- 无标题文档
查看论文信息

论文中文题名:

 坝基开挖岩体卸荷渗流力学特性研究    

姓名:

 杨冲    

学号:

 19304209003    

保密级别:

 保密(3年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 岩土工程    

第一导师姓名:

 陈兴周    

第一导师单位:

 西安科技大学    

第二导师姓名:

 黄坚    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Study on mechanical properties of rock mass unloading seepage during Dam foundation excavation    

论文中文关键词:

 坝基岩体 ; 开挖卸荷 ; 卸荷渗流 ; 室内试验 ; 力学特性    

论文外文关键词:

 The dam foundation rock mass ; Excavation unloading ; Unloading seepage ; Laboratory test ; Mechanical properties    

论文中文摘要:

摘   要

坝基开挖活动是水电工程筑坝过程的重要环节,既影响坝基岩体的工程利用和大坝体型布置,也是依托开挖控制基岩松弛破裂与减少基础防渗投资的重要环节。清理河谷覆盖层与散粒体之后的开挖活动,其下部基岩多数孕育着高地应力;坝基开挖过程中不仅诱导基岩产生了应力释放,也伴随卸荷效应产生了岩体结构松弛及裂隙网络衍生;因而,需要关注开挖活动影响坝基岩体的力学特性及其渗流特性。本文以某坝基开挖岩体为研究对象,采用理论分析、室内试验相结合的研究方法,以期揭示坝基开挖扰动区卸荷岩体的力学特性及渗流损伤演化机理。主要研究内容如下:

(1)以某坝基开挖扰动岩体为背景,考虑到开挖岩体所处埋深与开挖过程应力释放存在不同量级,必然造成开挖面附近形成不同程度的卸荷扰动区。以坝基开挖岩体单元体为分析对象,通过分析卸荷扰动区岩体的应力变化过程,确定室内试验中采取恒轴压、卸围压的应力路径;鉴于岩体埋深及开挖过程应力释放存在不同量级,开展了3种初始围压和2种卸荷水平条件下的三轴加卸荷试验。结果表明,试样破坏时的峰值抗压强度随着围压的增加而增大,随着卸荷水平的提高,试样卸荷破坏时的围压值越大、偏应力增加值越小,试样越容易破坏。

(2)鉴于开挖卸荷作用易于诱使扰动区岩体产生卸荷变形,所衍生的卸荷裂隙成为坝基渗流的主要通道,结合坝基扰动区岩体的应力环境,开展了不同卸荷水平、孔压、应力路径下的卸荷渗流力学特性试验研究。结果表明,随着初始卸荷水平的提高,增加围压对抑制岩石试样的环向应变增长速度的作用效果较为显著。孔隙水压力的介入对试样的峰值抗压强度、粘聚力及内摩擦角都有较为显著的影响作用。

(3)为了探究坝基开挖扰动区岩体卸荷裂隙网络的演化规律,开展了基于卸荷损伤试样的细观测试试验。通过分级卸荷试验制备了包含不同卸荷损伤的试样,依托核磁共振技术获取卸荷损伤试样的内部孔隙结构特征,以损伤试样为试验对象开展了三轴加载渗流试验。结果表明,不同卸荷损伤的试样内部孔隙结构变化特征较为显著,随着卸荷损伤积累,试样内部孔隙由微小孔隙逐渐向小尺寸孔隙转变。损伤试样三轴加载渗流试验中,随着卸荷损伤的累加,损伤试样的峰值抗压强度值越小,卸荷量增加加剧了试样内部卸荷损伤效应,导致损伤试样的承载力显著降低。

关 键 词:坝基岩体;开挖卸荷;卸荷渗流;室内试验;力学特性

论文外文摘要:

