论文中文题名: | 河南省城镇化进程中生态风险研究 |
姓名: | |
学号: | 19210210045 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085215 |
学科名称: | 工学 - 工程 - 测绘工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地理信息技术应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-06-02 |
论文外文题名: | Research on ecological risk in the process of urbanization in Henan Province |
论文中文关键词: | |
论文外文关键词: | Urbanization ; Ecological Risk ; Trade Off ; Evolution Characteristics ; Henan Province. |
论文中文摘要: |
21世纪以来,随着城镇化进程不断加快,生态环境受自然和人为因素干扰,区域生态稳定性受到严重影响,成为制约社会可持续发展的重要问题,如何在新常态下引领“新型城镇化”高速发展同时合理开发利用自然资源、提升生态环境质量显得尤为重要。通过对城镇化与生态风险权衡关系研究,对比分析城镇化水平与生态风险所处阶段,对推动城市协调持续发展和生态文明建设具有重要意义。 本文以河南省为研究区,基于城镇化建设及生态风险概念和理论,搜集河南省2000、2010和2018年各市统计年鉴数据和土地利用数据,运用指标识别法选取人口、经济、社会与空间城镇化共计28个指标,利用熵权法计算各指标权重,得到河南省各市城镇化水平综合指数,运用Getis-OrdGi*热点分析探究城市发展热点区域,分析城镇化水平时空变化特征。同时,运用生态风险评估模型、土地利用转移矩阵、核密度分析和空间自相关分析方法,探究河南省土地利用类型转移情况对应生态风险的时空变化特征。在此基础上,采用耦合协调度模型,从时间和空间两个维度研究城镇化水平与生态风险的权衡关系,得出以下结论: (1)河南省城镇化建设平稳向好发展,高水平地区优势突出,郑州市、洛阳市、南阳市排名始终保持在全省前列,特别是郑州市,城镇化水平得分一直大于0.85,具有绝对优势。驻马店市和许昌市提升幅度较大,到2018年城镇化水平得分分别位列第四与第五位。河南省城市发展热点区域集中在中部以郑州市为中心的城市群,城市发展较快。各市城镇化子系统得分呈现出不同的变化趋势,虽各时期城镇化导向不尽相同,但均在经济城镇化导向与社会城镇化导向之前变动,表现为社会保障与经济发展导向型,是城镇化的重要推力。 (2)2000-2018年河南省用地类型变化明显,耕地面积持续减少,不断向其他用地类型转化,其中有74.17%转化为建设用地,建设用地面积持续增加,2018年达到的21614.070km2,其他用地类型之间相互转化,总体变化不大。核密度分析结果显示,河南省城市发展很不均衡,郑州、洛阳以及中东部等个别城市建设用地扩张较快,西部低山丘陵区的建设用地扩张不明显。生态风险区空间分布较为集中,以各个主城区为中心,不断向四周扩散。城市周边耕地与自然环境受到影响,高风险区面积不断增加,由2000年的13.7%增加到2018年的15.97%,低风险区持续向较高风险区转化,风险程度不断攀升。各市生态风险等级表现出西低东高的形式,高等级风险区不断向西延伸,风险区域由离散状态转变成块状聚集,表现出似由经济牵引所导致的现象。全局莫兰指数分别为0.519、0.425、0.412,表现出显著正相关;局部自相关显示高-高聚集区位于东部,而低-低聚集区位于西部,表现出区域聚集效应。 (3)河南省18个城市耦合度均处于高度耦合阶段,而耦合协调水平相对较低,大多处于勉强协调水平,占比72.22%上下,少部分城市为濒临失调状态,整体表现为中部>东南部>北部的空间分布格局。河南省各个市城镇化水平与生态风险水平参差不齐,其中平顶山市和南阳市在保持高水平发展的同时,生态环境相对较好;而濮阳市和开封市始终处于中低发展水平和高等级生态风险。郑州市和洛阳市城镇化水平较高,但生态风险等级也排在前列。城市在快速发展的同时,需注重生态环境的保护,合理的开发利用,保持高水平城镇化同时,降低生态风险。 |
论文外文摘要: |
Since the 21st century, with the continuous acceleration of urbanization, the ecological environment has been disturbed by natural and human factors, and the regional ecological stability has been seriously affected, which has become an important issue restricting social sustainable development. It is particularly important to develop and utilize natural resources reasonably and improve the quality of the ecological environment at the same time. Through the research on the trade-off relationship between urbanization and ecological risk, the comparative analysis of the level of urbanization and the ecological risk is of great significance for promoting the coordinated and sustainable development of society and the construction of ecological civilization. Taking Henan Province as the research area, based on the concept and theory of urbanization construction and ecological risk, collects the statistical yearbook data and land use data of each city in Henan Province in 2000, 2010 and 2018, and uses the index identification method to select