, Wang F F, et al. Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, Central China[J]. Geological Journal, 2015, 50(4): 399-413.

[111] TAO Mingxin, SHI Baoguang, LI Jinying, et al. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes[J]. International Journal of Coal Geology, 2007, 71(2–3): 358-370.

[112] Zhu G, Zhang S, Liang Y, et al. Formation Mechanism and Controlling Factors of Natural Gas Reservoirs of the Jialingjiang Formation in the East Sichuan Basin[J]. 地质学报: 英文版, 2007, 81(5): 12.

[113] Schoell M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.

[114] Alexei V, Milkov, Giuseppe Etiope. Revised genetic diagrams for natural gases based on a global dataset of >20,000 samples [J]. Organic Geochemistry, 2018, 125: 109-120.

[115] 范立民, 王英, 高午, 等. 黄陵矿区红石岩煤矿瓦斯地质规律[J]. 陕西煤炭, 2011, 30(04): 1-3.

中图分类号:

 TD712    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式