ABSTRACT

Dam foundation excavation is an important link in the process of dam construction in hydropower projects, which not only affects the engineering utilization of dam foundation rock mass and the layout of dam body, but also plays an important role in controlling the relaxation and failure of foundation rock and reducing the investment of foundation seepage prevention.  After the clearing of overburden and granular bodies in the valley, most of the underlying bedrock is pregnant with high in-situ stress. During the excavation of dam foundation, the stress release of bedrock is induced, and the relaxation of rock mass structure and the derivation of fracture network are produced with the unloading effect. Therefore, it is necessary to pay attention to the mechanical properties and seepage characteristics of dam foundation rock mass affected by excavation activities.  In this paper, the excavation rock mass of a dam foundation is taken as the research object, and the theoretical analysis and laboratory test are combined to reveal the mechanical characteristics and seepage damage evolution mechanism of unloaded rock mass in the disturbed area of dam foundation excavation. The main research contents are as follows:

(1) Taking the disturbed rock mass during the excavation of a dam foundation as the background, considering that the depth of the excavated rock mass and the stress release in the excavation process have different orders of magnitude, it is inevitable that the disturbed area of unloading of different degrees will be formed near the excavation face. The stress path of constant axial pressure and unloading confining pressure in laboratory test was determined by analyzing the stress change process of rock mass in unloading disturbed area. In view of the existence of different orders of stress release in rock mass burial depth and excavation process

Triaxial loading and unloading tests were carried out under three initial confining pressures and two unloading levels. The results show that the peak compressive strength increases with the increase of confining pressure. With the increase of unloading level, the larger the confining pressure value and the smaller the increase of deviator stress, the more easily the specimen is destroyed.

(2) In view of the fact that excavation unloading is easy to induce unloading deformation of rock mass in the disturbed area, the unloading fissure derived from excavation is the main channel of dam foundation seepage. Combined with the stress environment of rock mass in the disturbed area of dam foundation, the experimental study on mechanical characteristics of unloading seepage under different unloading levels, pore pressure and stress path is carried out.  The results show that with the increase of initial unloading level, increasing confining pressure has a significant effect on restraining the growth rate of circumferential strain. The intervention of pore water pressure has a significant effect on the peak compressive strength, cohesion and internal friction Angle of samples.

(3) In order to investigate the evolution of unloading fracture network in disturbed area of dam foundation excavation, a mesoscopic test was carried out based on unloading damage samples. The samples containing different unloading damage were prepared by hierarchical unloading test. The internal pore structure characteristics of the unloading damage samples were obtained by nuclear magnetic resonance technology, and the triaxial seepage test was carried out with the damaged samples as the test objects. The results show that the internal pore structure of the samples with different unloading damage changes significantly. With the accumulation of unloading damage, the internal pores of the samples gradually change from micro pores to small pores. In the seepage test of damaged samples under triaxial loading, with the accumulation of unloading damage, the peak compressive strength value of damaged samples decreases, and the unloading amount increases, which intensifies the unloading damage effect inside the sample, leading to a significant decrease in the bearing capacity of damaged samples.

Key words: The dam foundation rock mass; Excavation unloading; Unloading seepage; Laboratory test; Mechanical properties

参考文献:

参考文献

[1] 李建林,王瑞红,蒋昱州,等.砂岩三轴卸荷力学特性试验研究[J].岩石力学与工程学报,2010,29(10):2034-2041.

[2] 李万才,邓辉,丁中辉,等.某水电站卸荷条件下英安岩力学特性试验研究[J].人民珠江,2020,41(1):13-17,68.

[3] 李悠然,燕乔,李萌,等.软硬岩石卸荷应力规律研究[J].水利科学与寒区工程,2019,2(02):53-58.

[4] 胡政,刘佑荣,武尚,等.高地应力区砂岩在卸荷条件下的变形参数劣化试验研究[J].岩土力学,2014,35(S1):78-84.

[5] 贾小兵.不同卸荷起点应力水平砂岩卸荷力学特性试验研究[J].华北水利水电大学学报(自然科学版),2019,40(05):83-86.

[6] 孙雪,李二兵,韩阳,等.卸荷路径下花岗岩变形与破坏特征试验研究[J].地下空间与工程学报,2020,16(03):665-679.