population, economic, social and spatial cities and towns. There are a total of 28 indicators of urbanization, and the weight of the indicators is determined by the entropy method, and the comprehensive evaluation index of the urbanization level of each city in Henan Province is obtained. Getis-OrdGi* hotspot analysis is used to explore urban development hotspots and analyze the temporal and spatial variation characteristics of urbanization level. At the same time, using the ecological risk assessment model, land use transfer matrix, kernel density analysis and spatial autocorrelation analysis methods, the temporal and spatial variation characteristics of ecological risk corresponding to land use type transfer in Henan Province were explored. On this basis, the coupling coordination degree model is used to study the trade-off relationship between urbanization level and ecological risk from the two dimensions of time and space, and the following conclusions are drawn: (1)The urbanization of Henan Province is developing steadily, and the high-level regional advantages are prominent. Zhengzhou, Luoyang, and Nanyang have always maintained their rankings in the forefront of the province. Especially Zhengzhou, whose urbanization level score has always been greater than 0.85, has an absolute advantage. Zhumadian City and Xuchang City have seen a significant increase, ranking fourth and fifth respectively in their urbanization scores by 2018. The urban development hotspots in Henan Province are concentrated in the central urban agglomeration with Zhengzhou City as the center, and the urban development is relatively fast. The scores of urbanization subsystems in different cities show different trends. Although the orientation of urbanization in different periods is different, they all change before the orientation of economic urbanization and social urbanization. It is social security and economic development-oriented, and it is an important driving force for urbanization. (2) From 2000 to 2018, the types of land use in Henan Province changed significantly. The area of cultivated land continued to decrease, and it was continuously converted to other land use types. Among them, 74.17% were converted into construction land, and the area of construction land continued to increase. It reached 21,614.070km2 in 2018. Mutual transformation, the overall change is not large. The results of Kernel Density analysis show that the urban development in Henan Province is very unbalanced. The construction land in Zhengzhou, Luoyang, and some cities in the central and eastern regions expands rapidly, while the expansion of construction land in the low mountain and hilly areas in the west is not obvious.The spatial distribution of ecological risk areas is relatively concentrated, with each main urban area as the center, and it continues to spread around. The cultivated land and natural environment