[7] 金爱兵,刘佳伟,赵怡晴,等.卸荷条件下花岗岩力学特性分析[J].岩土力学,2019,40(S1):459-467.

[8] 赵怡晴,刘佳伟,金爱兵,等.加卸荷条件下非贯通节理岩体破坏特性研究[J].中南大学学报, (自然科学版),2020,51(07):1893-1901.

[9] 刘新荣,刘俊,李栋梁,等.不同初始卸荷水平对深埋砂岩力学特性影响规律试验研究[J].岩土力学,2017,38(11):3081-3088.

[10] Chen J. Jiang D. Ren S, et al.Comparison of the characteristics of rock salt exposed to loading and unloading of confining pressures[J].Acta Geotechnica,2016,11(1):221-230.

[11] Li X, Shao Z.Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks[J].Rock Mechanics & Rock Engineering,2016,49(7):2581-2593.

[12] 王兴霞,黄建文,黄曼丽,等.卸荷条件下砂岩变形模量弱化规律[J].人民黄河,2015,37(06):131-134.

[13] 温韬.加卸荷条件下岩石破坏机理及应用[D].武汉:中国地质大学,2018.

[14] 王建明,陈忠辉,周子涵,等.不同卸荷速率下节理岩桥变形破坏及裂隙扩展演化试验研究[J].矿业科学学报,2020,5(04):382-392.

[15] 杨以荣,谢红强,肖明砾,等.高围压卸荷条件下横观各向同性岩体变形破坏与能量特征研究[J].岩石力学与工程学报,2017,36(08):1999-2006.

[16] 张黎明,王在泉,王建新,等.岩石卸荷破坏的试验研究[J].四川大学学报(工程科学版),2006(03):34-37.

[17] Swansson S R, Brown W S. An observation of loading path independence of fracture in rock[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1971,8(3):271-28 1.

[18] Crouch S L. A note on post-failure stress-strain path dependence in norite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1972,9(2):197-204.

[19] Lau J S O, Chandler N A. Innovative laboratory testing[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1427-1445.

[20] Huang D, Li Y. Conversion of strain energy in triaxial unloading tests on marble[J]. International Journal of Rock Mechanics & Mining S,2014,66(1):160–168.

[21] Li Xibing, Cao Wenzhuo, Ming Tao, et al. Influence of unloading disturbance on adjacent tunnels[J]. International Journal of Rock Mechanics and Mining,2016,84:10-24.

[22] Xiaofei L, Xiaoran W, Enyuan W, et al. Study on ultrasonic response to mechanical structure of coal under loading and unloading condition[J]. Shock and Vibration,2017,2017:1-12.

[23] Chen J, Jiang D, Ren S, et al. Comparison of the characteristics of rock salt exposed to loading and unloading of confining pressures[J]. ACTA Geotechnica, 2016,11(1):221-230.

[24] MANOUCHEHRIAN A, CAI M. Simulation of unstable rock failure underunloading conditions[J]. Canadian Geotechnical Journal,2016,53(4):1506171436.

[25] 梁宁慧,刘新荣,艾万民,等.裂隙岩体卸荷渗透规律试验研究[J].土木工程学报2011,44(01):88-92.

[26] Louis C., Maini Y.NT., Determination of in situ hydraulic parameters in jointed rock, Rroc. 2nd Congr. ISRM,1970,1:235-245.

[27] Louis C. Introduction a l’hydraulique desroches. Orleans, Bureau Recherches Geologique Miniers,1974.

[28] K. Pruess, B. Faybishenko, G. S. Bodvarsson. Alternative concepts and approaches formodeling flow and transport in thick unsatur-ated zones of fractured rock[J]. Journal of Contaminant Hydrology,199938:281-322.

[29] S.H.Chen, X.M.Feng, S.Isam.Numerical estimation of REV and permeability tensor for fractured rock mass by composite element method[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2008,32(12): 1459-1477.

[30] Rong Guan, Peng Jun, et al. Permeability tensor and representative elementary volume of fractured rock masses[J]. Hydrogeology Journal ,2013,21: 1655-1671.

[31] 邓华锋,王哲,李建林,等.低孔隙水压力对砂岩卸荷力学特性影响研究[J].岩石力学与工程学报2017,36(S1):3266-3275.

[32] 刘先珊,林耀生,孔建.考虑卸荷作用的裂隙岩体渗流应力耦合研究[J].岩土力学2007,28(S1):192-196.

[33] 李志敬,朱珍德,施毅,等.高围压高水压条件下岩石卸荷强度特性试验研究[J].河海大学学报(自然科学版)2009,37(02):162-165.

[34] 王俊光,梁冰.渗透动水压力作用下裂隙岩体渗流与应力耦合分析[J].辽宁工程技术大学学报(自然科学版)2009,28(S1):178-180.

[35] 寇苗苗.卸荷渗流耦合作用下裂隙岩体破坏机理研究[D]重庆:重庆大学.,2019.

[36] 许光祥.裂隙岩体渗流与卸荷力学相互作用及裂隙排水研究[D].重庆:重庆大学,2001.

[37] Wang Y Z, Liu X F, Zhang Z K, et al. Analysis on slope stability considering seepage effect on effective stress[J]. Ksce Journal of Civil Engineering,2016,20(6):2235-2242.

[38] 刘新荣,刘俊,冯昊,等.不同初始卸荷水平和水压下砂岩卸荷力学特性试验研究[J].岩土工程学报,2018,39(07):2344-2352.

[39] 杨冲,陈兴周,黄坚,等.孔压影响下坝基开挖岩体卸荷力学特性试验研究[J].西北水电,2021,(04):1-6.

[40] 邓华锋,张恒宾,李建林,等.水-岩作用对砂岩卸荷力学特性及微观结构的影响[J].岩土力学,2018,40(06):1143-1151.

[41] 周科平,苏淑华,胡振襄,等.不同初始损伤下大理岩卸荷的核磁共振试验研究[J].岩土力学,2015,36(08):2144-2150.

[42] 胡振襄,周科平,李杰林,等.卸荷岩体细观损伤演化的核磁共振测试[J].北京科技大学学报,2014,36(12):1567-1574.

[43] 周科平,胡振襄,高峰,等. 基于核磁共振技术的大理岩三轴压缩损伤规律研究[J].岩土力学,2014,35(11):80-85.

[44] 胡振襄,周科平,李杰林,等. 基于核磁共振技术的大理岩卸荷损伤演化规律研究[J].岩石力学与工程学报,2014,33(S2):3523-3530.

[45] 章亮,任奋华,韩猛,等. 基于核磁共振技术的花岗岩三轴压缩峰前裂隙发育及损伤规律研究[J].煤矿安全,2018,49(09):87-90+95.

[46] 周科平,李杰林,许娟,等. 基于核磁共振技术的岩石孔隙结构特征测定[J].中南大学学报(自然科学版),2014,43(42):207-211.

[47] 冯上鑫,柴军瑞,许增光,等. 基于核磁共振技术研究渗流作用下土石混体细观结构的变化[J].岩土力学,2018,39(08):2189-2198.

[48] 缪澄宇,杨柳,许永震,等. 基于核磁共振监测的砂岩强度软化实验及微观机制研究[J].岩石力学与工程学报,2021,40(11):3523-3530.

[49] 王琨,周航宇,赖杰,等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报,2020,41(02):101-114.

[50] 王顺. 基于核磁共振的不同压力下砂岩微观孔径演化规律研究[D].北京:中国矿业大学,2020.

[51] 邓华锋,段玲玲,支永艳,潘登,李建林,宛良朋.干湿循环作用下节理面剪切力学特性演化规律[J].岩石力学与工程学报,2018,37(S2):3958-3967.

中图分类号:

 TU45    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式