around the city are affected, which makes the area of high ecological risk level continue to increase, from 13.7% in 2000 to 15.97% in 2018. The risk area has been transformed, and the risk level has continued to rise. The ecological risk level of each city shows the form of low in the west and high in the east. The high-level risk area continues to extend westward, and the risk area changes from a discrete state to a mass aggregation, showing a phenomenon that seems to be caused by economic traction. The Global Moran’s I is 0.519, 0.425, 0.412, showing a significant positive correlatio. Local autocorrelation shows that the high-high aggregation area is located in the east, while the low-low aggregation area is located in the west, showing a regional aggregation effect. (3) The coupling degree of the 18 cities in Henan Province is in the high coupling stage, while the coupling coordination level is relatively low, most of them are at the barely coordinated level, accounting for about 72.22%, and a small number of cities are on the verge of imbalance, and the overall performance is central > southeast > north spatial distribution pattern. The urbanization level and ecological risk level of various cities in Henan Province are uneven. Among them, Pingdingshan City and Nanyang City maintain a high level of development while maintaining a relatively good ecological environment; Puyang City and Kaifeng City have always been at a medium-low development level and high-level ecological risk. Zhengzhou and Luoyang have relatively high levels of urbanization, but their ecological risk levels are also at the forefront. While the city is developing rapidly, it is necessary to pay attention to the protection of the ecological environment, rational development and utilization, maintain a high level of urbanization, and reduce ecological risks. |
参考文献: |
[1] 王丽. 安徽省新型城镇化与产业结构升级耦合研究[D]. 沈阳: 辽宁大学, 2021. [2] 申庆喜, 李诚固, 胡述聚, 等. 东北地区城镇化质量测度及其时空格局特征[J]. 地理科学, 2021, 41(11): 2002-2010. [3] 甘海侠. 中国城镇化质量的评价研究[D]. 西安: 西北大学, 2017. [4] 丁宇, 张雷, 马昕琳. 山地城镇化与资源环境承载力耦合协调发展的时空演变[J]. 环境科学研究, 2022, 35(2): 592-600. [5] 金丹, 孔雪松. 湖北省城镇化发展质量评价与空间关联性分析[J]. 长江流域资源与环境, 2020, 29(10): 2146-2155. [6] 龚俊杰, 杨华, 邓华锋. 北京明长城沿线景观生态风险评价[J]. 北京林业大学学报, 2015, 37(08): 60-68. [8] 顾勇炜. 福建省城镇化与生态环境耦合协调度评价分析[D]. 福建: 福建农林大学, 2018. [9] 李琛, 吴映梅, 高彬嫔. 滇中城市群城镇化与资源环境承载力耦合协调研究[J]. 水土保持研究, 2022, 29(2): 389-397. [30] 罗媞, 刘艳芳, 孔雪松. 中国城市化与生态环境系统耦合研究进展[J]. 热带地理, 2014, 34(2): 266-274. [31] 车秀珍, 尚金城, 陈冲. 城市化进程中的战略环境评价初探[J]. 地理科学, 2001, 6(6): 554-557. [32] 黄金川, 方创琳.城市化与生态环境交互耦合机制与规律性分析[J]. 地理研究, 2003, 22(2): 211-220. [33] 孙心亮, 方创琳. 干旱区城市化过程中的生态风险评价模型及应用: 以河西地区城市化过程为例[J]. 干旱区地理. 2006, 29(5): 668-674. [34] 孙翔, 朱晓东, 李杨帆. 港湾快速城市化地区景观生态安全评价[J].生态学报, 2008, 28(8): 3564-3573. [35] 陈菁, 吴端旺. 快速城市化中海峡西岸的生态安全评价[J]. 生态学杂志, 2010, 29(12): 2491-2497. [36] 熊勇, 赵翠薇. 山地城镇化进程中土地生态安全动态评价研究: 以贵阳市为例[J]. 水土保持研究, 2014, 21(4): 195-202. [37] 张文婷, 温宗国. 资源环境约束下中国新型城镇化发展模式研究[J]. 中国人口·资源与环境, 2016, 26(S1): 385-388. [38] 王春枝, 赵国杰, 穆楠. 环境与耕地约束下的城镇化效率及其发展模式探因[J]. 中国农业资源与区划, 2017, 38(6): 45-54. [39] 许长新, 吴骁远. 水环境承载力约束下区域城镇化发展合理速度分析[J]. 中国人口·资源与环境, 2020, 30(3): 135-142. [40] 王家庭, 郭帅. 生态环境约束对城市化的影响: 基于最佳城市规模模型的理论研究[J]. 学习与实践, 2011(1): 5-17. [41] 王瑞鹏, 王朋岗. 城市化、产业结构调整与环境污染的动态关系—基于VAR模型的实证分析[J]. 工业技术经济, 2013, 32(1): 26-31. [42] 黄河东. 中国城镇化与环境污染的关系研究—基于31个省级面板数据的实证分析[J]. 管理现代化, 2017, 37(6): 72-75. [43] 李佳佳. 制度安排、城镇化与环境污染[J]. 经济经纬, 2020, 37(3): 29-36. [44] 刘耀彬, 宋学锋. 城市化与生态环境耦合模式及判别[J]. 地理科学, 2005(4): 26-32. [45] 方创琳, 杨玉梅. 城市化与生态环境交互耦合系统的基本定律[J]. 干旱区地理, 2006(1): 1-8. [46] 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J].地理学报, 2019, 74(8): 1489-1507. [47] 尚海龙, 蒋焕洲. 西藏新型城镇化与生态环境耦合演进及解耦分析[J]. 西北师范大学学报(自然科学版), 2019, 55(4): 118-126. [48] 吕洁华, 孙喆, 张滨. 新型城镇化与生态环境协调发展及关键因素判别[J]. 生态经济, 2020, 36(6): 83-88. [49] 肖强, 文礼章, 刘俊, 等. 重庆市城市化与生态环境交互关系的协整分析[J]. 生态学报, 2010, 30(19): 5237-5244. [50] 孜比布拉·司马义, 苏力叶·木沙江, 帕夏古·阿不来提. 阿克苏市城市化与生态环境综合水平协调度评析[J]. 地理研究, 2011, 30(3): 496-504. [51] 宋建波, 武春友. 城市化与生态环境协调发展评价研究—以长江三角洲城市群为例[J]. 中国软科学, 2010(2): 78-87. [52] 马传栋. 论城市生态经济管理与经济、社会、环境协调发展[J]. 东岳论丛, 1989, 4: 5-10. [53] 许宏, 周应恒. 区域城市化与生态环境耦合规律及协调发展研究—基于云南省的实证[J]. 云南财经大学学报, 2011, (4): 133-139. [54] 方永丽. 中国生态城镇化相对效率评价及其集约度分析[J]. 统计与决策, 2017(21): 87-91. [55] 吴艳霞, 李宇殊, 王彦龙. 黄河流域生态城镇化水平测度[J]. 环境科学与技术, 2020, 43(7): 224-236. [56] 薛阳. 京津冀城市群的城镇化质量测度与提升路径研究[D]. 北京: 中国矿业大学(北京), 2019. [57] 张文娴, 白永平, 车磊, 等.基于TOPSIS模型与多维结构的中国城镇化质量空间分异及影响分析[J]. 现代城市研究, 2020(5): 121-126. [58] 王滨. 中国城镇化质量综合评价[J]. 城市问题, 2019, 286(5): 11-20. [59] 蓝庆新, 刘昭洁, 彭一然. 中国新型城镇化质量评价指标体系构建及评价方法—基于2003—2014年31个省市的空间差异研究[J]. 南方经济, 2017(1): 111-126. [60] 李燕娜. 湖南省新型城镇化质量指标体系构建及评价研究[J]. 中国农业资源与区划, 2020, 41(2): 172-177. [61] 何文举. 全要素生产率提升新型城镇化质量的路径研究—以湖南省为例[J]. 区域经济评论, 2016(1): 150-154. [62] 王娜. 成渝城市群时空发展质量评价及影响因素研究[D]. 重庆: 重庆工商大学, 2019. [63] 丁慧媛. 沿海地区新型城镇化综合发展水平测度[J]. 统计与决策, 2019, 35(22): 50-53. [65] 简卿, 张立强, 张蓬涛, 等. 基于显隐性分析的青龙满族自治县景观生态风险评价空间分异研究[J]. 水土保持研究, 2018, 25(6): 228-235. [66] 杜嵩. 基于土地利用变化的西安市景观生态风险评价研究[D]. 西安: 西安科技大学, 2021. [67] 刘焱序, 王仰麟, 彭建, 等. 基于生态适应性循环三维框架的城市景观生态风险评价[J]. 地理学报, 2015, 70(7): 1052-1067. [68] 温汉锋. 珠三角城市群城镇化质量时空差异及生态效应研究[D]. 广东: 广东工业大学, 2021. [69] 马颖忆, 刘志峰. 江苏省景观生态风险评估及其与城镇化的动态响应[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 185-194. [71] 姚静韬, 孔祥斌, 段增强, 等. 基于交叉熵的北京市土地利用结构变化模拟及情景分析研究[J]. 应用基础与工程科学学报, 2020, 28(6): 1382-1396. [72] 娄妮, 王志杰, 何嵩涛. 基于景观格局的阿哈湖国家湿地公园景观生态风险评价[J].水土保持研究, 2020, 27(1): 233-239. [73] 张玉娟, 曲建光, 叶猛猛. 松花江流域哈尔滨段景观生态风险评价[J]. 福州大学学报(自然科学版), 2020, 48(3): 361-367. [74] Li Q, Guo F, Guan Y. A GIS-Based Evaluation of Environmental Sensitivity for an Urban Expressway in Shen-zhen, China[J]. Engineering, 2018, 4(2): 230-234. [75] 何莎莎, 李欣, 何春龙, 等. 基于土地利用变化的扬州市广陵区景观生态风险评价[J]. 南京师大学报(自然科学版), 2019, 42(1): 139-148. [76] 孙璐. 黑龙江省城镇化与土地可持续利用耦合协调研究[D]. 哈尔滨: 哈尔滨师范大学, 2021. [77] 谢毅. 安徽省城镇化及其生态响应研究[D]. 淮南: 安徽理工大学, 2021. [78] 刘梽弘. 东北地区城镇化与经济协调发展研究[D]. 长春: 吉林大学, 2021. |
中图分类号: | P208.2 |
开放日期: | 2022-06-21 |